Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) 20, 89-99

‘é\"‘ N University of Bahrain ._
&, JJ\ Journal of the Association of Arab Universities for JHHUBHS
.24" —" - - 3
z = Basic and Applied Sciences T
TER S
‘%6« www.elsevier.com/locate/jaaubas
J?’quo e www.sciencedirect.com

el Zlll bk gulas :Dorugade 4 Kibria gkl 8 saaall cdlbedl) (s
S5 e

Adnan Karaibrahimoglu ?, Yasin Asar **, Asir Genc*

& Meram Faculty of Medicine, Medical Education and Informatics Department, Biostatistics Unit,
Necmettin Erbakan, University, Konya, Turkey
b Department of Mathematics-Computer Sciences, Faculty of Science, Necmettin Erbakan
University, Konya, Turkey
¢ Department of Statistics, Faculty of Science, Selc, uk University, Konya, Turkey

1 gadlall

ST e Baals 52 iy ohadl L aall jlaadV) s e doall A dala ASSG 4 Boaedal) dpdadd)
oda . Jladd) 138 8 s i)l 2oy COlalae (e el liay ASED o3 e (alill legul 3yl
il DI Ciige 3lae aladinl Ws zayy Jebee SLEAY saaall COLaill (amy 2 5E (Al
e13) 35)laad (MSE) sl Uadll axdiinsy L jlie) g 3855 i) (e clipatl) clag) L leleall
(OLS) dajiidl culyuiall JS couitll gy oY) Gfalll J8 (e opii 2 b g dajial) oyl
cglal ani GBI die e gl

A. Karaibrahimog lu et al.



Journal of the Association of Arab Universities for Basic and Applied Sciences (2016) 20, 89-99

University of Bahrain

Journal of the Association of Arab Universities for
Basic and Applied Sciences

www.elsevier.com/locate/jaaubas
www.sciencedirect.com

ORIGINAL ARTICLE

Some new modifications of Kibria’s and Dorugade’s () cos
methods: An application to Turkish GDP data

Adnan Karaibrahimoglu ®, Yasin Asar ™*, Asir Geng €

* Meram Faculty of Medicine, Medical Education and Informatics Department, Biostatistics Unit, Necmettin Erbakan University,

Konya, Turkey

° Department of Mathematics-Computer Sciences, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
¢ Department of Statistics, Faculty of Science, Selcuk University, Konya, Turkey

Received 19 May 2014; revised 11 August 2014; accepted 31 August 2014

Available online 7 October 2014

KEYWORDS

Multicollinearity;
Multiple linear regression;
Ridge regression;

Ridge estimator;

Monte Carlo simulation

Abstract In multiple linear regression analysis, multicollinearity is an important problem. Ridge
regression is one of the most commonly used methods to overcome this problem. There are many
proposed ridge parameters in the literature. In this paper, we propose some new modifications to
choose the ridge parameter. A Monte Carlo simulation is used to evaluate parameters. Also, biases
of the estimators are considered. The mean squared error is used to compare the performance of the
proposed estimators with others in the literature. According to the results, all the proposed estima-

tors are superior to ordinary least squared estimator (OLS).
© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Consider the following standard linear regression model
Y=Xf+¢ (1.1)

where Y is an n X 1 vector of dependent variable, X is a design
matrix of order n X p where p is the number of explanatory
variables, f§ is a p x 1 vector of coefficients and ¢ is the error
vector of order n x 1 distributed as N(0, 6°1,). Ordinary least
squared (OLS) method is the most common method of esti-
mating f and the OLS estimator of f is given as follows

B=XX)"'XY (1.2)
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In some situations, the matrix X’ X has almost zero eigenvalues
meaning the explanatory variables are correlated. This leads to
a large variance and so large mean squared error (MSE). Thus
one may not reach a reliable solution for . This is the com-
monly faced problem called multicollinearity. There are vari-
ous methods to solve this problem. The ridge regression is
one of the most popular methods proposed by Hoerl and
Kennard (1970a,b).

In ridge regression, adding a small positive number
k(k > 0) called ridge parameter to the diagonal elements of
the matrix X’X, we obtain the following ridge estimator

Pre = (XX + kL)' XY, k>0 (1.3)

The MSEs of the OLS estimator and the ridge estimator ﬁRR
are as follows respectively,

1815-3852 © 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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MSE(f) = GZZZ (1.4)
MSE (Bee) = Var(Bee) + [131;15(3,?,{)}2
aziﬁ+k2ﬁ/(YX+ kL) (1.5)

where /, ’s are eigenvalues of the matrix X’X and ¢? is the error
variance.

Hoerl and Kennard, 1970b showed the properties of this
function in detail. They concluded that the total variance
decreases and the squared bias increases as k increases. The
variance function is monotonically decreasing and the squared
bias function is monotonically increasing. Thus, there is the
probability that some k exists such that the MSE for BRR is less
than MSE for the usual B (Hoerl and Kennard, 1970ab).

We know that k£ is estimated from the observed data. There
are many papers proposing different ridge parameters in the
literature. In recent papers, these parameters have been com-
pared with the one proposed by Hoerl et al., 1975 and each
other. After Hoerl and Kennard, 1970b, many researchers
studied this area and proposed different estimates of the ridge
parameter. Some of them are McDonald and Galarneau
(1975), Lawless and Wang (1976), Saleh and Kibria (1993),
Liu and Gao (2011), Kibria (2003), Khalaf and Shukur
(2005), Alkhamisi et al. (2006), Adnan et al. (2006), Yan
(2008), Yan and Zhao (2009), Muniz and Kibria (2009),
Mansson et al. (2010), Al-Hassan (2010), Muniz et al.
(2012), Asar et al. (2014) and Dorugade (2014).

The purpose of this article is to study much of the param-
eters in the literature and propose some new ones and also
make a comparison between them by conducting a Monte Car-
lo experiment. The comparison criterion is based on the mean
squared properties.

The article is organized as follows. In Section 2, we present
the methodology of different estimators and give some new
estimators. A Monte Carlo simulation has been provided in
Section 3. Results of the simulation are discussed in Section 4.
In Section 5, an application of the estimators is given. Finally,
we give a summary and conclusion.

2. Model and estimators

Firstly we write the general model (1.1) in canonical form.
Suppose that there exits an orthogonal matrix D we apply a
transformation such that

D(X'X)D' = A = diag(/n, 22, .., %) (2.1)
where D is a p X p orthogonal matrix and 4, > 4, = --- > 4,.

