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Abstract The purpose of this study is to investigate the unsteady magnetohydrodynamic three-

dimensional flow induced by a stretching surface. An incompressible electrically conducting

Eyring-Powell fluid fills the convectively heated stretching surface in the presence of nanoparticles.

The effects of thermal radiation, viscous dissipation and Joule heating are accounted in heat

transfer equation. The model used for the nanofluid includes the effects of Brownian motion and

thermophoresis. The highly nonlinear partial differential equations are reduced to ordinary differ-

ential equations with the help of similarity method. The reduced complicated two-point boundary

value problem is treated numerically using Runge–Kutta–Fehlberg 45 method with shooting

technique. A comparison of the obtained numerical results with existing results in a limiting sense

is also presented. At the end, the effects of influential parameters on velocity, temperature and

nanoparticles concentration fields are also discussed comprehensively. Further, the physical quan-

tities of engineering interest such as the Nusselt number and Sherwood number are also calculated.
� 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A boundary layer flow, heat and mass transfer over a stretching

surface is a topic of great interest to the researchers in view of
their engineering and industrial applications. Few applications
are, metal and polymer extrusion, paper, glass and fiber pro-

duction, wire drawing, metal spinning, drawing of plastic films
etc. In these processes the final product is significantly depends
on heat transfer rate. In addition, magnetohydrodynamics of
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an electrically conducting fluid is also important as it finds
applications in various stretching sheet problems. For example
in metallurgical processes, the magnetic field effect has a pivotal

role. By drawing strips in MHD fluid, the rate of cooling can be
controlled and the desired quality of end product can be
achieved. Boundary layer flow of viscous fluid bounded by a

moving surface was first studied by Sakiadis (1961). After the
pioneering work of Sakiadis (1961), several attempts (Crane,
1970; Grubka and Bobba, 1985; Ishak et al., 2009) have been

made on this topic.
On the other hand, several industrial fluids such as polymer

solutions shampoos, paints, granular suspension, paper pulp,
slurries, drilling mud’s and certain oils are of the non-

Newtonian fluid nature. The non-Newtonian boundary layer
flow induced due to stretching of sheet has tremendous appli-
cations in many industrial and manufacturing processes. Thus

researchers have shown their attention to study different non-
Newtonian fluid models under different physical situations.
For instance, Hayat et al. (2012a) Hayat et al. (2012b) pre-

sented the simultaneous effects of heat and mass transfer on
flow of third grade fluid between two heated porous sheets.
They employed similarity technique and Homotopy analysis

method to obtain the analytical solutions. A steady Poiseuille
flow and heat transfer of couple stress fluids between two par-
allel inclined plates with variable viscosity is presented by
Farooq et al. (2013). An exact similarity solution is presented

by Gorla et al. (1995) for steady three dimensional flow of
power law fluid motion caused by stretching of the flat bound-
ary in the lateral directions. They found that, pseudo plastic

fluids display drag reduction. Rashidi et al. (2011) obtained
the analytic approximate solutions for the radiative heat trans-
fer of a micropolar fluid through a porous medium. Flow and

heat transfer analysis of a viscoelastic fluid over a stretching
sheet was addressed by Cortell (2006). Time-dependent three-
dimensional flow of Maxwell fluid over a bidirectional stretch-

ing surface was examined by Awais et al. (2014). They have
modeled the three-dimensional momentum equation for the
unsteady flow of Maxwell fluid and resultant equations are
solved analytically. Akbar et al. (2014a,b) addressed the

MHD stagnation point flow due to shrinking of the sheet uti-
lizing Carreau fluid. Later, this work has been extended to
Prandtl fluid by Akbar et al. (2014a,b). Gireesha and

Mahanthesh (2013) analyzed the flow and heat transfer of an
unsteady Walters-B fluid through a porous medium with Hall
effect and convective boundary condition. The heat and mass

transfer flow of non-Newtonian Casson fluid under the influ-
ence of chemical reaction was discussed by Gireesha et al.
(2015a,b) Gireesha et al. (2015c). Recently, Mahmood et al.
(2015) reported an optimal solution for Oblique stagnation

flow of Jeffery fluid toward a stretching surface.
Despite all the above mentioned non-Newtonian fluid mod-

els, the Eyring-Powell fluid model has two advantages. First, it

is deduced from kinetic theory of liquid rather than the empir-
ical relation as in the case of Power-law model. Secondly, it
reduces to Newtonian behavior at low and high shear rates.

