

International Journal of Computing and Network Technology
ISSN (2210-1519)

Int. J. Com. Net. Tech. 5, No. 2 (May-2017)

E-mail: amr.ibrahim67@gmail.com

http://journals.uob.edu.bh

SPIMN Stateful Packet Inspection for

Multi Gigabits Networks

Amr Ibrahim

Systems Engineering and Computer Department, Al-Azhar University, Faculty of Engineering, Cairo, Egypt

Received: 25 Jan. 2017, Revised: 10 Apr. 2017, Accepted: 23 April 2017, Published: (1 Ma. 2017)

Abstract: Stateful Packet Inspection (SPI) is the most important area of Network Intrusion Detection Systems (NIDS

(However it must be operated in multi-Gigabit speeds, to trace and reassemble every connection, and examine every

packet flow. I proposed Stateful Packet Inspection for Multi Gigabits Networks (SPIMN). It is customized hardware to

achieve a more efficient and faster online inspection system. A generic architecture of SPIMN is based on using FPGA

and Header Inspection. Therefore, Xilinx ISE 14.1 used in the design and in the simulation to test the design before the

implementation on FPGA Virtex-7 by creating a Test-bench circuit. Finally, the testing and evaluation

of SPIMN indicate that this model can work with more than 2,000 Snort rules on 100 Gigabit Ethernet networks.

Keywords: Stateful Packet Inspection (SPI), Header Inspection, Header Parser, Packet Reassembly, Field Programmable Gate Array

(FPGA)

1. INTRODUCTION

Recent years have witnessed rapid growth in both
internet penetration and bandwidth due to huge
improvements in telecommunication infrastructure, the
proliferation of competitively priced computers and
internet-capable mobile devices, and the reduced cost of
internet access, resulting from increased competition [1].
The AV-TEST Institute registers over 390,000 new
malicious programs evsery day [2]. One of the most-used
solutions for protecting networks is the use of Network
Intrusion-Detection Systems (NIDS) such as Snort [3].
NIDS depends on the network packet inspection (NPI).
There are many categories for the NPI, depending on how
many network layers are reference inspected. Although
there is no definite category, Parsons divided it into three
levels [4]. This study adopted the categorization by
Parsons. The three levels of packet inspection are divided
into shallow packet inspection (or Stateful packet
inspection, SPI), medium packet inspection (MPI) and
deep packet inspection (DPI). Figure 1 shows the levels of
SPI, MPI and DPI in the OSI architecture described
above.

Figure 1. OSI 7 Layers and Packet Inspection Level [5]

The inspection (flow monitoring) can also be
categorized according to the numbers of fields (context
information) into different types [5]. The description of
these fields and the header categorize are shown in Table
1.

This work aims to design and implement Stateful
Packet Inspection for Multi Gigabits Networks (SPIMN)
based on FPGA to: - 1-header Inspection, 2- Intrusion
Protection, and 3- 100 Gigabit network. The operational
goals of SPIMN are: - 1-dropping the invalid packet, 2-
Applying two techniques in the detection: header
analyzing, and matching, 3- filtering and preventing the
infected packet, 4-generating reports, 5- Parallel
processing to increase the speed, and 6- No modification
to hardware, operating system, or run time environment.
In addition, the proposed architecture is based on the
following assumptions: - 1- using a fixed parser, and 2-

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
mailto:amr.ibrahim67@gmail.com

78 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

working with IP4, and 3- Snort rules generating: It is
difficult and time consuming to write these rules, so in we
satisfy by a limited number of these rules. But in the
future we will add a module to generate these rules
automatically.

