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In this study, the solutions of the ¢-state Poschl-Teller-type potential for the Schrodinger
and Klein-Gordon equations are obtained using the parametric Nikiforov—Uvarov method.
Solving the Schrédinger and Klein-Gordon wave equations, the energy eigenvalues and wave func-
tions are obtained. For the case £ = 0, we made comparison with previous results where the solu-
tions of Schrédinger equation for the Poschl-Teller-type potential were obtained for s-wave (¢ = 0)
state. We also obtain the thermodynamic properties such as vibrational mean energy, vibrational
specific heat, vibrational mean free energy and vibrational entropy for the Péschl-Teller-type poten-
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1. Introduction

The exact solutions of the wave equations in non-relativistic
and relativistic quantum mechanics are very important. The
Schrédinger wave equation is used to describe non-relativis-
tic spinless particles. The Klein—-Gordon, Dirac, and Duffin—
Kemmer—Petiau equations are used to describe spin zero,
spin half and spin one particles, respectively. The Duffin—
Kemmer—Petiau equation can also be used to describe spin
zero particles. To obtain the exact and approximate solu-
tions of the wave equations, various methods have been
used ranging from Nikiforov—Uvarov method (Ikhdair,
2012; Yahya et al, 2010), supersymmetry quantum
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mechanics (Hassanabadi et al., 2012; Oyewumi and
Akoshile, 2010), asymptotic iteration method (Champion
et al., 2008; Fernandez, 2004), improved AIM (Boztosun
and Karakoc, 2007; Yahya et al., 2014a), Laplace integral
transform (Ortakaya, 2012), factorization method (Dong
et al., 2007), proper quantization rule and exact quantization
rule (Dong and Gonzalez-Cisneros, 2008; Qiang and Dong,
2010). The results obtained by solving wave equations for
certain potential models are increasingly being applied.
Recently, the solution of the two-dimensional spinless
Klein—Gordon equation for scalar—vector harmonic oscilla-
tor potentials with and without the constant perpendicular
magnetic and Aharonov—Bohm (AB) flux fields was studied
by Ikhdair and Falaye (2014). The energies and wave func-
tions of certain potential models have also been used to
obtain information-theoretic measures such as Fisher infor-
mation, Shannon entropy, Renyi entropy, Tsallis entropy
among other information-theoretic measures (see e.g Yahya
et al., 2014b).
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In this work, the solutions of Schrodinger and Klein—
Gordon equations for the P&schl-Teller-type potential are
obtained for all ¢ (orbital angular momentum). The Pdschl—
Teller potential is used to account for the Physics of many sys-
tems which includes the excitons, quantum wires and quantum
dots (Ikhdair and Falaye, 2013a). The dynamical group of the
modified Péschl-Teller potential was studied by Dong and
Lemus in 2002, and it was realized as SU(1,1) group by factor-
ization method (Dong and Lemus, 2002). Also the solutions of
the Dirac equation with the generalized Péschl-Teller poten-
tial including the pseudo-spin-centrifugal term have been
obtained by Jia et al. (2009). The Pdschl-Teller-type potential
to be considered is given as (Chen et al., 2013)

_ Re?A(A+1)
N 2M

where M is the mass of the particle, A denotes the potential
depth and « is related with the range of the potential.

We also study the thermodynamic properties such as vibra-
tional mean energy, vibrational specific heat, vibrational mean
free energy and vibrational entropy for the Pschl-Teller-type
potential. Thermodynamic properties of some model poten-
tials were investigated recently. In Ref. (Baria and Jani,
2012), a new model potential was used with the exchange
and correlation effects to calculate internal energy (enthalpy),
entropy and Helmholtz free energy of liquid Na, K, Rb and Cs
at various temperatures with the variational approach. The
thermodynamic properties have also been studied for the
modified Rosen—-Morse potential (Dong and Cruz-Irisson,
2012), harmonic oscillator plus an inverse square term (Dong
et al., 2007), shifted Deng-Fan potential (Oyewumi et al.,
2013) and Poéschl-Teller potential (Ikhdair and Falaye,
2013a) which is of course different from the Poschl-Teller-type
potential to be considered in this study.

The paper is organized as follows: In Section 2, the para-
metric NU method will be reviewed. The bound state solutions
for the Po&schl-Teller-type potential are obtained for
Schrédinger and Klein—-Gordon equations using the paramet-
ric Nikiforov—Uvarov method in Section 3. In Section 4, the
thermodynamic properties such as vibrational mean energy,
vibrational specific heat, vibrational mean free energy and
vibrational entropy are studied for the Pdschl-Teller-type
potential. The conclusion is given in Section 5.