If we substitute Z = XD and « = D’f} in the model (1.1), then
the model may be rewritten as

Y=Zo+e (2.2)
where Z'Z = A.
Thus, the ridge  estimator of o  becomes

Orp = (Z’Z+k1,,)7'Z’ Y. It is stated in Hoerl and Kennard,
1970a that the value of k minimizing the MSE(dzx) is

ki = (2.3)

£ | qll)

As seen in the formula (2.3), k depends on the unknown

parameters o> and «. Hence we use the estimators ¢ and &
due to Hoerl and Kennard, 1970b and get

-2

o

2.1. Proposed estimators

In this section, we review some of the ridge estimators sug-
gested earlier and propose some new ones. The list of estima-
tors with which we will compare ours is given below:

-2

(1) k] :kHK:%

max

(Hoerl & Kennard, 1970a) (2.5)

where &,.x 18 the maximum element of a.

2
po .
(2) ky = m, i=1,2,...,p (Lawless&Wang, 1976)
(2.6)
which is proposed from the Bayesian point of view.
-2
(3) ks = median (%) i=1,2,...,p (Kibria, 2003) (2.7)
which is the median of l€,~ = ;i
267 )
(4) ky = — i 1,2,...,p (Dorugade, 2014)
Amax ([T 05) "
(2.8)

267

=,
Amax

which is the geometric mean of k; =
2p 6
T~ 2
Amax D10

which is the harmonic mean of lél- =

(5) ks = i=1,2,...,p (Dorugade, 2014) (2.9)

252
maxa?

A sufficient condition that MSE(dzz) < MSE() is given by
Hoerl and Kennard (1970a,b) such that k < kyx = A
quick survey shows us that some of the existing ridge parame-
ters are smaller than kyx. However, if we try the estimators
larger than kg, we observe that one can also have better esti-
mators in sense of MSE.

In the figure given by Hoerl and Kennard (1970a,b), it is
obvious that the first derivative of the function MSE(dgg) is
negative when the value of ky is used as the biasing parame-
ter. Therefore, any estimator satisfying 0 <k <kgg gives us a
negative derivative. However, if we examine the intersection
point of the variance and the squared bias functions, we see
that it is absolutely greater than kzg. Thus, one can find esti-
mators such that the first derivative of the MSE(dgg) function
is positive and being greater than kyg. There are greater esti-
mators than kzg in the literature, for example see Alkhamisi
and Shukur, 2007 for the estimators ky 45 and k 4.

It should also be pointed out that the optimal selection pro-
cess of the parameter k in ridge regression cannot be truly pro-
vided from the theoretical point of view. Actually, this is an

open problem to researchers. Thus we suggest some estimators
which are modifications of kg =1