Keeping this in view, Hayat et al. (2012a) Hayat et al.
(2012b) considered the Powell-Eyring fluid flow over a moving
surface with convective boundary condition and constant free

stream. Jalil et al. (2013) studied the boundary layer flow and
heat transfer of Powell-Eyring fluid over a continuously mov-
ing permeable surface in a parallel free stream. The authors
employed scaling group of transformations to transform the
governing partial differential equations into ordinary differen-
tial equations and then same are solved numerically using the
Keller-box method. Boundary layer flow of an Eyring-Powell

model fluid due to a stretching cylinder with variable viscosity
was analyzed by Malik et al. (2013). Later, the numerical solu-
tions for free convection heat and mass transfer of MHD

Eyring-Powell fluid through a porous medium were presented
by Eldabe et al. (2012). Hayat et al. (2013) investigated the
radiation effects on the three-dimensional boundary layer flow

of an Eyring-Powell fluid over a linear stretching sheet in the
presence magnetic field via Homotopy analysis method.
Recently, Akbar et al. (2015) reported the numerical solution
for boundary layer flow of Eyring-Powell fluid over a stretch-

ing surface in the presence of uniform magnetic field.
Additionally, nanofluid is a new kind of energy transport

fluid; it is a suspension of nanoparticles and a base fluid.

Ordinary heat transfer fluids cannot be used for cooling rate
requirements, since they have lower thermal conductivity. By
embedding nanoparticles into ordinary fluids, their thermal

performance can be improved significantly. Such thermal
nanofluids for heat transfer applications represent a class of
its own difference from conventional colloids for other appli-

cations. Nanofluids have a wide range of applications such
as engine cooling, solar water heating, cooling of electronics,
cooling of transformer oil, improving diesel generator effi-
ciency, cooling of heat exchanging devices, improving heat

transfer efficiency of chillers, domestic refrigerator-freezers,
cooling in machining, in nuclear reactor, defense, space and
etc Saidur et al. (2011). Choi (1995) was the first to prove that

embedding nanoparticles into the base fluid enhances the ther-
mal behavior of base fluid. Later on, Buongiorno (2006)
addressed a comprehensive survey of convective transport in

nanofluids. Oztop and Abu-Nada (2008) investigated the influ-
ence of various nanoparticles on flow and heat transfer due to
buoyancy forces in a partially heated enclosure. They found

that the use of nanoparticles causes heat transfer enhancement
in the base fluid and this enhancement is more pronounced at a
low aspect ratio than at a high one. Nield and Kuznetsov
(2009) examined the nanoparticles influence on natural convec-

tion flow past a vertical plate saturated by porous medium.
They have employed Brownian motion and thermophoresis
effects by means of Buongiorno nanofluid model. The effect

of heat generation/absorption on stagnation point flow of
nanofluid over a surface with convective boundary condition
was studied by Alsaedi et al. (2012). Makinde and Aziz

(2011) addressed the boundary layer flow of a nanofluid past
a stretching sheet with a convective boundary condition. A
thermal radiation effect on boundary layer flow of a nanofluid
over a heated stretching sheet with an unsteady free stream

condition was numerically investigated by Das et al. (2014).
They found that the heat transfer rate at the surface increases
in the presence of Brownian motion but reverse effect occurs

for thermophoresis. Chamkha et al. (2011) analyzed the mixed
convection flow of a nanofluid past a stretching surface in the
presence of Brownian motion and thermophoresis effects.

Gireesha et al. (2014) obtained the numerical solutions for
nanoparticle effect on boundary layer flow and heat transfer
of a dusty fluid over a non-isothermal stretching surface. The

influence of aligned magnetic field and melting heat transfer
on stagnation point flow of nanofluid due to stretching surface
was addressed by Gireesha et al. (2015a,b) Gireesha et al.
(2015c). Nadeem et al. (2014a),(Nadeem et al., 2014b) studied
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the Oblique stagnation point flow and heat transfer of non-
Newtonian fluid over stretching surface in the presence of
nanoparticles. Later, Nadeem et al. (2015) discussed the

nanoparticle effect on Micropolar fluid flow between two hor-
izontal plates. The influence of magnetic field and rotation
effects are taken into consideration for the formulation. The

peristaltic analysis of Eyring-Powell fluid in the presence of
nanoparticles is carried out by Akbar (2015). Aforementioned
studies on nanofluid are only concerned with two-dimensional

flow situations. Only few attempts have been made to study
three dimensional flow utilizing nanofluids (see Khan et al.,
2014a,b; Mansur et al., 2014; Farooq and Hang, 2014;
Hayat et al., 2015; Nadeem et al., 2014a,b; Gireesha et al.,

2015a) Gireesha et al. (2015b) Gireesha et al. (2015c). More-
over, the viscous dissipation and Joule heating effects in most
of the preceding attempts are ignored.

