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Abstract In this paper we investigate a Widder potential transform on certain spaces of Boehmi-
ans. We construct two spaces of Boehmians. One space of Boehmians is obtained by a well-known
Mellin-type convolution product. The second space is obtained by another mapping acting with the
first convolution. The extended Widder potential transform is therefore a mapping, that is, well-
defined, linear, continuous, with respect to ¢ and A convergence, and consistent with the classical

transform. Certain theorem is also established.
© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Let Q be an open set in R” and f: Q — C be a Lebesgue mea-
surable function on Q. We denote by # .(Q), 1 < p < oo, the

complete metrizable space of all /" such that for a given
p,1 < p < oo, we have

[ 1aras (1)

which is finite for all compact subsets k of Q.

For p = 1, it is easy to see that /' (Q) C [} ,(Q) and I C 1,
where I'(Q) is the set of globally integrable functions,
1 <p<oo.

It may also be noted that every continuous function is a lo-
cally integrable function and, for all f,gel] . 1 < p < o,

f+g and af are also in I, where 2 € C, C beihg the field of
complex numbers.
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Denote by (0, c0) the set of positive real numbers. The Wid-
der potential transform was presented by Widder (1966, 1971),
by the integral equation

X

P = [ s @)

as a transform related to the Poison integral of a harmonic
function in a half plane. The Parseval-Goldstein type formula
of the Widder potential transform was given by Srivastava and
Singh (1985), as follows

/ T (P ()g(x)dx = / " () (Pg) ().

0

The transform under consideration and its Parseval-Goldstein
type theorem involving the classical Laplace and Fourier sine
are established by Srivastava and Yirekli (1991). More about
the Widder potential and Laplace-type transforms and the
Parseval-Goldstein type theorem reader can see Yiirekli and
Sadek (1991) and Dernek et al. (2011).
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2. General Boehmians

The construction of Boehmians consists of the following
elements:

(1) A set 4;
(i) A commutative semigroup (B, *);
(iii) An operation ® : 4 x B — A such that for each x € 4
and vy, 0., € B,

XO (v % 02) = (x O v1) O vy

(iv) A set A C B" satisfying:

(@) Ifx,ye 4,(v,) € A,x®v, =y ©v, for all n, then x = y;

(b) If (v,),(0,) € A, then (v, x0,) € A.A is the set of all
delta sequences.

Consider

A= {(xm Un) X, € A7 (Dn) € A,X,, Ovy =X, 0 Unvvman € N}

If (x,,0.),(¥,,00) € A x, ©® 0, =y, ©v,, Vm,n €N, then
we say (x,,v,) ~ (v,,0,). The relation ~ is an equivalence rela-
tion in A. The space of equivalence classes in A is denoted by
k(A,(B,*),©,A). Elements of x(A,(B,x*),®,A) are called
Boehmians.

Between A and k(A4,(B,*),®,A) there is a canonical
embedding expressed as

X© Sy,
X — —— as n— oQ.
Sp

The operation ® can be extended to x(A4, (B,*),®,A) x A by

Xn xn Ot
— Ot .
U, U,

In k(4, (B, *),®,A), two types of convergence are:

1. A sequence (h,) € k(A4, (B, *),®,A) is said to be é conver-
gent to h€k(A,(B,x),®,A), denoted by &, Zh as
n — oo, if there exists a delta sequence (v,) such that
(h, ®v,), (h®v,) € A,NVk,n e N, and (h, ©®v;) — (h O v;)
as n — oo, in A, for every k € N.

2. A sequence (h,) € k(A4,(B,*),®,A) is said tq be A conver-
gent to h € (A4, (B, x),®,A), denoted by h, —h as n — oo,
if there exists a (v,) € A such that (h, —h)Ov, € 4,
Yne N, and (h, —h) ®v, — 0asn — oo in 4.

The following theorem is equivalent to the statement of ¢
convergence:

Remark 1. /i, > h(n — o) € k(A, (B, *),®, A) if and only if
there is fu,fr € A and v, € A such that h, = [g—:],h = Ki;]
and for each k € N, f, x — fr as n — oo in 4.