TABLE I. RELATIONSHIP BETWEEN TCP CONTEXT

INFORMATION AND THE DEGREE OF TCP FLOW ANALYSIS

Field Size Description Type Inspection Type

Prot 8 bits Protocol (TCP, UDP,…)
N

o
t

C
al

cu
la

te
d

F
lo

w
 D

ef
in

it
io

n

F
lo

w
 S

ta
ti

st
ic

s

F
lo

w
 E

st
ab

li
sh

 (
T

h
re

e
W

ay
 H

an
d

sh
ak

e)

F
lo

w
 C

o
n
tr

o
l

(S
li

d
in

g
 W

in
d
o

w
)

F
lo

w
 D

ee
p

 M
o
n

it
o

r
(S

ta
te

fu
l

T
C

P
 I

n
sp

ec
ti

o
n

)

SA 32 bits Source IP Address

DA 32 bits
Destination IP

Address

SP 16 bits Source Port Number

DP 16 bits Destination Port Number

CS 4 bits

Client State:
0: Closed

1: Listen

2: SYN_RCVD
3: SYN_SENT

4: Established

5: Close_ Wait
6: Last_Ack

7: Fin_Wait_1

8: Closing
9: Fin_Wait_2

10: Time Wait

F
lo

w
 S

ta
te

SS 4 bits
Server State: The

same as Client State

Field

ConS 32 bits

Connection State:

State is tracking TCP
(L4) as well as

Application Protocol
(L7). For example,

Http, FTP, Telnet...

ISNC 32 bits
Client Sequence

Number

C
al

cu
la

te
d

ISNS 32 bits
Server Sequence

Number

AckC 32 bits
Client Acknowledge

Number

AckS 32 bits
Server Acknowledge

Number

WSC 16 bits Client Window Size

WSS 16 bits Server Window Size

TTLC 8 bits Client TTL

TTLS 8 bits Server TTL

Flags

Six

contro
l bits

The six control bits
are as follows:

URG - ACK - PSH -

RST - SYN - FIN

N
o

t
C

al
cu

la
te

d

This paper is organized as follows: Section 2
emphasizes the related work. SPIMN architecture is
explained in Section 3. Section 4 describes its realization

(Design and Implementation). Section 5 presents
verification and validation of SPIMN. Finally, the paper
concludes in Section 6 with opening the scope for further
research.

2. RELATED WORK

Most of the published researches on packet
classification have focused on IP address lookup for
routing and matching rule sets, with initial packet parsing
[8]. For instance, Prasanna et al., [9] have demonstrated IP
address lookup at up to 100Gbps rates by using FPGA
implementation. Packet matching researches are typically
based on the Snort rule-based intrusion detection
technology [10]. Attig et al., demonstrated a 100Gbps line
rate by coupling the parsing module with a key lookup
module, in order to perform complete packet classification
[8]. This packet classification subsystem was in turn
coupled with a traffic management subsystem to
demonstrate 400Gbps network processor by using a dual
Xilinx Virtex-7 implementation. Kangaroo is a
programmable parser that parses multiple headers per
cycle. Kangaroo buffers all header data before parsing,
which introduces latencies that are too large for switches
today [11]. Weirong et al., presented a novel decision-
tree-based linear multi-pipeline architecture of FPGAs for
wire-speed and multi-field packet classification [9].
Extensive simulation and FPGA implementation results
demonstrated the effectiveness of the solution. The FPGA
design supported 10K rules or 1K Open Flow-like
complex rules and sustained over 40 Gbps throughput for
minimum size (40 bytes) packets.

Stateful Packet Inspection (SPI) was originally
developed for Firewall. However, recently, there have
been various applications such as Virtual Private Network
(VPN), NIDS, Traffic Monitoring and so on. Published
works on the packet classification can be divided into two
categories: software solutions based on novel
classification algorithms running by normal CPU or
network processor and hardware solutions based on
Ternary CAM, ASIC or FPGA. In general, a software-
based solution is flexible but normally CPU time-
consuming, which is intolerant when a network traffic
load is heavy. For the high-speed realization of packet
classification (above 10Gbps line rate), hardware
solutions are currently the best [12]. Abhishek et al
designed an FPGA-based architecture for anomaly
detection in network transmissions [13]. They first
developed a feature extraction module (FEM) to
summarize the network information to be used at a later
stage, and its throughput could reach to 40Gbps. Ashok
proposed architecture of a Distributed Intrusion-Detection
System (DIDS), which could be implemented in more
than one FPGA and MGTs (Multi-Gigabit Transceivers
support serial communication speeds up to 10Gpbs per
channel) [6]. Ioannis et al., introduced an original design
for reconfigurable hardware by implementing the packet

79 Int. J. Com. Net. Tech. 5, No. 2, 77-88 (May 2017)

http://journals.uob.edu.bh

F
P

G
A

N
etw

o
rk

pre-filtering technique and it could process packets at 2.5
to 10Gbps [14].