So far, no investigation is made which illustrates the
unsteady three-dimensional flow of an Eyring-Powell fluid in
the presence of nanoparticles. Therefore, current investigation

deals with unsteady three-dimensional magnetohydrodynamic
(MHD) flow of a nano Eyring-Powell nanofluid over a convec-
tively heated stretching surface in the presence of radiation,

viscous dissipation and Joule heating. Combined effects of
heat and mass transfer involving Brownian motion and ther-
mophoresis are also accounted. The conversation of mass,
momentum, energy and nanoparticle volume fraction results

in the complete formulation of nonlinear mathematical prob-
lem. The nonlinear analysis has been carried out for the veloc-
ity, temperature and nanoparticle concentration profiles using

fourth-fifth order Runge–Kutta–Fehlberg method. To the best
of our knowledge, this study has not been considered by any
authors.

2. Mathematical formulation

Consider an unsteady three-dimensional boundary layer flow

of an electrically conducting Eyring-Powell fluid past a convec-
tively heated stretching sheet in the presence of nanoparticles.
The Cartesian coordinates (x, y, z) are chosen with the origin

O and the sheet coincides with the plane at z = 0 and flow
occupies the region z > 0 as shown in Fig. 1. By keeping the
origin fixed, the sheet is stretched in two laterals x- and y-
directions with the velocities respectively in the form;

uwðx; tÞ ¼ ax

1� at
and vwðy; tÞ ¼ by

1� at
ð2:1Þ

where a and b are positive constants.
Figure 1 Physical model and coordinate system.
In polymer extrusion processes the material properties as
well as elasticity of extruded sheet vary with time even though
the sheet is pulled by constant force. It is also assumed that, Tf

and Cw represents the convective temperature and concentra-
tion of nanoparticles at the sheet respectively, while T1 and
C1 respectively denote the ambient fluid temperature and con-

centration. It is assumed that the Reynolds number is small so
that an induced magnetic field is neglected. The applied trans-
verse magnetic field is assumed to be variable kind and is con-

sidered in the special form as;

B ¼ B0

ð1� atÞ12
: ð2:2Þ

The Cauchy stress tensor T for Eyring-Powell fluid can be

given as

T ¼ �pIþ s ð2:3Þ

qfai ¼ �rpþr:ðsijÞ þ rJ� B; ð2:4Þ
here p is the pressure, I is identity tensor and sij is extra stress

tensor of Eyring-Powell fluid model, which is given as Hayat
et al. (2013);

sij ¼ l
@ui
@xj

þ 1

b
sinh�1 1

c
@ui
@xj

� �
; ð2:5Þ

where b and c are the characteristic length. By considering
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and using boundary layer approximations; the governing time-

dependent three-dimensional equations for nano Eyring-
Powell fluid are expressed in the presence of thermal radiation,
viscous dissipation and Joule heating as Hayat et al. (2013);
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ð2:11Þ
where u, v and w are velocity components along x, y and z
directions respectively, T and C are temperature and volume
fraction of nanoparticles respectively, m – kinematic viscosity,
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l – dynamic viscosity, r-electrical conductivity, am = k/qfcf –
thermal diffusivity of the fluid, k – thermal conductivity of
the fluid, DB – Brownian diffusion coefficient, DT – ther-
mophoretic diffusion coefficient, s = (qc)p/(qc)f – ratio of the

effective heat capacity of nanoparticle and the heat capacity
of ordinary fluid and t is the time.