P i=
52 52
2003 kp=7L <5~ and kp=L <

Amax E &2
=11

Dorugade, 2014. We apply some transformations and we fol-

1 & proposed in Kibria,
i

proposed in
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Table 1 The AMSE as a function of ¢°.
n 20 50 100
p=4,p=075
o> 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
ky 0.8018 4.3489 7.5183 39.0185 0.7438 3.7920 6.8246 27.9983  0.7029 2.9245 6.1673 23.5762
ko 0.7727 4.7676 8.3778 442431  0.7133 4.0857 7.4317 28.0331 0.6664 3.0179 6.4671 23.1509
ks 0.7846 5.0495 9.1799 48.9552  0.7428 4.3901 8.1411 31.7462  0.6884 3.3637 7.1451 27.2164
kg4 0.7167 4.4135 8.1842 442272  0.6709 3.9050 7.2784 28.5271  0.6226 3.0754 6.3872 25.1134
ks 0.7088 3.6649 6.0314 29.9480  0.6477 3.2296 5.5757 22.1414  0.6069 2.4728 5.0739 18.7134
ki 0.6910 3.6451 6.0659 30.2548  0.6325 3.2132 5.5900 22.0714 0.5918 2.4698 5.0680 18.7983
ko 0.7298 3.7024 6.0289 29.7302  0.6691 3.2641 5.5984 22.4143  0.6299 2.5016 5.1228 18.8006
ks 0.7245 3.6846 6.0369 29.7471  0.6706 3.2559 5.6112 22.5370  0.6343 2.5223 5.1435 19.0303
kna 0.6862 4.3086 7.3445 36.7735  0.6309 3.7810 6.7037 25.8954  0.5828 2.8875 5.9905 22.0626
OLS 1.4625 8.6222 14.2958 71.7297  1.2800 7.3098  12.6382 50.2923  1.1755 5.4638 11.4942 42.1464
p=4p =085
o* 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
ky 2.5925 7.9881 12.6128 102.2997 1.4107 5.3567 11.8893 79.6890 1.2014 4.4455 10.2231 60.0734
ko 2.8936 10.1650 15.3204  137.0792  1.4823 6.1005 14.3277 103.9478 1.2273 4.8987 11.7653 74.9186
ks 2.9571 10.6945 15.7596  137.3515 1.5931 6.3183 14.4882 98.3121 1.2976 5.1854  12.1973 76.2568
ky 2.6016 9.4165 13.5265 1219175 1.4319 54256  12.2743 84.8187 1.1766 4.5210 10.4937 66.7519
ks 2.2860 6.0829 9.6697 72.4183 1.2541 4.4396 9.4002 60.2166 1.0848 3.6822 7.9935 45.1846
Kkt 2.2572 6.1846 9.7280 73.4788  1.2377 44184 9.3862 59.9767 1.0650 3.6675 7.9889 45.3840
ko 2.2968 5.9923 9.6551 71.7758  1.2685 4.4704 9.4386 60.4528 1.1005 3.7128 8.0291 45.1771
ka3 2.2387 6.0057 9.6579 72.5659  1.2449 4.4367 9.3929 59.9748 1.0752 3.6966 8.0014 45.1750
kna 2.6230 7.9527 12.1402 96.0898  1.4050 5.3006  11.4860 73.5664  1.1539 4.3835 9.7517 56.7623
OLS 5.3294 14.4634 23,1875 178.5352  2.7670 10.1480 21.6767 139.8967 2.2929 8.1819 18.1937 104.3610
p=4,p=095
o> 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
ky 4.4843 17.6719 432137 2852298 3.6713 15.2385 39.8144 211.9142 3.0023 13.8284 27.6675 187.9357
ko 5.4332 24.3150 62.0304 428.1496 4.3521 20.3761 57.6365 317.5391 3.5398 18.2148 37.9291 276.4823
ks 5.2084 21.7618 53.5358  369.9291 4.2803 18.1883  51.3576 277.0999 3.6190 16.7532 34.8457 241.7900
kg 4.4122 17.5500 439138 326.1944 3.6350 14.6845 42.0855 242.7515 3.1331 13.6560 28.8147 212.4845
ks 3.8087 13.6617 32.3764 205.8630 3.1348 11.9416 29.4144 153.8375 2.5679 10.7092 20.8151 137.6582
kot 3.7673 13.5906 32.2286  206.1835 3.1006 11.8395 29.4070 153.9551 2.5506 10.6571 20.7991 137.6976
ko 3.8173 13.6882 32.4253 2059081 3.1437 11.9751 29.4385 153.9099 2.5752 10.7345 20.8414 137.7477
ks 3.7398 13.6022 32.3259  209.1952 3.0774 11.7948 29.6282 155.4830 2.5457 10.6581 20.8693 138.7788
kna 4.4834 16.7420 39.8726 263.3648 3.6897 14.3511 37.4322 196.8083 3.0924 13.1481 26.1427 174.9628
OLS 9.0396 32.5136 78.5206 514.2492 7.1454 27.9423 68.4895 361.1289 5.7255 24.6632 48.0141 321.5286
p=28p=0.75
¢* 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
ky 2.2324 7.9806 20.7148 98.3940 1.7880 7.4095 15.8289 89.4041 1.7462 7.2615 13.0052 82.4673
ks 2.2673 8.1524 25.6294  122.2006 1.8878 7.8641 18.0645 108.6631 1.7441 7.6161 13.9494 97.8043
ks 2.6692 8.7870 27.0009 125.1359 2.2413 8.5847 19.2593 111.2952 1.9512 8.2726  15.0922 100.5385
ky 2.3364 7.6846 23.7623  107.8760  2.0024 7.5203  16.8049 96.3113 1.7414 7.3143  13.2117 86.9273
ks 2.1026 7.7269 17.9763 85.8827 1.6169 7.0094 14.4084 79.5819  1.6307 6.8876  12.0654 74.4692
kan 2.0667 7.5343 17.9416 84.9353 1.6063 6.8763 14.2413 78.6360 1.6036 6.7574 11.8623 73.4395
ko 2.0581 7.4499 17.9446 84.9656  1.6090 6.8610 14.2226 78.3751  1.5976 6.7238  11.8579 73.1182
ka3 2.1998 8.1117 18.5642 90.3647 1.6988 7.4657 15.0726 82.3965 1.7116 7.2623  12.8917 77.3164
kna 2.3118 7.9974 22.2105 101.7014 1.8764 7.6855 16.6246 92.7855 1.7125 7.4613 13.3351 85.0792
OLS 4.2967 15.5416 38.8491 185.4425 3.1334 13.8163 28.8404 159.1808 2.9932 13.1563 23.3809 145.3175
p=28,p=0385
> 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
ky 3.1444 21.4056 54.3085 202.0053 2.5682 17.7387 36.0596 156.8762 2.4620 10.8207 25.1449 119.7675
k> 3.3571 28.3796 75.8952 284.6723 2.6303 22.1753 47.4561 211.9725 2.5101 12.2457 30.9778 154.2272
ks 3.8979 29.1936 72.4889 275.8329 29825 22.5715 46.6600 201.8615 2.7762 12.8455 31.2573 150.6953
ky 3.3834 25.8376 59.1447 238.7088 2.6130 19.3626 39.2020 172.1409 2.4645 11.0033 26.5278 128.3152
ks 2.9414 17.5096 47.5644 1709078 2.4781 15.6459 31.5818 139.3364 2.3925 10.2494 22.8063 108.1431
kot 2.8966 17.6051 46.9861 170.3857 2.4293 15.5167 31.2769 137.6626 2.3448 10.0590 22.5121 106.6644
ko 2.8683 17.6876 46.4738 170.4134 2.3926 154309 31.0563 136.3521 2.3049 9.9242 22.3054 105.6248
ks 2.9750 17.4701 469108 171.0634 2.5064 15.6132 31.4888 139.1297 2.4100 10.4023 22.9707 109.0800
kna 3.3558 23.5494 57.9280 219.3679 2.6441 19.0878 38.4865 165.6201 2.4915 11.3337 26.5494 125.2557
OLS 6.0621 39.0492 101.3570  375.4153 4.6611 31.7765 63.3548 279.4298 4.3699 19.6167 44.6007 209.6424

(continued on next page)
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Table 1 (continued)

n 20 50 100

p=28p =095

o’ 0.1 0.5 1.0 5.0 0.1 1.0 5.0 0.1 0.5 1.0 5.0

ky 10.1517 62.3589 256.3495 510.1337  8.3145 43.598  114.5677 443.13 7.0777 38.516 72.2927 441.6436
k> 12.4626 91.64 394.4763  797.0015 10.055 61.718 175.5814 679.2201 8.1842 53.2412 104.6281 677.2535
ks 12.9914 84.9505 367.1545 668.6289 10.5799 552194 150.651  586.6407 8.6537 50.1042  92.8478 598.2785
ky 10.7853 69.2146  320.9709 554.7026 9.163 443726  122.6003 497.4623 7.4245 41.7137 76.8874 516.3498
ks 9.3234 53.168  195.5032 464.0262  7.4015 40.5554 103.2034 388.1869 6.6582 33.5896  65.7234 376.9323
ka 9.1688 52.6306 196.4644 455.3866 7.3301 39.7718 101.5887 383.3861 6.5494 33.2534 64.7785 374.3269
ko 8.9755 52.1332  199.8805 443.7877  7.2614 38.6766  99.4564 378.0306 6.4089 32.921 63.6095 372.6178
ks 8.9577 52.1043  201.9508 441.7225 7.2644  38.5061 98.9504 377.8803 6.4152 32.9412 63.6302 372.6184
kna 10.9554 67.0785 283.3606 534.8243  9.0699 457474 121.9183 472.5697 7.5963 41.3113  76.988  481.2463

low Khalaf and Shukur (2005) and Alkhamisi and Shukur
(2007) in order to get some estimators being greater than
kux and having better performances. The first two estimators
are smaller than kzx and others are greater than it.

The following are our proposed estimators:

(1) oy = Y2 7

P52
)“max i=1 O([

(2.10)

We suggest the modification by multiplying 2“"“ to the denom-
f Z.. This is an

inator of (2.4). Thus the suggested estimator is -

estimator having a denominator greater than that of Hoerl and
> 5% =12,

Kennard, 1970a. Thus, we can write j— 7
Finally, we use harmonic mean function and get the new esti-
mator given in Eq. (2.10).

-2
G

\/ ‘max Z: l(x
Similar to the above discussion, we multiply the denominator
of (2.4) by An,

showing that this new estimator is clearly smaller than (2.4).
Taking the harmonic mean, we finally get the new estimator
given in (2.11).

(2) ko = (2.11)

2 . ) 22
“—. Again, we have & > %

Amax &}

2p 6?