3. SPIMN ARCHITECTURE

Figure 2, consists of six main components that work
together.

Figure 2. General Architecture of IDP System

A. Input Output Interface Unit (IOIU)

The function of IOIU is to establish the connection
between SPIMN and the physical network. It provides
low-level services for interactions with physical network
standards. Such architecture consists of two modules as
shown in Figure 3:

1) Input Interface Module (IIM)

The functions of IIM are: - Receive the traffic from
the network, Convert the traffic into packets, Queue the
packets, and send the packets to the Packet Processing
Unit (PPU).

2) Output Interface Module (OIM)

OIM performs the following functions Receive the
packets from Packet Reassembly Unit (PRU) and Report
Generator Unit (RGU), Queue the packets, Convert the
packets into traffic, and send the traffic to the network.

Figure 3. The Block-diagram of Input Output

Interface Unit (IOIU)

I/P and O/P MGT (Multi Gigabit Transceiver):
provide low-level services for interactions with physical
network standards such as Gigabit Ethernet. I/P and O/P
100 Gigabit Ethernet. Convert the Ethernet frames into
packets and check the validation of the frames. Packet
FIFO (first input first output) buffers: store and pass the
packet.

B. Packet Processing Unit (PPU)

The functions of PPU are to extract the packet into
header and payload. After that, it sends the payload to the
Intrusion Protection Unit (IPU) and decodes the header to
generate a header fields table classified by the protocol
(Context information table).

PPU mainly consists of: - Packet Extractor Module
(PEM), and Header Parser Module as shown in Figure 4.

Figure 4. The Block-diagram Packet Processing Unit (PPU)

1) Packet Extractor Module (PEM)

The main functions of the packet extractor are the
following: - Extract the packets that received from IIM
into header and payload, Send the header to the Header
Parser, and send the payload to the Intrusion Protection
unit (IPU).

It consists of a set of buffers, comparators, decoders,
and state machines that sequencing identifies as the
Ethernet frame elements within a packet. It is specified as
a text file containing a name and size of all elements.

2) Header Parser Module (HPM)

The functions of the header parser are: -check and
identify the protocol, Extract fields for processing by
subsequent stages of the system, classify the header fields
by the protocol (Context Information table), and send this
table for Header Inspection Unit (HIU), Packet
Reassembly Unit (PRU) and Report Generator Unit
(RGU).

There are two types of a header parser: - 1) Fixed
header parser (Our Work), and 2) Programmable
(Dynamic) header parser (The future work).

Mainly it consists of 2-parts as shown in the following
Figure 5.

Figure 5. Abstract Architecture of Heer Parser Model (HPM)

Header Inspection

Unit (HIU) 3

Payload /

Idle packet

Payload

New Packet

Detected/

Matched

O
/P

P
ack

et

C
o
n

tex
t In

fo
rm

atio
n

Tab

le

 Inspection Signals

Report Generator

Unit (RGU) 6

Packet Reassembly

Unit (PRU)

Packet Processing

Unit (PPU)

O/P Interface

Module (OIM)

I/P Interface

 Module (IIM)

Intrusion Protection

Unit (IPU)

1

4

2

5

1

Packet Extractor

Packet

Header
Header Parser

Context Information Table

Output Interface Module (OIM)

Packet FIFO

O/P 100
Gigabit

Ethernet

I/P

MGT

I/P 100

Gigabit
Ethernet

O/P

 MGT

Packet FIFO

Input Interface Module (IIM)

Context Information

Table
Header Buffered

Table Header

Identification
Field

Extraction
Valid

80 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

The functions of Header Identification: - Receive the
header and store it in a buffer, and identify the type and
the length of the header by the aid of the parse graph
(Parse table), and the function of Field Extraction: -
Extract the header by using the parse table into the fields,
Store the extracted fields in a context information table,
Send the Context Information table into Header
Inspection Unit (HIU), and Send the valid signal to the
HIU, IPU, and RGU.