For more details we refer to Al-Omari and Kilicman
(2012a,b, 2013), Al-Omari (2013a,b,c), Beardsley and Mikusinski
(2013), Bhuvaneswari and Karunakaran (2010), Boehme
(1973), Ganesan (2010), Karunakaran and Ganesan (2009),
Karunakaran and Angeline Chella (2011), Loonker and
Banerji (2010), Loonker et al. (2010), Mikusinski (1987, 1983,

1995), Nemzer (2010, 2007), Roopkumar (2009), Srivastava
and Singh (1985) and Roopkumar (2009), and many others.

3. Constructed spaces of Boehmians
In this section we construct the spaces 8(f), ., (k,e),o,A) and
o(1,., (k,e), %, A) of Boehmians.

Following theorem is straightforward.

Theorem 1. Let f€ ] 1

In (3) and (4),
construction.

The Mellin-type convolution between two functions f'and ¢
is defined by Zemanian (1987) [25],

/f p()dt. 3)

More properties that e enjoys can be found in the above
citation.
On the other hand, denote by * the product given by

(F* 0)() = /Omf(yt")t"w(t)dt- )

< p < oo, then we have Pf e I .

two operations are needful for our

(fop)(x

Following is a theorem which is essential in the sense of our
results.

Theorem 2. Let f€ ] 1
P(feo)(y) =

Proof. Let fe I}, and ¢ € k(0,0), 1
using (3) we get

< p < 00,0 € k(0,00); then we have
(Pf+9)(»)-

< p < o0, be given then,

Preon = [ o xzﬂ (s 0)(x)dx

_ /0“ . (/Oocf(xt’l)fl(p(t)dt> . (5)

The change of variables x = ¢z transforms (5) into

Preae) = [ [T
= [ @noehe s

Hence, by (4), we get
P(fep)(y) = (Pf+o)y)

This completes the proof of the theorem. [

dzt™' g(t)dt

Proof of the following two theorems is straightforward.

Theorem 3. Let fe€l) ¢, € k(0,00),1 < p < co; then we

have
(i) fe(p+y)=fop+feoy.
(i) (2f) @ =a(f o), €C.

Theorem 4. Let f, —f in I .1 <p<oo, as n— oo, and
¢ € Kk(0,00); thenfnogoafo<pmnﬂoo,

This theorem follows from the properties of integration.

Theorem 5. Let fel) 1 <p<oo, @,y €k(0,00); then

Se(poy)=(fep)ey.
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Similar proof to this theorem is given by Zemanian (1987).
Hence, we prefer omiting the details.

Denote by A the set of delta sequences (6,) € x(0,00)
satisfying

/030 Op(x)dx = 1. (6)

/oo|(3ﬂ(x)\dx<M, 0< M e (0,00). (7)

suppo,(x) C (0,&,),6, — 0 as n — oo. (8)
Theorem 6. Let (9,) €A and fel 1 <p<oo; then
fed, — fasn— co.

Proof. Let (5,) € A,fel] 1 <p<oo and k be a compact

subset of (0,00) containing suppén for all n; then using (6)

we get
/l(/.5 —Nx) [ dx= 3,)(x) / 3,(y)dy|dx
()
</k / W},)y 09)|[8,0) | .
By Fubinitz theorem we get
/[k | (Fo 00 =Nx) [ dx < f<§>)’_l — f(x)|dx

| 0,(y) | dy. (9)

Since f(f) “tel it follows that f(f)y —-fx)el.
Hence, (9) implies

/k | (fob,—N)x) | dx < M, / | 6,0) | dy (10)

where M, € (0,00).
Therefore, if k = [a, b],a, b > 0; then it follows from (8) that

/[k\(foén—j)(x)|dx<Mlsn(bfa)HO asn— oo, (11)

)= [ 1o ) av

—/|f(x)|a'x—>0 as n — oo.
k

Hence

[ 16, -0

Therefore f'e 6, — fas n — oo on compact subsets of (0, c0).
This completes the proof of the theorem. [

The Boehmian space &(7)., (k,0),e,A) is therefore
described.

