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Abstract In this paper, we discuss a fractional model arising in flow of two incompatible liquids
through homogenous porous media with mean capillary pressure. The solution is derived by the
application of the Sumudu transform and the Fourier sine transform. The results are received in
compact and graceful forms in terms of the generalized Mittag-Leffler function, which are suitable
for numerical computation. The mathematical formulation leads to generalized fractional derivative
which has been solved by using a numerical technique by employing the iterative process with the
help of appropriate boundary conditions. This problem has great importance in petroleum tech-

© 2015 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A porous medium is a material containing pores (voids). Voids
are usually filled with a fluid as liquid gas. A porous medium is
most often characterized by its porosity. The skeletal portion
of the material is often called the matrix or frame. Other prop-
erties of the medium such as permeability, electrical conduc-
tivity and tensile strength can also be consequent for the
respective properties of its constituents (solid matrix and fluid)
and the media porosity and pore structure, but these are gen-
erally complex. For a poroelastic medium the concept of por-
osity is usually uncomplicated. This concept of porous media is
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used in many areas of applied science and engineering. The oil—
water movement in a porous medium is an important problem
of petroleum technology and water hydrology (Scheidegger,
1966). Here we consider the injection of water into an oil for-
mation in porous medium providing a two phase liquid-liquid
flow problem. Such a problem is generally encountered in sec-
ondary recovery process. A number of research workers have
also studied phenomenon of flow of two incompatible liquids
through homogenous porous media with mean capillary pres-
sure by using different mathematical resources (Bravo and
Araujo, 2008; Brooks and Corey, 1964; Corey, 1954;
Scheidegger, 1960; Scheidegger and Johnson, 1961). The frac-
tional calculus has gained importance and popularity during
the recent years or so, mainly due to its demonstrated applica-
tions in science and engineering. For example, these equations
are increasingly used to model problems in fluid flow, the-
ology, diffusion, relaxation, oscillation, anomalous diffusion,
reaction—diffusion, turbulence, diffusive transport akin to
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diffusion, electric networks, polymer physics, chemical physics,
electrochemistry of corrosion, relaxation processes in complex
systems, propagation of seismic waves, dynamical processes in
self-similar and porous structures and many other physical
processes (Hilfer, 2000; Srivastava et al., 2012; Moustafa and
Salem, 2006; Podlubny, 1999; He, 1998; Chaurasia and
Singh, 2010). Many authors have proposed various methods
to handle linear and non-linear fractional differential equa-
tions which are of great importance in scientific and techno-
logical fields. Among these are differential transform method
(He, 1998; Atangana and Alabaraoye, 2013; Atangana and
Kilicman, 2013), homotopy perturbation method (Liu et al.,
2014), and variational iteration method (He and Wu, 2007).

In this article, we study a fractional partial differential
equation associated with the generalized fractional derivative
which is governed by the flow of immiscible phases in a
homogenous porous medium with initial and boundary condi-
tions. The solution of the fractional model is obtained by using
Sumudu and Sine transforms.

2. Preliminary results

The Sumudu transform of a function f{r), determined for all
real numbers 7 > 0, is the function F;(u), defined by
Watugala (1993), Weerakoon (1994), Asiru (2001), and
Belgacem and Karaballi (2005).

SU0) = Fl) = 6l = [ (1 e o )

We will also use the following outcome hold by Chaurasia
and Singh (2011) as:

S (1 - o)) = 07 E) (of). (2)

The Fourier sine transform is defined by Debnath (1995).
F(s,1) 2 /ch( 1) sin sx d. (3)
s, 1) =— fx, sx dx.
vV Jo
The error function of x is defined by Rainville (1960)

enftn) =2 [ exp (-7) @)

and the complimentary error function of x is defined as:
2 X

erfo(x) == / exp (—2°) dz (5)
T Jo

A generalization of the Mittag-Leffler function by Mittag-
Leffler (1903, 1905)

S} n

Z):ZF(noc—i-l)’

n=0

(€ C,R(z) > 0) (6)

was introduced (Wiman, 1905) in the general form

ZF (no+B)’

n=0

(o, p € C,R(ax) > 0) (7)

also derived (Shukla and Prajapati, 2007) in the following
integral:
kls*F

o d
e — B,y (xf*)dt = ————. 8
/o dz* 0 (s fx)l“1 ®

The fractional derivative of order a« >0 is presented
(Caputo, 1967) in the form:

¢ e _ 1 * f<m) (T)
ODxf(x) - F(m . O() /0 (.X B T)oc—erl d‘L‘7

:ddf(jf), ifo=myme N 9)

m—1l<a<m

where ddff,f) is the m'™ derivative of order m of the function f(x)

with respect to x. The Sumudu transform of this derivative is
given (Chaurasia and Singh, 2010) as:

m—1

Zu”‘*/‘ B 0+),

m—l<a<m

S[EDA(x): 5] = ufls)
(10)

A generalization of the Caputo fractional derivative opera-
tor Eq. (9) is given (Hilfer, 2000), by introducing a right-sided

fractional derivative operator of two parameters of order
O<a<land0 << p< 1 as:

D) = 10 (), (1)

If we put =1, Eq. (11) reduces the Caputo fractional
derivative operator assigned from Eq. (9).

Sumudu transform formula for this operator is given by
Hilfer (2000), Belgacem et al. (2003), we hold:

SloD*Pf(x);s] =u*f(s) —u PP 04, 0<a<,
(12)

where the initial value term

1A04), (13)

involves the Riemann—Liouville fractional integral operator of
order (1 — f)(1 — o) evaluated in the limit as x — 0+. For
more details and properties of this operator see Tomovski
et al. (2010).

The simplest Wright function is defined (Erdelyi et al.,
1981; Srivastava et al., 2012) as:

ok
Zfak+ﬁ R where o, f,z € C, (14)

and the general Wright function is defined as:

(ai, 0i) 1 ) =TT, T(a; + wk)
W,(2) = =) o mr e e o 15
W (2) =¥, {(bﬁ 5/_)(1#) — Hj:lr(bj + Bk k! (15)
where  z,a,b;€ C and o, B, € R(i=1,2,...,pand
j=1,2,...,q9) then Eq. (15) reduces to familiar generalized

hyper-geometric function as (Thomas and George, 2006)

(@) (ay),
’bq’z)_;(bl)k.,.(bq)iﬁ (16)

The generalized Navier-Stokes equations are given as
(Moustafa and Salem, 2006)

ok

ZF othrﬂ ) kU

qu(ala~~~7ap;bl7~~-

W(a, B;z) where o, f,z € C. (17)

The relationship between the Wright function and the com-
plementary Error function is given as
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1 ” o (K, OP,
W(fz, : )-erﬁ() (18)  yD*'s, = F{? ax} where (0 < 2 < 1;0 < f < 1).
(29)
3. Mathematical model of the problem Eliminating 2 apu from Eq. (28), we get:
The seepage velocity (U,,) of water and oil ({,) is assumed as yD*'S, = o { K(% _ aP“) };
(Scheidegger, 1960) o Ox  Ox
v K. KaPn ) where (0<a Lo< <) (30)
YT, From Eqgs. (29), (30) and (23) we get,
0 [ K, K, 8P K, OP,
K, 0P, 0 K< .y ) : ] 0. (31)
Uy=—-—K 20
C ox ( ) Ox Cw Co Ox Cw Ox
and equation of continuity Now integrating Eq. (31), we get:
K, K,\ 0P, K, OP,
89S, . U, K( . ) Ko 0P _ 3
Vo Tax 0 (21) L4 ) ox TN ox (32)
where C is the constant of integration, whose value can be
oS, ouU,
=0 (22) calculated.
ot ox

here K is considered as the permeability of the consistent medi-
um, K,, and K, are the relative permeability of water and oil,
which are the functions of the saturation of water (S,) and
oil (S,) respectively, P, and P, define the pressure of water
and oil, aspect {,, and {, are the kinematics viscosities of water
and oil, while i is the medium of porosity and from the defini-
tion of phase saturation (Scheidegger, 1960), it is apparent
that:

Sy +S,=1 (23)
The capillary pressure (P, ) is defined as the pressure discon-

tinuity of the flowing phases across their common interface
which may be codified as:

P(’:Pofp\w (24)
Relation between phase saturation and relative perme-
ability (Scheidegger and Johnson, 1961) is specified as:
KW = SW
K,=1-3S, (25)
Ko = Sa
If the generalized fractional derivative model is used to pre-

sent the time derivative term, the equation of continuity is
transformed into:

0 Un"

YD, + B =0; where(0<a<1;0< <), (26)
WD 'S, —0—% =0; where(0<a<1;0<pf<1). (27)

If we put o = 1 and f =1 in Egs. (26) and (27) reduced to

Egs. (21) and (22) respectively.
4. Formulation of fractional partial differential equation