1/4 LNy}
e
52

\/Zp I/L' Zz 1 1

We have > % 4 > p because the matrix X'X is in the correla-
tion form. Thus, the new proposed estimators kyz and kyy
are definitely greater than kyx. All the above parameters will
be compared by a Monte Carlo simulation and the whole pro-

cess is explained in Section 3.

(3) kv = (2.12)

(4) kyy = (2.13)

3. The Monte Carlo simulation

In this section, a Monte Carlo simulation has been conducted
to compare the performances of the estimators. There are two
criteria used to design a good Monte Carlo simulation. One of
them is to specify what factors are expected to affect the prop-
erties of the estimators and the other is to determine the crite-

rion of judgment. We decided that the effective factors are the
data size n, the number of explanatory variables p, the correla-
tion between the explanatory variables p and the variance of
error terms ¢>. Mean squared error (MSE) will be the criterion
to compare the performances of the estimators. In the simula-
tion, we examined the average MSE (AMSE) of the ridge
parameters. Now, we give details of the study.
The mean squared error of the ridge estimator ﬁR is

MSE(/}R> - Var(ﬁR) [Bms( X }

)4
_ 2
”;u

Although we reviewed 41 different estimators for estimating
the ridge parameter k, we finally consider k1, ks, k3, k4, ks from
the literature and new proposed k1, ky2, ky3 and k4 of them.

The true model Y = X + ¢ is considered with indepen-
dent &~ N(0, ¢°) and f is chosen such that ' = 1 since
Newhouse and Oman, 1971 stated that if f is taken to be the
eigenvector of the largest eigenvalue of the matrix X’X then
the MSE is minimized.

To generate the explanatory variables, we used the follow-
ing commonly used process:

xi= (1= p)"Pz; + pzjpj= 1,2,..,nandi = 1,2,...,p
where p® represents the correlation between the explanatory
variables and z;; ’s are independent, random numbers following
the standard normal distribution. Also, the dependent variable
Y is generated by

Y= fixp + Poxp+ ...+ Bpxp T, j=1, 2, ..., n
where ¢; ’s are independent normal pseudorandom numbers
with zero mean and variance ¢°.

Here, we consider the cases n = 20, 50, 100; p = 0.75, 0.85,
0.95; p = 4, 8 and > = 0.1, 0.5, 1.0, 5.0. After generating the
explanatory variables X and the dependent variable Y, we
standardized both of them so that X'X and XY are in the cor-
relation form.

For the values of n, p, p and ¢° the experiment was
repeated 10.000 times by generating the error terms in the
Eq. (1.1). After this procedure, for each replicate MSE,; s,
MSExr and the average mean squared error (AMSE) for each
estimator are calculated for each of the values (1, p, p, ¢°) such
that

) A2

s+ —— 0 +k (3.1)