V(r) tanh’ (o), (—o0 < r < 00), (1)

2. The parametric Nikiforov—Uvarov (NU) method

By using the parametric NU method, the solutions of a second
order differential equation of the form (Tezcan and Sever, 2009)
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e = — 2¢5 + 2(\/c9 + €34/¢3), €12 = ca ++/cs,
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In the special case ¢; = 0, we have

(x) is the Jacobi polynomials and
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and the wave function in Eq. (4) turns to
W = s2e L0 (¢)5), (8)

where L;(x) is the Laguerre polynomials.
3. Solution of the Poschl-Teller-type potential

3.1. Solution of the Schrodinger equation

The radial part of Schrodinger equation in spherical polar
coordinate can be written as

PRy(r) 2u o0+ 1
2 (v - R =0, )

where u is the mass of the particle and E,, is the energy spec-
trum. The exact solution of Eq. (9) cannot be obtained except
by using an approximation. It is found that the following
approximation (Ikhdair and Falaye, 2013a, 2014; Ikhdair
and Hamzavi, 2012)

o, 1
o (ddy s 10
2 ( 0 sinh2(o¢r)> (10)

is a good one to the centrifugal term in short range potential,
with dy = 1/12. The approximation used in Eq. (10) above is a
slightly better approximation than 1/r? a o?(d, + 1 /sinh’ (azr))
at certain small values of or like when o« = 0.1. Substituting
Egs. (1) and (10) into Eq. (9), we obtain

@Ry (r) (l+1) )

b le— —o2)(h+ Dtanh(ar) | Ru(r) =0, (11
dr? ‘ sinhz(fxr) =X Jtanh®(ar)| Ru(r) (1)
where

2uE
e:%—4d0a2£(€+1). (12)

Also, if we make the substitution s = sinh’(ar), we obtain

dan[(S) 1/2 + 5 dRyu(s) 1
ds’ s(1+s) ds 2(1+s)
Je—1) | (e=A) A _
S 5% 7 Ry(s) =0, (13)
where
A=l +1), t=d?2(A+1). (14)

Comparing Eq. (13) with Eq. (2), we have that
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If we make use of Eq. (5), we obtain
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Substituting Eq. (16) into Eq. (3), we obtain after
simplification
e:—4n2—4n+8nv+4y—8n§—4§—%—A+8yC, (18)

from which we obtain the energy eigenvalues as
" , s ; 3
E”[:Z_ 4dya (4 1) —4n” —4n+8ny +4y — 8n( —4(—5—/\—5—8“/{ ,
u

(19)

where n=0,1,2,...,[/] and [] denotes the largest integer
inferior to 4. Also, substltutlng Eq. (16) into Eq. (4), we obtain
the wave function as

Ry = s75(1 4 )7 P20 (1 4 24). (20)

The numerical results of the energy eigenvalues for the non-
relativistic P&schl-Teller-type potential are obtained in
Table 1 for ¢ =0 (s-wave), and compared with the result
obtained in Ref. (Chen et al., 2013) where the s-wave state of
the Poschl-Teller-type potential was studied. It can be
observed that our results are in good agreement. It can also
be noticed from Fig. 1 that the energy eigenvalue increases
with increasing n and /.

3.2. Solutions of the Klein—Gordon equation

The radial part of time-independent Klein-Gordon equation
with equal scalar S(r) and vector V(r) potentials, describing
spin-zero particle can be written as

Table 1 Energy eigenvalues for the non-relativistic Poschl-
Teller-type potential with A =50, i=2u=1, a =1, £=0.

n E, (our result) E,+1 (Ref. Chen et al., 2013)
0 149.00 149.00
1 341.00 341.00
2 525.00 525.00
3 701.00 701.00
4 869.00 869.00
5 1029.0 1029.0
6 1181.0 1181.0
7 1325.0 1325.0
8 1461.0 1461.0
9 1589.0 1589.0
10 1709.0 1709.0
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Figure 1  Energy eigenvalues of the non-relativistic Péschl-Teller

potential against n for various values of ¢ with o = 1.
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where E refers to the energy spectrum and M is the rest mass of
the confined particle. If we make use of Egs. (1) and (10), we
obtain

du(r)
e [F g xtanh®or|u(r) = 0, (22)
where
B — M*¢t E+M
e=m = ARdl(l+ 1), K= M 2i(i+1).  (23)
R e
Substituting s = sinh?(ar) in Eq. (22), we obtain
du(s)  1/2+s du(s) 1
ds* s(L4+5) ds  2(1435)°
2e—K) (=N Al
S +s y) ) u(s) =0. (24)

Comparing Eq. (24) with Eq. (2), we have that

K—¢& e— A A
A= y) , B= 7] ’C_Z

1
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Using Egs. (5) and (25), we obtain
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TP ET T T T TT T Ty

1 A 1
=gt @ qgty =142

1

cn=-2420-0), cn=+ +C, cz==—(0-10), (26)

where

fk 1 A1

Substituting Eq. (26) into Eq. (3),
simplification

we obtain after
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8:—4n2—4n+8n5+45—8nC—4C—%—A+85C, (28)

from which we obtain the relativistic energy eigenvalues as

25 . . 3 < 2 2
Ey= {’h‘c’<74n274n+8m>+4678n;—4§—§—/\+8(>C+4a<‘dol((+1))+M204] .
(29)

The wave function is also obtained as

Uy = s%“(l + s)%f‘stlzl"zo')(l + 25). (30)

The numerical results of the eigenvalues for the relativistic
Poschl-Teller-type potential are displayed in Table 2 for some
values of n and /. It is observed that when /4(n) is kept constant,
the energy eigenvalue increases with increasing n(/).