Putting the values of U,, and U, in Egs. (26) and (27) from Egs.
(19) and (20) respectively, we obtain the results:
Klt 8PU

yDHS, = 4 {C K

}; where (0 <o < ;0 < < 1),

(28)

Ky 0P
BPO -C KCH Ox

ox *
GRS

%
BPO c Ox (33)

ox - K, { + K L)
Kﬁ(l +—;—) (1 +—;—)
Substituting the value of 00% in Eq. (30) from Eq. (33), we
got the conclusion that:

a K, -C 43 K, 0P,
!//D“ /ZSH _ YK + Ix - K
I KX (1 +& K, w) (1 +&%> -
o [N Co Ky

Ky 0P,
9 9 K5 ox ¢

WD*S, +— + =0 (34)
Tlorek) (i)
Pressure of oil P, can be defined as:
Po“’Pn' Po_Pw ) 1
P, = = P4+=P. 35
2 + 2 + 2 (35)

where P is constant, which is the mean pressure.
From Egs. (32) and (35), we hold:

K (K, K, 0P,
C=—(=2_-2¢ . 36
( Cw C{) ) ( )

Substituting the value of C in Eq. (34), we hold:

o[ Exon o
ox K + K, ¢ =0
(1 +8a) (1455

YyD*'S, +—

' 0P | K proPe
¢D?~’*Sw+% a‘?x % o
T L (H'cf 7<>

10 [ K, P,
DS, +- = | k22 2kl g
lp ! +2 ox Cw 8X:|

10 [ K, dP. 05,
D“'ﬂS“Y - _H C w — 37
VDS + 5 55 KT, s, ax} (37)
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Taking the K% 9% — _ B then Eq. (37) is reduced as:

v S,
WwD*Es ! Bazs”' =0
A
»’rs, 1
o2 ﬁDt‘ﬁSW’ (38)

where C = £,
This is the partial differential equation of motion for satura-
tion constraint conditions as:

S,(x,0) =0
$.,(0,7) =5, <1 (39)
lim, S, (x,7) = 0;0 < x < 00

5. Analytical solution of the problem

Form Eq. (38), we include:

S,
Ox?

Operating Fourier sine transform Eq. (3) on Eq. (40), we
get:

B 2 0 a2 .
DFS, (s,1) = ,u\/;/o aafz sin sx dx

Integrating by parts method, yields

_ 2[0S, . e 2 [0S,
DS, (s,1) = u\/;{ax smst fs,u\/;/o Ty oSS dx

\/5 95, sinsx N \/E[S cos sx]o°

= /==L sins — suy /=[S, cos s
V7 ox 0 M7 0

2 2T
— s = S, sin sx dx,
T Jo

and applying constraint conditions Eq. (40), we get:

. 2 2 _
D?”’Sw(s, 1) :,u\/;(O) — s,u\/;(o —Su,) — szuSw(s, 1)
20 oo
=su ES“"’ — 7S, (s, 1). (41)

Now, using Eq. (12) and taking Sumudu transform for both
sides in Eq. (41), we obtain:

DIPS,(x, 1) =

. (40)

S, (s,u) = su\/%Swo W {1 — (=*p)u*} . (42)

Next, using Eq. (2) and taking inverse Sumudu transform
for both sides in Eq. (42), we obtain:

2
S,(s,1) = s,u\/;Swu P Eyir (—5u%). (43)

Finally, taking the inverse Fourier sine transform on above
Eq. (43), we get:

2 2 [
Sy(x,1) = u\/;Swot“ [\/;/O {SE, 41 (—s*ut*)} sinsx ds|

2 o .
Sy(x,1) = - USy, /0 {SE, 1 (—s*ut*)} sin sx ds (44)

which is the same solution as recently obtained (Prajapati
et al., 2012).
It can be written in terms of Wright function as:

—o —Xx
(x,)=S,,Wl—,1;— ). 4
i) = 5. W( 1) (45)

If we set « = 1 and make use of Eq. (12) and Eq. (45), we
arrive at the following result:

S,(x, 1) = Sy erf. (ﬁlﬁ) . (46)

6. Conclusions

In this paper, we have presented a fractional model of flow of
two incompatible liquids through homogenous porous media
with mean capillary pressure. The solution has been developed
in terms of Mittag-Leffler function by using the Sumudu
transform and Fourier sine transform and their inverses after
deriving the related formulae for fractional integrals and
derivatives.
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