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The main objective of this paper is to present a reliable approach to compute an approx-
imate solution of Jeffery—Hamel flow by using the modified homotopy perturbation method cou-
pled with sumudu transform. The method finds the solution without any discretization or
restrictive assumptions and avoids the round-off errors. The fact that this technique solves nonlin-
ear problems without using Adomian’s polynomials can be considered as a clear advantage of this
algorithm over the decomposition method. The numerical solutions obtained by the proposed
method indicate that the approach is easy to implement and computationally very attractive.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Internal flow between two plates is one of the most applicable
cases in mechanics, civil and environmental engineering. In
simple cases, the one-dimensional flow through tube and par-
allel plates, this is known as Couette—Poisseuille flow, has an
exact solution, but in general, like most of fluid mechanic
equations, a set of nonlinear equations must be solved which
make some problems for analytical solution.

The flow between two planes that meet at an angle was first
analyzed by Jeffery (1915) and Hamel et al. (1916) and so,
it is known as Jeffery-Hamel flow, too. They worked
mathematically on incompressible viscous fluid flow through
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convergent-divergent channels. They presented an exact similar-
ity solution of the Navier—Stokes equations. In the special case
of two-dimensional flow through a channel with inclined plane
walls meeting at a vertex and with a source or sink at the vertex
and have been studied extensively by several authors and dis-
cussed in many textbooks e.g. (Rosenhead, 1940; White, 1991;
Esmali et al., 2008; Joneidi et al., 2010; Ganji et al., 2009; Inc
etal., 2013). Sadri (1997) has denoted that Jeffery—Hamel is used
as a asymptotic boundary condition to examine a steady two-
dimensional flow of a viscous fluid in a channel. But, here some
symmetric solutions of the flow have been considered, although
asymmetric solutions are both possible and of physical interest
(Sobey and Drazin, 1986).

Most of the scientific problems such as Jeffery—Hamel flow
and other fluid mechanic problems are inherently nonlinear.
Except a limited number of these problems, most of them do
not have an exact solution. There exists a wide class of litera-
ture dealing with the problems of approximate solutions to
nonlinear equations with various different methodologies,
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called perturbation methods. But, the perturbation methods
have some limitations e.g., the approximate solution involves
a series of small parameters which poses difficulty since major-
ity of nonlinear problems have no small parameters at all.
Although appropriate choices of small parameters some times
lead to an ideal solution, in most of the cases unsuitable
choices lead to serious effects in the solutions. Therefore, an
analytical method is welcome which does not require a small
parameter in the equation modeling the phenomenon. The
homotopy perturbation method (HPM) was first introduced
and developed by He (1999, 2005, 2006a, 2006b, 2012). It
was shown by many authors that this method provides
improvements over existing numerical techniques (Ganji and
Ganji, 2008; Ganji et al., 2008, 2009; Rashidi et al., 2009;
Yildirim and Sezer, 2010; Noor et al., 2013; Mirzabeigy
et al., 2013). In recent years, many authors have paid attention
to study the solutions of linear and nonlinear partial differen-
tial equations by using various methods combined with the La-
place transform (Khuri, 2001; Khan et al., 2012; Gondal and
Khan, 2010; Singh et al., 2013a) and sumudu transform (Singh
et al., 2011, 2013b).

In this paper, we present a modified analytical technique
namely the modified homotopy perturbation method
(MHPM) coupled with sumudu transform to obtain the
approximate solution of nonlinear equation governing
Jeffery—Hamel flow. The MHPM coupled with sumudu trans-
form provides the solution in a rapid convergent series which
may lead to the solution in a closed form. The advantage of
this method is its capability of combining two powerful
methods for obtaining exact and approximate solutions for
nonlinear equations.

2. Sumudu transform

In early 90’s, Watugala (1993) introduced a new integral trans-
form, named the sumudu transform and applied it to the solu-
tion of ordinary differential equation in control engineering
problems. The sumudu transform is defined over the set of
functions

A = {f()|3M,1), 72 > 0, [f(t)] < M 5 if t € (—1) x [0,00)}

by the following formula

f(u) = S[f(t)] = /0Oo f(ut)e™'dt,u € (-1, 12)- (1)

Some of the properties of the sumudu transform were estab-
lished by Asiru (2001). Further, fundamental properties of this
transform were established by Belgacem et al. (2003), Belgacem
and Karaballi(2006), Belgacem (2006). In fact it was shown that
there is a strong relationship between sumudu and other integral
transform, see Kilicman et al. (2011). In particular the relation
between sumudu transform and Laplace transforms was proved
in Kilicman and Eltayeb (2010). The sumudu transform has
scale and unit preserving properties, so it can be used to solve
problems without resorting to a new frequency domain.