Following Rosseland approximation, the radiative heat flux
qr is given by;

qr ¼ � 4r�

3k1

@T4

@z
; ð2:12Þ

where r* – Stefan–Boltzmann constant and k1 – mean absorp-
tion coefficient. In this model, optically thick radiation is con-
sidered. Assuming that the differences in temperature within
the flow are sufficiently small such that T4 can be expressed

as a linear combination of the temperature about T1 as
follows;

T4 ¼ T4
1 þ 4T3

1ðT� T1Þ þ 6T2
1ðT� T1Þ2 þ � � � ð2:13Þ

Now by neglecting higher order terms beyond the first
degree in (T � T1), one can get

T4 ¼ 4T3
1T� 3T4

1; ð2:14Þ
Using Eq. (2.14), the Eq. (2.12) takes the following form

@qr
@z

¼ � 16r�T3
1

3k1

@2T

@z2
; ð2:15Þ

Therefore using (2.15), the energy Eq. (2.10) becomes;
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ð2:16Þ
The relevant boundary conditions for the present problem

are:

u ¼ uwðx; tÞ; v ¼ vwðy; tÞ; w ¼ 0; k
@T

@z
¼ hfðT� TfÞ;

C ¼ Cwat z ¼ 0;

U! 0; v! 0;
@u

@z
! 0;

@v

@z
! 0; T! T1; C! C1 as z!1:

ð2:17Þ
The Eqs. (2.7), (2.8), (2.9), (2.11) and (2.16) subject to the

boundary conditions (2.17) admit similarity solutions in terms
of the similarity functions f, g, h, / and the similarity variable g
are defined as;

u ¼ ax

ð1� atÞ f
0ðgÞ; v ¼ by

ð1� atÞ g
0ðgÞ;

w ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mfa
ð1� atÞ

r
ðfðgÞ þ gðgÞÞ; hðgÞ ¼ T� T1

Tf � T1
; ð2:18Þ

/ðgÞ ¼ C� C1
Cw � C1

; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

mfð1� atÞ
r

z:

In view of the Eq. (2.18), the continuity Eq. (2.7) is auto-
matically satisfied and the remaining equations are reduced
to the following set of non-linear ordinary differential

equations;
ð1þ eÞf000 þ ðfþ gÞf00 � ðf0Þ2 �Sðf0 þ 1

2
gf00Þ� ed1ðf00Þ2f000 �M2f0 ¼ 0;

ð2:19Þ

ð1þ eÞg000 þ ðfþ gÞg00 � ðg0Þ2 � Sðg0 þ 1
2
gg00Þ

�ed2ðg00Þ2g000 �M2g0 ¼ 0;
ð2:20Þ

3þ 4R

3Pr

� �
h00 þ ðfþ gÞh0 � S

2
gh0 þNb/0h0 þNth02

þEcxf
002 þ Ecyg

002 þM2Ecxf
02 þM2Ecyg

02 ¼ 0; ð2:21Þ

1

Le
/00 þ ðfþ gÞ/0 � S

2
g/0 þ Nt

NbLe
h00 ¼ 0: ð2:22Þ

The corresponding boundary conditions become;

f ¼ 0; g ¼ 0; f0 ¼ 1; g0 ¼ c;

h0 ¼ Biðh� 1Þ; / ¼ 1; at g ¼ 0

f0 ! 0; g0 ! 0; f00 ! 0; g00 ! 0; / ! 0; h ! 0 as g ! 1;

ð2:23Þ
where d1, d2 and e are Eyring-Powel fluid parameters, c, M2, S,
Pr, Nb, Nt, R, Ecx, Ecy, Bi and Le are stretching ratio
parameter, magnetic parameter, unsteady parameter, Prandtl

number, Brownian motion parameter, thermophoresis param-
eter, thermal radiation parameter, Eckert number along x
direction, Eckert number along y direction, Biot’s number
and Lewis number correspondingly. These parameters are

defined as;

d1 ¼ u3w
2mxC2

; d2 ¼ v3w
2myC2

; e ¼ 1

lbC
; c ¼ b

a
; Le ¼ m

DB

;

M2 ¼ rB2
0

qfa
; S¼ a

a
; Pr¼ m

am
; Nb¼ sDBðCw �C1Þ

m
; Bi¼ hf

k
ffiffiffiffiffiffiffi
m=a

p ;

ð2:24Þ

Nt ¼ sDTðTf � T1Þ
T1m

; R ¼ 4r�T3
1

qfcfamk1
; Ecx ¼ u2w

cpðTf � T1Þ ;

Ecy ¼ v2w
cpðTf � T1Þ :

It is worthy to mention that, for e= d1 = d2 = 0, the pre-
sent problem reduces to Newtonian nanofluid problem and if
Nb= Nt = 0 in Eq. (2.21), then it reduces to classical bound-

ary layer heat equation.