+ k) 1

R 10000 .
AMSE(%) 100002 E() (3.2)
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Table 2 The AMSE as a function of p.
o’ 0.1 0.5 1.0 5.0
n=20,p=4
p 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75
ky 0.8018 2.5925 4.4843 4.3489 7.9881 17.6719 7.5183 12.6128 43.2137 39.0185 102.2997 285.2298
ko 0.7727 2.8936 5.4332 4.7676  10.1650 24.3150 8.3778 15.3204 62.0304 442431 137.0792 428.1496
ks 0.7846 2.9571 5.2084 5.0495 10.6945 21.7618 9.1799 15.7596 53.5358 48.9552  137.3515 369.9291
kg4 0.7167 2.6016 4.4122 4.4135 9.4165 17.5500 8.1842 13.5265 43.9138 442272 1219175 326.1944
ks 0.7088 2.2860 3.8087 3.6649 6.0829 13.6617 6.0314 9.6697 32.3764 29.9480 72.4183  205.8630
ki 0.6910 2.2572 3.7673 3.6451 6.1846 13.5906 6.0659 9.7280 32.2286 30.2548 73.4788 206.1835
ko 0.7298 2.2968 3.8173 3.7024 5.9923 13.6882 6.0289 9.6551 32.4253 29.7302 71.7758  205.9081
ks 0.7245 2.2387 3.7398 3.6846 6.0057 13.6022 6.0369 9.6579 32.3259 29.7471 72.5659  209.1952
ks 0.6862 2.6230 4.4834 4.3086 7.9527 16.7420 7.3445 12.1402 39.8726 36.7735 96.0898 263.3648
OLS 1.4625 5.3294 9.0396 8.6222 14.4634 32.5136 14.2958 23.1875 78.5206 71.7297 178.5352 514.2492
n=150,p=4
p 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75
ky 0.7438 1.4107 3.6713 3.7920 5.3567 15.2385 6.8246 11.8893 39.8144 27.9983 79.6890 211.9142
ks 0.7133 1.4823 4.3521 4.0857 6.1005 20.3761 7.4317 14.3277 57.6365 28.0331 103.9478 317.5391
ks 0.7428 1.5931 4.2803 4.3901 6.3183 18.1883 8.1411 14.4882 51.3576 31.7462 98.3121 277.0999
ky 0.6709 1.4319 3.6350 3.9050 5.4256 14.6845 7.2784 12.2743 42.0855 28.5271 84.8187 242.7515
ks 0.6477 1.2541 3.1348 3.2296 4.4396 11.9416 5.5757 9.4002 29.4144 22.1414 60.2166 153.8375
Kkt 0.6325 1.2377 3.1006 3.2132 44184 11.8395 5.5900 9.3862 29.4070 22.0714 59.9767 153.9551
ko 0.6691 1.2685 3.1437 3.2641 4.4704 11.9751 5.5984 9.4386 29.4385 22.4143 60.4528  153.9099
ka3 0.6706 1.2449 3.0774 3.2559 4.4367 11.7948 5.6112 9.3929 29.6282 22.5370 59.9748  155.4830
ks 0.6309 1.4050 3.6897 3.7810 5.3006 14.3511 6.7037 11.4860 37.4322 25.8954 73.5664 196.8083
OLS 1.2800 2.7670 7.1454 7.3098 10.1480 27.9423  12.6382 21.6767 68.4895 50.2923  139.8967 361.1289
n=100,p =4
p 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75
ky 0.7029 1.2014 3.0023 2.9245 4.4455 13.8284 6.1673 10.2231 27.6675 23.5762 60.0734 187.9357
ko 0.6664 1.2273 3.5398 3.0179 4.8987 18.2148 6.4671 11.7653 37.9291 23.1509 749186 276.4823
ks 0.6884 1.2976 3.6190 3.3637 5.1854 16.7532 7.1451 12.1973 34.8457 27.2164 76.2568  241.7900
kg 0.6226 1.1766 3.1331 3.0754 4.5210 13.6560 6.3872 10.4937 28.8147 25.1134 66.7519  212.4845
ks 0.6069 1.0848 2.5679 2.4728 3.6822 10.7092 5.0739 7.9935 20.8151 18.7134 45.1846  137.6582
kot 0.5918 1.0650 2.5506 2.4698 3.6675 10.6571 5.0680 7.9889 20.7991 18.7983 45.3840 137.6976
ko 0.6299 1.1005 2.5752 2.5016 3.7128 10.7345 5.1228 8.0291 20.8414 18.8006 451771 137.7477
ks 0.6343 1.0752 2.5457 2.5223 3.6966 10.6581 5.1435 8.0014 20.8693 19.0303 45.1750 138.7788
kna 0.5828 1.1539 3.0924 2.8875 4.3835 13.1481 5.9905 9.7517 26.1427 22.0626 56.7623 1749628
OLS 1.1755 2.2929 5.7255 5.4638 8.1819 24.6632 11.4942 18.1937 48.0141 42.1464 104.3610 321.5286
n=20,p=238
p 0.75 0.85 0.95 0.75 0.85 0.95 0.75 0.85 0.95 0.75 0.85 0.95
ky 2.2324 3.1444 10.1517 7.9806 21.4056 62.3589 20.7148 54.3085 256.3495 98.3940 202.0053 510.1337
ks 2.2673 3.3571  12.4626 8.1524  28.3796 91.6400 25.6294 75.8952  394.4763 122.2006 284.6723 797.0015
ks 2.6692 3.8979 12.9914 8.7870  29.1936 84.9505 27.0009 72.4889 367.1545 125.1359 275.8329 668.6289
kg4 2.3364 3.3834 10.7853 7.6846 25.8376 69.2146 23.7623 59.1447 320.9709 107.8760 238.7088 554.7026
ks 2.1026 2.9414 9.3234 7.7269  17.5096 53.1680 17.9763 47.5644 195.5032 85.8827 170.9078 464.0262
kan 2.0667 2.8966 9.1688 7.5343  17.6051 52.6306 17.9416 46.9861 196.4644 84.9353 170.3857 455.3866
ko 2.0581 2.8683 8.9755 7.4499 17.6876 52.1332  17.9446 46.4738  199.8805 84.9656 170.4134 443.7877
ka3 2.1998 2.9750 8.9577 8.1117 17.4701 52.1043 18.5642 46.9108 201.9508 90.3647 171.0634 441.7225
kna 2.3118 3.3558 10.9554 7.9974  23.5494 67.0785 22.2105 57.9280 283.3606 101.7014 219.3679 534.8243
OLS 4.2967 6.0621 19.5364 15.5416 39.0492 116.0329 38.8491 101.3570 453.3480 185.4425 375.4153 961.3745
n=150,p=28
p 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75
ky 1.7880 2.5682 8.3145 7.4095 17.7387 43.5980 15.8289 36.0596 114.5677 89.4041 156.8762 443.1300
k> 1.8878 2.6303 10.0550 7.8641 22.1753 61.7180 18.0645 47.4561 175.5814 108.6631 211.9725 679.2201
ks 2.2413 2.9825 10.5799 8.5847 22.5715 55.2194 19.2593 46.6600 150.6510 111.2952 201.8615 586.6407
ky 2.0024 2.6130 9.1630 7.5203 19.3626 44.3726  16.8049 39.2020 122.6003 96.3113 172.1409 497.4623
ks 1.6169 2.4781 7.4015 7.0094 15.6459 40.5554 14.4084 31.5818 103.2034 79.5819  139.3364 388.1869
kot 1.6063 2.4293 7.3301 6.8763 15.5167 39.7718  14.2413 31.2769 101.5887 78.6360 137.6626 383.3861
ko 1.6090 2.3926 7.2614 6.8610 15.4309 38.6766 14.2226 31.0563 99.4564 78.3751 136.3521 378.0306
ks 1.6988 2.5064 7.2644 7.4657 15.6132 38.5061 15.0726 31.4888 98.9504 82.3965 139.1297 377.8803
kna 1.8764 2.6441 9.0699 7.6855 19.0878 45.7474 16.6246 38.4865 121.9183 92.7855 165.6201 472.5697
OLS 3.1334 4.6611 14.9055 13.8163 31.7765 78.4528  28.8404 63.3548 201.7302 159.1808 279.4298 780.6791

(continued on next page)
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Table 2 (continued)

o> 0.1 0.5 1.0 5.0

n=100,p =8

o 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75 0.75 0.85 0.95 0.75
ki 1.7462 24620  7.0777  7.2615 10.8207 38.5160 13.0052 25.1449  72.2927  82.4673 119.7675 441.6436
ko 1.7441 25101 8.1842  7.6161 12.2457 53.2412 13.9494 30.9778 104.6281  97.8043 154.2272  677.2535
ks 1.9512 27762 8.6537 82726 12.8455 50.1042 15.0922 31.2573  92.8478 100.5385 150.6953  598.2785
ks 1.7414 24645 74245 73143 11.0033 41.7137 132117 26.5278  76.8874  86.9273 128.3152 516.3498
ks 1.6307 23925  6.6582  6.8876 10.2494 33.5896 12.0654 22.8063  65.7234  74.4692 108.1431 376.9323
T 1.6036 23448  6.5494  6.7574 10.0590 33.2534 11.8623 22.5121  64.7785  73.4395 106.6644 374.3269
kno 1.5976 23049  6.4089  6.7238  9.9242 32.9210 11.8579 22.3054  63.6095  73.1182 105.6248 372.6178
e 1.7116 24100  6.4152  7.2623 104023 329412 12.8917 22.9707  63.6302  77.3164 109.0800 372.6184
Fen 1.7125 24915  7.5963  7.4613 113337 413113 133351 26.5494  76.9880  85.0792 125.2557 481.2463
OLS 2.9932 43699 12.6329 13.1563 19.6167 66.3018 23.3809 44.6007 127.7137 1453175 209.6424 758.4431

and results are given in Tables 1-3. We also computed biases
of the ridge parameters and reported results in Figs. 1-12.

4. Results of the simulation

According to the results of the simulation, we get the following
Tables 1-3 which show the average mean squared error
(AMSE) values for different numbers of observation, number
of explanatory variables, variances and the correlation values.
We also give some of our important findings in terms of figures
especially for some of the cases in which n or p changes when
the others are fixed. Additionally, we give the comparison of
biases in terms of figures for similar consideration. We did
not give the tables of biases since they are too large.