3. Mathematical model

Consider the steady unidirectional flow of an incompressible
viscous fluid flow from a source or sink at the intersection

between two rigid plane walls that the angle between them is
20 as it is shown in Fig. 1.

The velocity is assumed only along radial direction and de-
pends on r and 6. Conservation of mass and momentum for
two-dimensional flow in the cylindrical coordinate can be ex-
pressed as the following (Schlichting, 2000)

10 10
;E(VUr)—F;E(VUO)fO, (23)
I 8U,,+ﬂ 3U,7% _7Q l@(rr,r) 181,07@
" or r 00 r) o or r or r or r’
(2b)
8U() U() an U,U{)
P<Ufw+7m‘ ; )
_ 1 0P 1 8(7"[,0) 1 8100 Tr0
Trae TR e trao (2e)

where P is the pressure term, U, and Uy are the velocities in r and 0
directions, respectively. Stress components are defined as follows:

au, 2 . -
Tl'r*/"(z or —gle(U)), (3d)
(L (1ou, UN 2
‘L'l)of,u(z(;%ﬁ-?) —gle(U))7 (3b)

comn(22 (%) 1 (). -

Considering U, = 0 for purely radial flow leads to continuity
and Navier-Stokes equations in polar coordinates become

P9 u) =
S rU) =0, (42)
U, 1oP [0°U, 10U, 18U U,
=——— - —= - — 4
Ur or p Or o o r or rrapr |’ (4b)
1 OP 2v 90U,
o

é ............. i) ...........
\ 7
U(r,0)

Figure 1  Schematic figure of the problem.
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The boundary conditions are
At centerline of the channel: % =0,

On the wall of the channel : U, = 0. (5)
From Eq. (4a)
g(0) =rU,, (6)
using dimensionless parameter
g(0) 4
== =- 7
o) =52 =2, )

and with eliminating P from Eqs. 4b and 4c, an ordinary dif-
ferential equation is obtained for the normalized function pro-
file f(x):

S 4 20Ref(x)f(x) 4 4of(x) = 0. (8)
According to the relation Egs. (5)—(7), the boundary condi-
tions will be

f0) =1, f(0)=0, f(1)=0. ©)
The Reynolds number is

Upax 0 ( Divergent Channel : o > 0 ) (10)
v v '

Re = Zmax* _
Convergent Channel : o < 0

where U,y is the velocity at the center of the channel (r = 0).

4. Basic idea of MHPM coupled with sumudu transform

To illustrate the basic idea of this method, we consider a gen-
eral nonlinear non-homogenous partial differential equation of
the form:

LU+ RU + NU = g(x), (11)

where L is the highest order linear differential operator, R is
the linear differential operator of less order than L, N repre-
sents the general nonlinear differential operator and g(x) is
the source term. By applying the sumudu transform on both
sides of Eq. (11), we get

n—1 U(/c)(O)
S[U)=u"y o WS — W' S[RU+ NUJ=0. (1)
k=0

Now applying the inverse sumudu transform on both sides of
Eq. (12), we get

U= G(x)— S'[u"S[RU + NUJ], (13)

where G(x) represents the term arising from the source term
and the prescribed initial conditions. Now we construct the fol-
lowing homotopy

U= G(x) — p(S™'[u"S[RU + NUJ)), (14)

In view of the HPM, we use the homotopy parameter p to
expand solution

U= fjp Uy, (15)

m=0

and the nonlinear term can be decomposed as
NU =Y "p"H,, (16)
m=0

for some He’s polynomials (Ghorbani, 2009; Mohyud-Din et
al., 2009) that are given by

1 9" <.
H,,(U 7U7~~~7Um = N ’Ui )
bt = (S50

i= p=0
m=0,1,2,3,... (17)
Substituting Eqgs. 15 and 16 in Eq. (14), we get

" Uy = G(x)

m=0

u'S

p(Sl RSC P Um + EOC '”Hm:|:|>,
m=0 m=0
(18)

Comparing the coefficient of like powers of p, the following
approximations are obtained

JoE Uy(x) = G(x),
p' U (x) = =ST'u"'S[RUy(x) + Hy(U)]],
P Us(x) = =S 'W'S[RU, (x) + H\ (U)]], (19)

P Us(x) = =S [u"S[RU,(x) + Hy(U)]).

Proceeding in this same manner, the rest of the components
U,, can be completely obtained and the series solution is thus
entirely determined. Finally, we approximate the analytical
solution U by truncated series

N
U= ﬂ%;an. (20)
The above series solutions generally converge very rapidly.