2.1. Solution for particular case

Look at, for c = 0, the two dimensional case can be recovered.
The Eq. (2.19) associated its boundary conditions with
d1 = S= 0 takes the following form

ð1þ eÞf000 þ ff00 � ðf0Þ2 �M2f0 ¼ 0; ð2:25Þ

f0ð0Þ ¼ 1; fð0Þ ¼ 0; f0ð1Þ ¼ 0: ð2:26Þ

The exact solution of the Eq. (2.25) with respect to (2.26) is
given by Hayat et al. (2013);
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fðgÞ ¼ 1� e�ng

n
; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

1þ e

s
: ð2:27Þ

The physical quantities of interest of nanofluid problems
are local Nusselt number Nu or wall heat transfer and the local

Sherwood number Sh or volume fraction mass transfer are
defined as follows;

Nu ¼ xqw
kðTf � T1Þ and Sh ¼ xjw

DBðCw � C1Þ : ð2:28Þ

where qw and jw are the surface heat flux and surface mass flux
respectively. Using similarity variables, we obtain

Nuffiffiffiffiffiffiffiffi
Rex

p ¼ � 1þ 4

3
R

� �
h0ð0Þ; Shffiffiffiffiffiffiffiffi

Rex
p ¼ �/0ð0Þ; ð2:29Þ

where Rex = uwx/m is the local Reynolds number.

3. Method of solution and validation

The set of Eqs. (2.19)–(2.23) are highly nonlinear and coupled

in nature, thus they are not amenable to closed form solutions.
Therefore, they are solved numerically using a shooting tech-
nique coupled with fourth-fifth order Runge–Kutta–Fehlberg

scheme with the help of algebraic software Maple. First, the
non-linear boundary value problem has been reduced to sys-
tem of linear differential equations by setting

f01 ¼ f2;

f02 ¼ f3;

ð1þ e� ed1f
2
3Þf03 ¼ �ðf1 þ f4Þf3 þ f22 þ Sðf2 þ 0:5gf3Þ þM2f2;

f4 ¼ g;

f04 ¼ f5;

f05 ¼ f6;

ð1þ e� ed2f
2
6Þf06 ¼ �ðf1 þ f4Þf6 þ f25 þ Sðf5 þ 0:5gf6Þ þM2f5;

f07 ¼ f8;

3þ 4R

3Pr

� �
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2
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6 þM2Ecxf

2
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2
5Þ;

f09 ¼ f10;

1

Le

� �
f010 ¼ �ðf1 þ f4Þf10 þ 0:5Sgf10 �

Nt

NbLe
f08;

and relevant to the initial conditions are

f1 ¼ 0; f2 ¼ 1; f3 ¼ m1; f4 ¼ 0; f5 ¼ c;

f6 ¼ m2; f7 ¼ m3; f8 ¼ Biðm3 � 1Þ; f9 ¼ 1; f10 ¼ m4;

where unknown initial conditions m1, m2, m3 and m4 are calcu-
lated using iterative method called shooting method. The

Shooting method is based on Maple implementation ‘shoot’
algorithm and is proven to be precise and accurate and which
has been successfully used to solve wide range of non-linear
problems in transport phenomena especially flow and heat

transfer problems. A brief explanation of shooting method
on maple implementation can be found in Meade et al.
(1996). Then the resultant initial value problem has been

solved using Runge–Kutta–Fehlberg fourth-fifth order
method. The formula of RKF-45 method is given below;

ymþ1 ¼ ym þ h
25

216
k0 þ 1408

2565
k2 þ 2197

4109
k3 � 1

5
k4

� �
; ð3:1Þ
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16
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12825
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56430
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� �
;

ð3:2Þ
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4
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� �
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8
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32
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h
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13
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k1 þ 7296
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h

� �
;

k4 ¼ f xm þ h; ym þ 439
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k0 � 8k1 þ 3860
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k2 � 845

4104
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� �
h

� �
;

k5 ¼ f xmþh

2
; ymþ � 8
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k0þ2k1�3544

2565
k2þ1859

4104
k3�11

40
k4

� �
h

� �
;

where (3.1) and (3.2) are fourth and fifth order Runge–Kutta
respectively. The inner iteration is counted until nonlinear solu-
tion converges with a convergence criterion of 10�6. In addition,

the step size is chosen as Dg= 0.001. In this scheme, it is most
important to choose the appropriate finite values of g1. In
accordance with standard practice in the boundary layer analy-

sis the asymptotic boundary conditions at g1 are replaced by g6.
The accuracy and robustness of the present method have

been repeatedly confirmed in our previous publications
(Gireesha et al., 2014). As a further check, the numerical

results of �h
0
(0) for different values of Nt and Nb are com-

pared with that of Makinde and Aziz (2011) and Khan et al.
(2015) for Newtonian fluid in the absence of viscous dissipa-

tion and Joule heating with S= 0, Bi = 0.1, Le = Pr= 10
and c = 0 in Table 1. This table shows that, comparison
results are found to be an excellent agreement.