4.1. Comparison of the estimators according to the AMSEs

4.1.1. Comparison according to the variances ¢°

In Table 1, we have given the average mean squared error val-
ues of the estimators as a function of the variances. We can see
the change of AMSEs according to the variances of the errors
(6?). It is obvious that when ¢ increases, the AMSE of the esti-
mators increases. For all of the cases, AMSE of the OLS esti-
mator is larger than the AMSE of the new proposed ridge
estimators. In most of the cases, the estimators kyy, kno, kns,
ks dominate the estimators &, k, and k3. However, the per-
formance of the proposed estimators ky», ky3 and kx4 (at least
one of them) are the best in all cases.

For given values n =20, p =4, p =0.75 and n = 20,
p = 8, p = 0.75, the performances of the estimators are given
in Figs. 1 and 2 respectively. We can see from these figures that
as o2 changes from 0.1 to 5.0, the AMSE values of the estima-
tors increase. The number of explanatory variables p has a
great effect on multicollinearity. If there are more variables
correlated in the model, the effect of collinearity increases. In
these figures, there is a change in the number of explanatory
variables. In the case of p = 8, the AMSEs are larger than
the former case. Actually, changing p = 4 to p = 8, fixing
n,o” and p , we see that there is an increase in the AMSEs in
all cases.

4.1.2. Comparison according to the correlation p

In Table 2, we have given the AMSE values as a function of
the correlation p. If we fix n and p, we generally see that the

AMSE values increase when the correlation increases. The per-
formances of the estimators kyy, kno, kyz and ky4 are better
than the other estimators. For given values n = 20, p = 4,
6> =0.1 and n = 20, p =4, > = 5.0, performances of the
estimators are given in Figs. 3 and 4 respectively.

According to these figures, for smaller values of o>, the
change in the correlation gives a small increase in the AMSE
values. For each combination of the sample size n and the
number of variables p, the smaller the correlation, the smaller
the AMSE values. However, the change in the correlation gives
a large increase in AMSE values when jumping from ¢ = 0.1
to ¢> = 5.0. In all situations the OLS estimator has a larger
AMSE compared to all the ridge estimators.

4.1.3. Comparison according to the sample size n

In Table 3, we have given the AMSE values of the estimators
as a function of the sample size n. If p and p are fixed, we gen-
erally see that the AMSE values decrease when the data size n
increases. The performances of the estimators k1, ky», ky3 are
again better than the rest of the estimators. Sometimes k5 dom-
inates one of k1, k2, k3 but not all of them. For given values
p = 8 and p = 0.85 the performances of the estimators for
o® = 0.1 and ¢ = 1.0 are given in Figs. 5 and 6 respectively.
We can say that there is a big amount of increase in the AMSE
when jumping from ¢* = 0.1 to ¢*> = 1.0. We did not include
the line of AMSE values of the OLS estimator in the graph
because if it is included, the scale becomes very large so that
the difference between the estimators could not be seen from
the figures.

It is obvious from Figs. 5 and 6 that k5 is the best estima-
tor for the given case and the AMSE decreases when the sam-
ple size increases. In general, when p = 4, ky; has the best
performance and if p = 8, then ky3 has the best performance
for all cases.