5. Solution of the problem

In this section, we apply the MHPM coupled with sumudu
transform to obtain an approximate analytical solution of
Eq. (8). By applying the sumudu transform on the both sides
of Eq. (8), we have

S[f(x)] = 1 + a? — 1’ SRaReff + 4o*f"). (21)
Taking inverse sumudu transform on both sides of Eq. (21), we
get

flx)=1+ %axz — S SRaReff + 402f"]). (22)

Now applying the HPM, we get
Zp”’ﬂ,(x) =1 +%ax2

m=0
-p <Sl l:u}S |:21Re <§:p’" H,,,(x)) +40? (ipmf’mx> } } ) ,
=0 =0

(23)

where H,,, is He’s polynomials that represent the nonlinear
terms. So He’s polynomials are given by

00

> P H, (x) = fix)f(x). (24)

m=0

The first few components of He’s polynomials, are given by
Ho(x) = fo(x)f5(x),

Hi(x) = fo(x)f{ (x) +/i(x)fg(x), (25)
Hy(x) = fo(x)f3(x) + /i(x)f{ (x) +/2(x)fg (%),
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Table 1
when Re = 80 and o« = —5°.

The comparison between the RKHSM (with H = 0) (Inc et al., 2013) and MHPM coupled with sumudu transform for f{(x)

X RKHSM Inc et al. (2013) MHPM coupled with sumudu transform
0 1 1
0.1 0.99595999 0.9962165196
0.2 0.983275 0.9843230775
0.3 0.96017 0.9625668179
0.4 0.923519 0.9276517677
0.5 0.86845826 0.8743082951
0.6 0.78809 0.7949430464
0.7 0.67314 0.6795990006
0.8 0.5119873503 0.5164879998
0.9 0.2915582665 0.2933661078
1 2.851385% 10~ 0.0000000005
1 - 1 -
02 - 0.8 .?""‘:,
061 N 06
) i)
0.4 4 0.4 1
0.2 0.2
0+ r r - = 0 i T T T T T T T T T k',
0 0.2 04 06 0g 1 1] 0z 04 N 0.6 08 1
X
[---- Re=90 — — Re =350 Re =50] Jpzee a=5 " a=4 o=3]

Figure 2 Velocity diagram via MHPM coupled with sumudu
transform for different values of Re when o = 3°.

0.8

06+

e

0.4

0.2 4

T T T T T T T T T T T

0 0z 04 0.é 0g 1

X
Re=110]

Figure 3  Velocity diagram via MHPM coupled with sumudu
transform for different values of Re when o = —5°.

Comparing the coefficients of like powers of p, we have

PP folx) =1+ %axz, (26)

Figure 4 Velocity diagram via MHPM coupled with sumudu
transform for different values of « when Re = 50.

2
1. __ |4 6, L 4
P filx) = o{lzoRex +12(Rea+2aa)x}, (27)
PP falx) = _iaZ _a_RCZYIO _a_z(gRez
2 15 2880 1344
+ 18aRe)x® — ﬁ (5Re? + 200Re + 200(2)x6] , (28)

where a = f”(0) to be determined from the boundary condi-
tions. The solutions of the Eq. (8), when p — 1, will be as
follows:

Sx) = fo(x) +/1(x) +fo(x) + -+ (29)
6. Results and discussion

Eq. (8) is solved analytically using the MHPM coupled with
sumudu transform. Table 1 shows comparison between the
RKHSM (Inc et al., 2013) and MHPM coupled with sumudu
transform for f{x) when Re = 80 and « = —5°. Figs. 2-4
illustrate the effects of Reynolds number and steep angle of
the channel on velocity profile.
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7. Conclusions

In this paper, the MHPM coupled with sumudu transform is
applied successfully to find the analytical solution of Jeffery—
Hamel flow. The results of the present method are in excellent
agreement with the RKHSM (Inc et al., 2013) and the ob-
tained solutions are revealed graphically. In this paper, we
use Maple Package to calculate the He’s polynomials. Also
from figures, we can find some results as follows:

(1) When « > 0 and steep of the channel is divergent, an
increase in the values of Reynolds number decreases
the velocity as shown in Fig. 2 when o = 3°.

(2) When o < 0 and the steep of the channel is convergent,
the velocity increases with the increase in Reynolds num-
ber as depicted in Fig. 3 when oo = —5°.

(3) When Reynolds number is fixed, there is an inverse rela-
tion between divergence angle of the channel and the
velocity of the fluid as shown in Fig. 4.
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