4. Thermodynamic properties

To study the thermodynamic properties of the Pschl-Teller-
type potential, we first obtain the vibrational partition func-
tion defined as

G
zZ(p) = e, (31)
n=0

where = 1/kT, k is the Boltzmann constant and [4] is the
largest integer inferior to 4, the potential depth. The principal
quantum number » ranges from 0, 1,2,...[4]. In the classical
limit, at high temperature T for large [4], the sum can be
replaced by an integral and [1] can be replaced by A (since
[4] = A — 1). By substituting Eq. (19) into Eq. (31) and replac-
ing the sum by an integral, the partition function for the
Poschl-Teller-type potential gives, for large A:

Z([)’):/Oze’”f”dn = 8’;;;:26” [erﬁ (71\/%Q> —erfi (71&L>}, (32)

where

B > 2 2
J—12 [2€(€+ Yo+ 3(—1 4 8y + 8¢ —2A)}7
L=1-2y42(, Q=1-2y+2{+24,

erfi(z) = erfl(.lz)7 erf(z)

:% /0 “edr (33)

The thermodynamic properties can now be obtained from the
partition function as follows:

Table 2 Energy eigenvalues for the relativistic Poschl-Teller-
type potential with A =50, i=2M=c=1, a=1.

Ey

—0.488561, 7.66370
—0.440421, 13.1143
—0.352923, 17.3663
—0.226206, 20.9756
—0.439820, 13.1606
—0.351936, 17.4046
—0.224834, 21.0089
—0.058249, 24.1800
—0.350064, 17.4771
—0.222230, 21.0717
—0.054909, 24.2360

0.152284, 27.0754

NN = === O OO O
DN A WD PR WD~ WD~ O |3

(1) The vibrational mean energy U:

0
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where

Y =20(¢ + 1) +3(—1 + 87 + 8 — 2A),

Q =erfi (h\/gQ> —erfi (h\/TEL> . (36)

(2) Vibrational specific heat C:
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(3) Vibrational mean free energy F:

F(p) = —kTInZ(p) (40)
1 mn. p B
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(4) Vibrational entropy S:

=kinZ(p) — kﬁ_ In Z(p).

d
S(B) = kInZ(B) + kT 5= In Z() 5

el o)
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The plots of the thermodynamics properties against A for the
diatomic molecules HCl and H, with = 0.001 are shown in
Figs. 2-6. The spectroscopic constants of the diatomic
molecules studied in this work are displayed in Table 3 and
taken from (Yahya et al., 2014a). We have also used the

conversions 7ic = 1973.29eV A~ and 1 amu = 931.494028 x
10°eV ¢ 2. Itis observed from Fig. 2 that the partition func-
tion Z decreases monotonically with increasing A for the two
diatomic molecules considered, and reaches a constant value
for some typical values of /. From the variations of the mean
energy U with 4 in Fig. 3, it can be observed that the vibra-
tional mean energy initially decreased to a minimum after
which it increases with increasing A for the two diatomic
molecules studied. Fig. 4 shows that the vibrational specific
heat decreases exponentially with increasing A unlike the
vibrational mean free energy F that increases monotonically
with increasing A for the two diatomic molecules, as depicted
in Fig. 5. In Fig. 6, the variations of the vibrational entropy
S with 4 are shown. It is observed that the vibrational entropy
decreases monotonically with increasing A.
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Figure 2 Vibrational partition function Z against A for the
diatomic molecules HCI and H, with = 0.001.
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Figure 3  Vibrational mean energy U against / for the diatomic
molecules HCI and H, with = 0.001.
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Figure 4  Vibrational specific heat C against A for the diatomic
molecules HCI and H, with = 0.001.
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Figure 5  Vibrational mean energy F against 4 for the diatomic
molecules HCI and H, with = 0.001.
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Figure 6 Vibrational entropy S against / for the diatomic
molecules HCI and H, with = 0.001.
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Table 3 Spectroscopic constants of the diatomic molecules
studied in this work.

Molecule u (amu) « (A7)
HCl 0.9801045 1.8677
H, 0.5039100 1.9425

5. Conclusion

The solutions of the Pd&schl-Teller-type potential for the
Schrédinger and Klein—-Gordon equations have been obtained
via the parametric Nikiforov—Uvarov method. We made com-
parison between the energy eigenvalues obtained for the
Schrédinger equation (when ¢ =0) and that of the result
obtained in the literature where s-wave (¢ = 0) state of the
Poschl-Teller-type potential was considered in the non-rela-
tivistic case. The results are in perfect agreement. We have also
obtained, from the high temperature partition function, the
thermodynamic properties such as vibrational mean energy,
vibrational specific heat, vibrational mean free energy and
vibrational entropy for the model potential. From the plots
of the various thermodynamic properties with A, we have
observed that the vibrational entropy and vibrational specific
heat decrease with increasing A while the vibrational free
energy F increases monotonically with increasing 4. The mean
energy U on the other hand initially decreases to a minimum
after which it continues to rise with increase in A.
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