4.2. Comparison of the estimators according to the biases

In this simulation study, we also considered biases of esti-
mators. We know that some of the researchers need small
biased estimators while the others only need estimators hav-
ing small MSE. In this section, we compare biases of some
selected estimators having least biases in the simulation. We
only provide some graphs and make our comments using
them.
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Table 3 The AMSE as a function of n.
a 0.1 0.5 1.0 5.0
p=075p=4
n 20 50 100 20 50 100 20 50 100 20 50 100
ky 0.8018 0.7438 0.7029  4.3489  3.7920 2.9245 7.5183  6.8246 6.1673  39.0185  27.9983  23.5762
ky 0.7727 0.7133 0.6664 4.7676  4.0857 3.0179 8.3778  7.4317 6.4671  44.2431 28.0331 23.1509
ks 0.7846 0.7428 0.6884  5.0495  4.3901 3.3637 9.1799  8.1411 7.1451 48.9552  31.7462  27.2164
ky 0.7167 0.6709 0.6226  4.4135  3.9050 3.0754 8.1842  7.2784 6.3872  44.2272  28.5271  25.1134
ks 0.7088 0.6477 0.6069  3.6649  3.2296 2.4728 6.0314  5.5757 5.0739  29.9480  22.1414 18.7134
ki 0.6910 0.6325 0.5918  3.6451 3.2132 2.4698 6.0659  5.5900 5.0680  30.2548  22.0714  18.7983
ko 0.7298 0.6691 0.6299  3.7024  3.2641 2.5016 6.0289  5.5984 5.1228  29.7302  22.4143 18.8006
ks 0.7245 0.6706 0.6343  3.6846  3.2559 2.5223 6.0369 5.6112 5.1435  29.7471  22.5370  19.0303
kg 0.6862 0.6309 0.5828  4.3086  3.7810 2.8875 7.3445  6.7037 5.9905  36.7735  25.8954  22.0626
OLS 1.4625 1.2800 1.1755  8.6222  7.3098 5.4638 14.2958 12.6382  11.4942  71.7297  50.2923  42.1464
p=085p=4
n 20 50 100 20 50 100 20 50 100 20 50 100
ky 2.5925 1.4107 1.2014  7.9881 5.3567 4.4455 12.6128 11.8893 10.2231  102.2997  79.6890  60.0734
ke 2.8936 1.4823 1.2273  10.1650  6.1005 4.8987 15.3204 14.3277 11.7653 137.0792 103.9478  74.9186
ks 2.9571 1.5931 1.2976  10.6945  6.3183 5.1854  15.7596 14.4882  12.1973 137.3515  98.3121 76.2568
ky 2.6016 1.4319 1.1766  9.4165  5.4256 4.5210 13.5265 12.2743 10.4937 1219175  84.8187  66.7519
ks 2.2860 1.2541 1.0848  6.0829  4.4396 3.6822 9.6697  9.4002 7.9935 724183  60.2166  45.1846
ki 2.2572 1.2377 1.0650 6.1846  4.4184 3.6675 9.7280  9.3862 7.9889  73.4788  59.9767  45.3840
ko 2.2968 1.2685 1.1005 59923  4.4704 3.7128 9.6551 9.4386 8.0291 71.7758  60.4528  45.1771
ks 2.2387 1.2449 1.0752  6.0057  4.4367 3.6966 9.6579  9.3929 8.0014  72.5659  59.9748  45.1750
kna 2.6230 1.4050 1.1539  7.9527  5.3006 4.3835 12.1402  11.4860 9.7517  96.0898  73.5664  56.7623
OLS 5.3294 2.7670 2.2929 14.4634 10.1480 8.1819  23.1875 21.6767 18.1937 178.5352 139.8967 104.3610
p=095p=4
n 20 50 100 20 50 100 20 50 100 20 50 100
ky 4.4843 3.6713 3.0023 17.6719 15.2385 13.8284  43.2137 39.8144  27.6675 285.2298 211.9142 187.9357
ko 5.4332 4.3521 3.5398 24.3150 20.3761 18.2148  62.0304 57.6365  37.9291 428.1496 317.5391 276.4823
ks 5.2084 4.2803 3.6190 21.7618 18.1883 16.7532  53.5358 51.3576  34.8457 369.9291 277.0999 241.7900
ky 4.4122 3.6350 3.1331  17.5500 14.6845 13.6560  43.9138 42.0855  28.8147 326.1944 242.7515 212.4845
ks 3.8087 3.1348 2.5679 13.6617 11.9416 10.7092 323764 29.4144  20.8151 205.8630 153.8375 137.6582
ki 3.7673 3.1006 2.5506 13.5906 11.8395 10.6571 32.2286 29.4070  20.7991 206.1835 153.9551 137.6976
ko 3.8173 3.1437 2.5752 13.6882 11.9751 10.7345  32.4253 29.4385  20.8414 205.9081 153.9099 137.7477
ks 3.7398 3.0774 2.5457 13.6022 11.7948 10.6581 32.3259  29.6282  20.8693 209.1952 155.4830 138.7788
kg 4.4834 3.6897 3.0924 16.7420 14.3511 13.1481 39.8726 37.4322  26.1427 263.3648 196.8083 174.9628
OLS 9.0396 7.1454 5.7255 325136 27.9423  24.6632  78.5206 68.4895  48.0141 514.2492 361.1289 321.5286
p=075p=28
n 20 50 100 20 50 100 20 50 100 20 50 100
ky 2.2324 1.7880 1.7462  7.9806  7.4095 7.2615  20.7148 15.8289 13.0052  98.3940  89.4041 82.4673
ky 2.2673 1.8878 1.7441 8.1524  7.8641 7.6161 25.6294 18.0645 13.9494 122.2006 108.6631 97.8043
ks 2.6692 2.2413 1.9512  8.7870  8.5847 8.2726  27.0009 19.2593 15.0922  125.1359 111.2952 100.5385
ky 2.3364 2.0024 1.7414  7.6846  7.5203 7.3143  23.7623 16.8049 13.2117 107.8760  96.3113  86.9273
ks 2.1026 1.6169 1.6307  7.7269  7.0094 6.8876 17.9763 14.4084 12.0654  85.8827  79.5819  74.4692
ko 2.0667 1.6063 1.6036  7.5343  6.8763 6.7574 17.9416 14.2413 11.8623  84.9353  78.6360  73.4395
ko 2.0581 1.6090 1.5976  7.4499  6.8610 6.7238 17.9446 14.2226 11.8579  84.9656  78.3751 73.1182
ks 2.1998 1.6988 1.7116 ~ 8.1117  7.4657 7.2623 18.5642 15.0726  12.8917  90.3647  82.3965  77.3164
kg 2.3118 1.8764 1.7125 79974  7.6855 7.4613  22.2105 16.6246 13.3351 101.7014  92.7855  85.0792
OLS 4.2967 3.1334 2.9932 15.5416 13.8163 13.1563  38.8491 28.8404  23.3809 185.4425 159.1808 145.3175
p=085p=28
n 20 50 100 20 50 100 20 50 100 20 50 100
ky 3.1444 2.5682 2.4620 21.4056 17.7387 10.8207  54.3085 36.0596  25.1449 202.0053 156.8762 119.7675
k> 3.3571 2.6303 2.5101 28.3796 22.1753 12.2457  75.8952 47.4561 30.9778 284.6723 211.9725 154.2272
ks 3.8979 2.9825 2.7762 29.1936 22.5715 12.8455  72.4889 46.6600  31.2573 275.8329 201.8615 150.6953
kq 3.3834 2.6130 2.4645 25.8376 19.3626  11.0033  59.1447 39.2020  26.5278 238.7088 172.1409 128.3152
ks 2.9414 2.4781 2.3925 17.5096 15.6459 10.2494  47.5644 31.5818  22.8063 170.9078 139.3364 108.1431
kan 2.8966 2.4293 2.3448 17.6051 15.5167 10.0590  46.9861 31.2769  22.5121 170.3857 137.6626 106.6644
kan 2.8683 2.3926 2.3049 17.6876 15.4309 9.9242  46.4738 31.0563  22.3054 170.4134 136.3521 105.6248
ks 2.9750 2.5064 2.4100 17.4701 15.6132 10.4023  46.9108 31.4888  22.9707 171.0634 139.1297 109.0800
kg 3.3558 2.6441 24915 23.5494 19.0878 11.3337  57.9280 38.4865  26.5494 219.3679 165.6201 125.2557
OLS 6.0621 4.6611 43699 39.0492 31.7765 19.6167 101.3570 63.3548  44.6007 375.4153 279.4298 209.6424

(continued on next page)



96 A. Karaibrahimoglu et al.
Table 3  (continued)
o 0.1 0.5 1.0 5.0
p=095p=28
n 20 50 100 20 50 100 20 50 100 20 50 100
ki 10.1517 8.3145 7.0777  62.3589 43.5980  38.5160 256.3495 114.5677  72.2927 510.1337 443.1300 441.6436
ko 12.4626 10.0550 8.1842  91.6400 61.7180  53.2412 394.4763 175.5814 104.6281 797.0015 679.2201 677.2535
ks 12.9914 10.5799 8.6537 849505 55.2194  50.1042 367.1545 150.6510 92.8478 668.6289 586.6407 598.2785
ky 10.7853 9.1630 7.4245  69.2146 44.3726  41.7137 320.9709 122.6003  76.8874 554.7026 497.4623 516.3498
ks 9.3234 7.4015 6.6582  53.1680 40.5554  33.5896 195.5032 103.2034  65.7234 464.0262 388.1869 376.9323
Kkt 9.1688 7.3301 6.5494  52.6306 39.7718  33.2534 196.4644 101.5887  64.7785 455.3866 383.3861 374.3269
ko 8.9755 7.2614 6.4089  52.1332 38.6766 329210 199.8805 99.4564  63.6095 443.7877 378.0306 372.6178
ks 8.9577 7.2644 6.4152  52.1043 38.5061 329412 201.9508 98.9504  63.6302 441.7225 377.8803 372.6184
kna 10.9554 9.0699 7.5963  67.0785 45.7474 41.3113 283.3606 121.9183  76.9880 534.8243 472.5697 481.2463
OLS 19.5364 14.9055 12.6329 116.0329 78.4528  66.3018 453.3480 201.7302 127.7137 961.3745 780.6791 758.4431
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4.2.1. Comparison according to the variance o”

In the previous section, we see that an increase in the variance
of the errors ¢° makes an increase in the mean squared error.
Similarly, there is an increase in biases when we increase the
variances of errors. ky, ks, ky; and k3 are the selected estima-
tors to be compared. For given cases n = 20, p = 4, p = 0.75
and n = 20, p = 8§, p = 0.75, biases of the selected estimators
are given in Figs. 7 and 8 respectively.