We next establish the space 8(f),., (k, ), x, A).
Theorem 7. Let fel],. and ¢ cx(0,00); then we have
f* @ € x(0,00).
Theorem 8. Let fell o,y € k(0,00),1 < p < oo, then we

have

(l)f*(</)+¢)=f*<0+f*l//
(i) (2f) % ¢ = alf * @),z € C.

Theorem 9.

in I, 1<p<oo, as n— oo, and
go%f*goasnﬂoo.

<p< oo, then fx*0,— f as

(i) Let f,—f
¢ € k(0,00); lhenf,1
(i) Let (8,) €A, feL 1

n — o0.

For similar proofs to Theorems 7-9, see Theorems 3, 4
and 6.

As a next step, we merely need to establish the following
theorem.

Theorem 10. Let f el 1
fr(foy) = ()

Proof. Let f€l) .o, € k(0,00); then, using (3) and (4) we
write

< p<oo,0,¥ € k(0,00), then

(e (o)) = / oy (o) (o)

:./Omf(yt’l)f‘ ('/oloo(p(tx’])xflw(x)dx> &t

/ </ for Wf) Y (x)dx. (12)

The substitution 7x~!

(12), we have

retroinm = [ ([ etz ot )x s

=z implies dt = xdz and hence, from

= [ (s o

Therefore

(F+ (@ ey) () = (@) x ) (»).

This completes the proof of the theorem. [

Thus our Boehmian space (7,

loc>

(x,®),%,A) is recognized.
4. The generalized widder potential transform

Let [&] € o1, (x,0),
tended Widder transform as follows

P({gﬂ) B {((?))} (13)

in 861}, (k,e),x A).

e A) be given then we define its ex-

Theorem 11. P, :5(F ., (k,e),0,A) — (I, (k,0),%,A) is a
well-defined and linear extension of P.

Proof. Let [%} [.‘p))] e ol ., (xk,0),0,A); then o, e, =

Vi ® Iy = v, @ 1. Employing the potential transform P on both
sides implies Poy, * 1, = Pv, % r,y, ¥n,m. Thus, 22 are Dn

W
equivalent. Therefore, [(ﬁiﬂ = [@"”;}.

To proof the
[E'a_;]’ [(x/ ] € ol (k

second part of the
,e),e A) then

theorem, let
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W) + (va) ®

(o) * o)) =P\ Ciewn
(o] L)) =2 ([ )

_ [P((o‘n) ° (Wn) + (Vn) ° (rn))}

(ra) * ()
i _[(Poy) * () + (Pv) * (ra)
*{ () * () }

ie.

Hence, we get

e -l - fi)

Let 4 € C then AP, [(“”)} /l[(m”)] = r(”}“”)

(ra)

o] = (2[i5])

This completes the proof. [

Definition 12. Let [W”} € é(l)., (k,o),%,A); then we define

(bn) loc»
the inverse P, transform of [PC”)] as follows
L [(PR)] _ PP _ [
w2 = { @) } @ ()

for each (¢,) € A.

Theorem 13. P!

e

is well-defined and linear.

Proof of this theorem is analogous to that of above
theorem.

Theorem 14. P, :5(l) ., (k,0),0,A) — 5(I)
one-one and onto extension of P.

W] — p [
w] =P [w

(x, o),*,A) is a

Proof. Let PL,[ ] Upon using (13) and the con-

cept of  quotients in (1 ,(x,e),*% A)  implies
Pty Y, = Pg,, * ¢,, Ym,nc N. Theorem 2 then implies
lp(ﬂ ° l//VH) = P(gnl ° ¢n)7 Vm’” E N' Hence ﬁ’ b lpl‘r[ = g}’ﬂ b ¢II
and therefore

(@) _ []

()] W)
To establish that P is surjective, let [P/”} el ., (x,0),% A).