4. Result and discussion

In this section, the influence of various physical parameters

like Eyring-Powell fluid parameters (e; d1&d2), magnetic

parameter (M2), thermophoretic parameter (Nt), Brownian

motion parameter (Nb), radiation parameter (R), Eckert num-
bers (Ecx&Ecy) and Lewis number (Le) on axial velocity, trans-

verse velocity, temperature and nanoparticles concentration
profiles have been analyzed. Figs. 2–12 represent the velocity,

temperature and the nanoparticle volume fraction profiles; and
these profiles satisfy the far field boundary conditions (2.23)
asymptotically, which also support the accuracy of the
obtained numerical results. Table 2 presents the numerical



Table 1 Comparison of computed numerical values of �h0ð0Þ for different values of Nb and Nt with that of Makinde et al. (2011) and

Khan et al. (2015) for c ¼ 0;Le ¼ Pr ¼ 10;Ecx ¼ Ecy ¼ R ¼ 0 and Bi ¼ 0:1.

Nt Makinde et al. (2011) Khan et al. (2015) Present study

�h0ð0Þ �h0ð0Þ �h0ð0Þ
Nb ¼ 0:1 Nb ¼ 0:5 Nb ¼ 0:1 Nb ¼ 0:5 Nb ¼ 0:1 Nb ¼ 0:5

0.1 0.092907 0.038325 0.0929 0.0383 0.092906 0.038324

0.2 0.092732 0.032498 0.0927 0.0324 0.092731 0.032497

0.3 0.092545 0.026905 0.0925 0.0269 0.092545 0.026905

0.4 0.092344 0.022010 0.0923 0.0220 0.092343 0.022010

0.5 0.092126 0.018035 0.0921 0.0180 0.092126 0.018034

Table 2 Numerical values of the Nusselt number Re�1=2
x Nu and the Sherwood number Re�1=2

x Sh for different values of

M2;S; e;Bi;R;Nb;Nt;Le;Ecx and Ecy for Pr ¼ 3.

M2 S e Bi R Nb Nt Le Ecx Ecy Re�1=2
x Sh Re�1=2

x Sh

0 0.4 0.5 0.4 1 0.5 0.5 1 0.2 0.2 0.401644 0.56512

0.5 0.278471 0.54910

1 0.152099 0.55200

0.5 0 0.376764 0.72948

0.2 0.337336 0.64917

0.3 0.311964 0.6008

0.5 0.4 0.6 0.291329 0.55841

1.2 0.343583 0.6089

1.8 0.373254 0.64659

0.5 0.4 0.5 0.01 0.01284 0.6332

0.2 0.182807 0.57900

0.6 0.336382 0.53098

0.5 0.4 0.5 0.4 0 0.095648 0.5942

0.3 0.269923 0.56283

0.6 0.212403 0.55152

0.5 0.4 0.5 0.4 1 0.2 0.340603 0.39862

0.6 0.25685 0.56613

1 0.16747 0.60087

0.5 0.4 0.5 0.4 1 0.5 0.2 0.302334 0.57877

0.6 0.269973 0.54248

1 0.232686 0.5365

0.5 0.4 0.5 0.4 1 0.5 0.5 0.5 0.307365 0.31006

1.5 0.257914 0.78164

2 0.244736 0.98679

0.5 0.4 0.5 0.4 1 0.5 0.5 0.5 0 0.459871 0.4652

0.3 0.184582 0.59219

0.6 0.10338 0.72669

0.5 0.4 0.5 0.4 1 0.5 0.5 0.5 0.2 0 0.341473 0.52025

0.3 0.246696 0.56366

0.6 0.108252 0.60792
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values of Nusselt number and Sherwood number with respect
to the variation of different parameters. It is observed that the