From these figures, we see that increasing the variance gives
an increase in biases. ky; has a better performance i.e. it has a

small bias among the estimators ky, ks, ky; and kp; for the
given cases. It is obvious that if we increase the number of
variable p from 4 to 8, then there is a small increase in the bias
values fixing n and p. This is valid for all similar cases.

4.2.2. Comparison according to the correlation p

When the correlation p increases, biases of estimators increase.
In most cases, the estimators ky; and k3 have the least biases.
Especially when p = 8, ks is better than k3 but ky; is again
the best estimator. For given values n = 20, p = 4, ¢° = 0.1
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and n = 20, p = 4, o2 = 5, biases of the estimators are pro-
vided in Figs. 9 and 10. It is obvious from these figures that
having a small variance namely ¢ = 0.1, an increase in the
correlation gives a small increase in biases. However the
increase in biases is larger when ¢” = 5, approximately ten
times larger than the former case.

4.2.3. Comparison according to the sample size n

From previous sections, we see that the AMSE decreases as the
sample size n increases. Similarly, biases of the selected estima-
tors decrease as the sample size increases. For any combination
of p, o> and p, we observe that the bias decreases as n increases.
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For given values p =4, p =095, ¢>=0.1 and p =4,
p =095, ¢ = 5, we have given the following Figs. 11 and
12. According to these figures, ky; and ky3 have better perfor-
mances than the other estimators. In most of the situations k
has the least bias. In some cases, ks is better than k3 especially
when p = 8, but it does not have a better performance than
kNl-

5. A real data application

To illustrate the findings of the paper, real life data have been
analyzed in this section. The data are obtained from official
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web site of the Turkish Statistical Institute (see http://www.turk-
stat.gov.tr/). The characteristic of the data is as follows:

Wide lands and underground sources are not the only
wealth of countries. Some indicators are calculated to put
forth the exact power of countries. In order to compare the
wealth of nations, one of the most important indicators is
the Gross Domestic Products (GDP). We have modeled
GDP by cost components (at 1987 and 1998 prices) between
the years 1968 and 2008, closely concerning the economy of
Turkey in parallel to the growth and trends in the world. We
have explained GDP using some parameters in the axes of for-
eign trade and production by multiple linear regression.

The dependent variable is the GDP of Turkey. The eight
explanatory variables are the following respectively: X;:
export, X: import, X3: energy production, Xy: number of
establishments in manufacturing industry, Xs: number of

Table 4 The correlation matrix of the GDP data.

Table 5 MSE values of the estimators in the application.

k k values MSE Variance Sq. Bias R’ PRESS
ki 0.0022 0.1551 0.0804  0.0747  0.9880 0.0137
ko 0.0023 0.1564 0.0785  0.0780  0.9879 0.0137
k3 0.0098 0.2726 0.0230  0.2496  0.9816 0.0146
ky 0.0026 0.1615 0.0723  0.0892  0.9876 0.0137
ks 0.0008 0.1495 0.1312  0.0184  0.9895 0.0134
ko 0.0009 0.1480 0.1262  0.0219  0.9894 0.0135
ko 0.0011 0.1464 0.1178  0.0285  0.9892 0.0135
ks 0.0010 0.1471 0.1224  0.0247  0.9893 0.0135
kg 0.0018 0.1498 0.0902  0.0596  0.9884 0.0136
OLS 0.0000 0.1916 0.1916  0.0000  0.9906 0.0134

employees in manufacturing industry, Xs: wheat production,
X7: milk production and finally Xg: meat production.

We have seen that the model has a multicollinearity prob-
lem since the condition number is k = ’/m—" =49.1128 > 30
which shows severe multicollinearity. We ave given the corre-
lation matrix of the GDP data in Table 4. One can see from
that table that there are high correlations among the explana-
tory variables. The MSE values of the given estimators are
provided in Table 5. It can be seen from Table 5 that kyq,
ky> and kys have less MSE than the others, especially k>
which has the best performance in the sense of MSE. More-
over, if we look at the determination coefficients and PRESS
statistics of each model, it can be said that using these biased
estimators makes no significant change in the model predict-
ability. Thus, we advise to use the new defined estimators
rather than the others.

6. Conclusion

In this paper, we reviewed some new modified ridge parame-
ters and the ones proposed earlier. At first, we explained the
multicollinearity and gave necessary information about meth-
odology of the ridge regression. We introduced, secondly, ten
ridge estimators half of which were proposed earlier and the
other half were our proposals. Then, we compared the param-
eters according to their performance evaluating the average
mean squared errors and also biases. The simulation study
was performed for different combinations of the variances of
the error terms (¢%), the numbers of explanatory variables
(p), the numbers of observations (n) and different correlation
coefficients between the predictors (p). We found that our pro-
posals are better than the ones proposed by k;: Hoerl and
Kennard (1970a), k,: Lawless and Wang (1976), k3: Kibria

X; g X, Pie ) e i G B

bid 1.0000 0.9971 0.8961 0.9063 0.9456 0.4113 0.6804 0.4468
e 0.9971 1.0000 0.8978 0.8977 0.9399 0.4201 0.6793 0.4437
b 0.8961 0.8978 1.0000 0.8199 0.8902 0.5373 0.7435 0.4946
i 0.9063 0.8977 0.8199 1.0000 0.9643 0.3249 0.5092 0.2572
s 0.9456 0.9399 0.8902 0.9643 1.0000 0.5201 0.6869 0.4622
e 0.4113 0.4201 0.5373 0.3249 0.5201 1.0000 0.7583 0.6950
b 0.6804 0.6793 0.7435 0.5092 0.6869 0.7583 1.0000 0.8756
i 0.4468 0.4437 0.4946 0.2572 0.4622 0.6950 0.8756 1.0000
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(2003), k4 and ks: Dorugade (2014) according to their AMSE
and bias performance. Finally, we conclude that our estima-
tors are satisfactory over the multicollinearity problem and
among our estimators ky4 has the best performance. The esti-
mator k; has the least bias in most situations. However deal-
ing with real data, the case may differ. Therefore we highly
recommend researchers not to use just one ridge estimator to
overcome their problem and not to decide without further
study.
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