Then we get Pf,, *
orem 2

¢, = Pl * ¢,,Ym,n € N. Once again, The-
implies  P(f, ® ¢,,) = P(fn® ¢,). Therefore,

[u} € ol (x,e),e,A) is such that

7] = (o)

This completes the proof of the theorem. [

Theorem 15. Let {(P } e ol (x,0),%,A) and ¢ € k(0,00);

() loc»
then

P ([ o) =il -

and

Pf([fafi))} : 4’) - {%)} "o

Detailed proof of the first part is as follows:

Applying (14) yields

(50 (%)
() (((qugn) * ¢)] ,

Using Theorem 2 we obtain

e ([6o) o) = ] = i) -
The proof of the part that P, ([({j;)] .¢) = [@{7))} x ¢ is
similar.

This completes the proof of the theorem.

Theorem 16. P.:45(l) ., (x,0),0,A) — &I ,(k,0),%,A) and
P! 20(8, (k,0),%,A) —)5(1,007(K7.),.,A> are  continuous

with respect to 6 and A convergence.

Proof. First of all, we show that P,:d(l) ,(k,e), e A)—
5(1100 (K .)7 *, A) and P; . 5(17017 (K7 .)7 *7A) - 6(llpn(7( )

e, A) are continuous with respect to é convergence.

Let [3,,—»[3 in (), (x,e),e,A) as n— oo then we show
that P.f, — P.f as n — oco. By virtue of Remark 1, we can
find f,x and f; in I such that B, = [f”—:} and = [%] and

loc
Juk — fi as n — oo for every k € N. Employing the continuity
condition of P transform implies Pf, x — Pfi as n — oo in the

space I .. Thus, [Pf’/’*} — [%‘] asn— oo in 8(l ., (k,e),*,A).
To prove the second part, let g, > g in o)., (k,),%,A) as
n — oo. Once again, by Remark 1, there are g, = [%*} and

g= [ﬂ] and Pf,r — Pfi as n— oo. Hence f,r — fr in

(I’ (k,e),e,A) as n — co. That is, [Q] _

loc> b
Using (14) we get P, [Pf”k] — P;l [%"] as n — oo.

Now, we establish the continuity of P, and P;l with respect
to A convergence:

Let §, 2 fin o), (x,e),8,A) as n — oo. Then, there can
be found (f,)€l). and (¢,) €A such that

(B~ B) o, = [“] and £, — 0 as n — oo,

Employing (13) we get Po((B, — f) o ¢,) = [P,

S
4] as oo

3

Hence, we have P.((f,—f)e,) = [Pﬁ’ *d"] Pf, — 0 as

n— oo in l,m,

Therefore Pé’((ﬂn - ﬂ) b d)n) = (Pt’ﬁn - Ptﬂ)

A
n — oo. Hence, P,f, — P, as n — oc.

*¢ﬂ*}0 as
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Finally, let g, > g € o(),, (k,),%,A) as n — oo then we
find Pfi € I, such that (g, — g) + &, = [2:%] and Pfi — 0
as n — oo for some (¢,) € A. Using (14), we get

P (g, —8) * ) =

(P) " (Pfi * 1)
b '

Theorem 2 implies P,'((g, — &) * $,) = [(/"(p:?b’\] fu—0 as

n— oo in I . Thus
P '((g,—8) =, = (P.'g,

From this we find that
(1), (k,e),0 A).

This completes the proof of the theorem. [

—P'g)e¢,—0 asn— ooc.

1A .
Pelgn—>P€1g as n— oo In

Theorem 17. The extended P,
P(P lIm /m)

transform is consistent with

Proof. For every fel , let f be its representative in

(1, (k,e),0, A); then ff= [f' “’;)], where (¢,) € A,Vn € N.

Its clear that (¢,) is independent from the representative,
Vn € N. Therefore

o= () -] - P

which is the representative of Pf e [}, .
Hence the proof. [

Theorem 18. Let

p= L] e ot (x,
v = |B] € ot

,0),0 A); then

o), 0 A) and

Pe(ﬁ.y):Peﬁ*%

Proof. Assume the requirements of the theorem are satisfied
for some ff and y € 6(7), (k,e),e,A) then we indeed get

Hence
i = (255555 = (o) (G5

This completes the proof of the theorem. [
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