Nusselt number increases with e and Bi, but decreases qualita-
tively with an increase in M2, S, Nb, Nt, Le, Ecx and Ecy.
However, the Sherwood number is an increasing function of

e, Le, Nb, Ecx and Ecy, whereas this trend is quite opposite
for S, Bi, R and Nt. Further it is observe that, the rate of heat
and mass transfer for unsteady flow case (S– 0) is smaller as

compared with steady flow case (S= 0).
Fig. 2 depicts the primary and secondary velocity fields in

steady and unsteady flow situations. The velocities are smaller
for unsteady flow situation when compared to steady flow situ-

ation as shown in Fig. 2. It is also noted that, the velocity of
Eyring-Powell fluid is larger than that of Newtonian fluid.
Fig. 3 displays the temperature profile versus g for both steady

and unsteady flow situations. It is observed that, the
temperature field is higher for unsteady flow when compared
to steady flow. Also, the temperature of nano-Newtonian fluid

is higher than that of nano-Eyring-Powell, Newtonian and
Eyring-Powell fluid in order. Fig. 4 portrays the effects of

M2&c on f0&g0 distributions. It shows that an increase in M2

leads to decrease f0&g0 fields along with their corresponding

boundary layer thickness. In fact the rate of transport decreases
by increasing magnetic parameter, since the Lorentz force
opposes the motion of fluid. It also reveals that by increasing

stretching ratio parameter c, the velocity field f0 decreases



Figure 2 Variation of velocity distributions.

Figure 3 Variation of temperature distributions.

Figure 4 Effect of M2&c on f0ðgÞ & g0ðgÞ profiles.

Figure 5 Effect of e & S on f0ðgÞ & g0ðgÞ profiles.

Figure 6 Effect of Ecx on hðgÞ & /ðgÞ profiles.

Figure 7 Effect of Ecy on hðgÞ & /ðgÞ profiles.
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whereas opposite behavior is observed for g0. This is due to the
fact that, the large values of cð¼ b=aÞ lead to either increase in b
or decrease in a. Consequently the velocity in x-direction
decreases and velocity in y-direction increases respectively. This

result is consistent with the results obtained by (Hayat et al.,
2015).

Fig. 5 depicts f0&g0 profiles for different values of e&S.
Analysis of this figure shows that by increasing e the velocity

fields f0&g0 increases. Further, the f0&g0 field’s decreases ini-
tially with S, but increase after a certain distance g from the
sheet. The variation of Ecx and Ecy on temperature h and

nanoparticle volume fraction / for steady and unsteady flow

situations are respectively plotted in Figs. 6 and 7. These fig-
ures indicate that, h and / increases notably with an increase
in Eckert number. Physically, by increasing the Eckert num-
ber, the heat energy is stored in the fluid due to the frictional

or drag forces. As a result the fluid temperature field increases.
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The Brownian motion and thermophoresis parameters
appeared in both thermal and concentration boundary layer
equation. It is worth to mentione that, Nb&Nt are coupled

with the temperature and concentration field, and they play
a tough role in determining the heat diffusion and concentra-
tion of nanoparticles in the boundary layer. We next move

to analyze the effects of Nb and Nt on h&/ profiles through
the Figs. 8 and 9 respectively. It is observed that the tempera-
ture of the fluid increased considerably with an increase in Nb

and Nt. On the other hand, the volume fraction of nanoparti-
cle increase with an increase in Nt and an opposite trend has
been observed as Nb varies. This is because, the random
motion of nanoparticles get increased with an increase in

Brownian motion parameter, which in turn an enhancement
of fluid temperature and reduction of the nanoparticle
diffusion.

Fig. 10 demonstrates the effect of unsteady parameter S on
h and / profiles. It is observed that the temperature and
nanoparticle concentration are augmented throughout the

boundary layer region as S increases. It is due to the fact that
S is inversely proportional to the stretching coefficient a. Thus
an increase in S decreases the stretching rate. As a consequence

the velocity decreases. This is responsible for an enhancement
of temperature and nanoparticle volume fraction distributions
in the boundary layer. We can also observe that h and / pro-
files are smaller for steady flow (S= 0) case in comparison
Figure 8 Effect of Nb on hðgÞ & /ðgÞ profiles.

Figure 9 Effect of Nt on hðgÞ & /ðgÞ profiles.
with an unsteady flow (S– 0) case. Further, both h and / pro-
files are higher in the presence of viscous dissipation than in
the absence.

The impact of Biot’s number on temperature, and nanopar-
ticle concentration is illustrated in Fig. 11. Physically, Biot’s
number is expressed as the convection at the surface of the

body to the conduction within the surface of the body. When
thermal gradient is applied on the surface, the ratio governing
the temperature inside a body varies significantly, while the

body heats or cools over a time. Normally, Bi� 1 represents
uniform temperature field inside the surface, and Bi � 1 indi-
cates the non-uniform temperature field inside the surface.
From this plot it is observed that, temperature as well as

nanoparticle concentration profiles monotonically increase
with Biot’s number. Finally, Fig. 12 illustrates the variation
of h&/ profiles within the boundary layer as R varies in both

steady and unsteady flow situation. The temperature field as
well as its corresponding thermal boundary layer thickness
increased notably as R increases. Physically speaking, by

strengthening radiation parameter provides more heat into
the fluid, which leads to an intensification of the thermal
boundary layer. It is also noted that, the effect of R is to

decrease the nanoparticle volume fraction distribution near
the stretching sheet, whereas reverse effect is observed far away
from the sheet.
Figure 10 Effect of S on hðgÞ & /ðgÞ profiles.

Figure 11 Effect of Bi on hðgÞ & /ðgÞ profiles.



Figure 12 Effect of R on hðgÞ & /ðgÞ profiles.
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5. Concluding remarks

The problem of an unsteady 3-D boundary layer analysis of

Eyring-Powell fluid over an impermeable linearly stretching
sheet is studied in the presence of nanoparticles. A set of sim-
ilarity transformation is presented to alter the boundary layer

equations into self-similar form and then solved numerically. It
is found that, the velocity field is larger for Eyring-Powel fluid
than that of ordinary fluid. The influence of applied magnetic
field reduces the velocity profile whereas opposite behavior is

found for Eyring-Powell fluid parameter. The Brownian
motion and thermophoresis mechanisms enhance the thermal
behavior of the fluid. Further, an impact of viscous dissipation

and thermal radiation plays a vital role in cooling and heating
process. They should be kept minimum as much as possible in
cooling systems.
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Nomenclature
a, b
 constants
 t
 time (S)
c
 stretching ratio

parameter
T
 fluid temperature (K)
B
 magnetic field
 T
 Cauchy stress tensor
B0
 magnetic field

strength
Tf
 surface temperature (K)
Bi
 Biot number
 T1
 ambient Surface

temperature (K)
C
 nanoparticle

volume fraction

(kg/m3)
u, v, w
 velocity components along

x, y and z directions

(m s�1)
Cw
 concentration at

the wall (kg/m3)
uw, vw
 stretching sheet velocities

along x, and y directions

(m s-1)
C1
 ambient

nanofluid

volume fraction

(kg/m3)
x, y, z
 coordinates (m)
cp
 specific heat

coefficient

(J/kg K)
DB
 Brownian

diffusion

coefficient
Greek symbols
DT
 thermophoretic

diffusion

coefficient
h
 dimensionless temperature
Ecx, Ecy
 Eckert numbers
 /
 dimensionless

nanoparticle volume

fraction
f, g
 dimensionless

velocity fields
m
 kinematic viscosity of the

fluid (m2 s�1)
hf’
 heat transfer

coefficient
e, d1, d2
 Eyring-Powell fluid

parameters
I
 identity Tensor
 am
 thermal diffusivity
J
 current Density
 a
 constant
jw
 nanoparticles

mass flux
l
 dynamic viscosity

(kg m�1 s�1)
k
 thermal

conductivity

(W/m K)
b, c
 characteristics of Eyring-

Powell fluid
k1
 mean absorption

(W/m K)
r
 electric conductivity
Le
 Lewis number
 r*
 Stefan–Boltzmann

constant (W m�2 K�4)
M2
 magnetic

parameter
g
 similarity variable
Nb
 Brownian

motion

parameter
s
 ratio of the effective heat

capacity of the

nanoparticle to that of an

ordinary fluid
Nt
 thermophoresis

parameter
sij
 extra stress tensor of

Eyring-Powell fluid
Nu
 local Nusselt

number
q
 density (kg/m3)
O
 origin
p
 pressure
 Superscript
Pr
 Prandtl number
 0
 derivative with respect to g

qw
 heat flux
qr
 radiative heat

flux (W m�2)
Subscripts
R
 thermal

radiation

parameter
f
 fluid
Rex
 local Reynolds

number
p
 nanoparticles
S
 unsteady

parameter
Sh
 Sherwood

number
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