C. Header Inspection Unit (HIU)

HIU is the main part of SPIMN. It inspects the packet
by two techniques: - 1) checking the anomaly values
(Anomaly Detection) via checking the header fields
values, and 2) detecting the intrusion through matching
the context information table with the header Snort rules.
After the detection it sends the result to the Packet
Reassembly Unit (PRU), Intrusion Protection Unit (IPU),
and Report Generator Units (RGU) to complete the
operations. It can be used as a filtering unit to speed up
the detection and if any anomaly occurs, this packet is not
sent to the matching circuit (i.e. filtering the packet) to
speed the inspection process.

So it consists of two modules as illustrated in Figure 6.

Figure 6. The Block-diagram of Header Inspection Unit (HIU)

1) Header Analyzer Module (HAM)

HAM is used to check the values of the header fields
via a set of flow testers. The main roles of the Header
Analyzer are: - inspect the header fields, send the result
(inspection signals) to Packet Reassembly Unit (PRU),
Generate the detected signal from the inspection signals,
and send the detected signal to the Header Parser Module,
Report Generator Unit (RGU), and Intrusion Protection
Unit (IPU).

It consists of a flow tables generators and a set of flow
tables’ testers. The block-diagram of the Header Analyzer
Module is shown in Figure 7. The fields of flow tables’
are combinations of the fields of Table 1. The relationship
between the testers and the flow tables is one-to-one to
speed up the inspection.

Figure 7. The Block-diagram of Header Analyzer Module

2) Header Matching Module (HMM)

The Header Matching Module is a rule-matching
module to find out if the header information matches with
any of the given header snort rules. These rules may
contain checking of the flow definition.

It consists of a set of comparators arrays, and a header
snort rule detector. Figure 8 shows the block-diagram of
the HMM.

Figure 8. The Block-diagram of the Header Matching Module

(HMM)

D. Intrusion Protection Unit (IPU)

The functions of IPU are: check the detected and
matched signals, and replace the anomaly or infected
packet by the idle pattern to filter and prevents the
intrusion.

It consists of: - checking, replacement, and sending

modules. Figure 9 shows the block diagram of the IPU.

Figure 9. The Block-diagram of the Intrusion Protection Unit

(IPU)

E. Packet Reassembly Unit (PRU)

PRU is one of the main tasks that the monitored TCP

flow should accomplish. By parallelizing the tasks of

reassembling TCP packets on the server and the client

side of the FPGA, the performance of the stateful TCP

inspection can be greatly improved. It gathers the header

and the payload (or idle packet in the case of infected)

to pass it to the server or the client.

It consists of three modules: - Dispatcher, Streaming,

and Tracking as shown in Figure 10.

Figure 10. The Block-diagram of The Packet Reassembly Unit

(PRU)

The functions of Dispatcher are: - Receive the packet,

or the idle packet from the IPU, Receive header fields

from the extractor module, receive the C/S Direction

signal from header analyzer, check the C/S signal to

define the output direction (to the client or to the server),

Detected and Mtached

PRU

Context Information Table

Inspection Signals

IPU RGU

Header Inspection Unit

Header Analyzer Module Header Matching Module

Valid

Matched-ID

TableDe

tected

Inspection Signals Header Analyzer Module

Flow Tables

Generator

Flow Tables

Testers

Context

Information Table

Valid

Detected Signal

Set of Comparator

Arrays

Header Snort

Rules

Matched

Matched-ID

Context

Information

Payload
Matched

Detected

Protection-Status

Packet/Payload

Replacement Checking Sending

Valid

Output

Packet

Dispatcher

Stream Reassembly OIM

Tracking

Payload/Idle Packet

Inspection Signals

Context Information

Table

81 Int. J. Com. Net. Tech. 5, No. 2, 77-88 (May 2017)

http://journals.uob.edu.bh

Enable the stream reassembly as a result of the checking

of C/S, and Send the packet or the idle packet to the

stream reassembly. The functions of Stream Reassembly

are: - Pack-up the header and data into a packet, and

sending the packets to the tracking. The functions of

tracking module are queuing the packet and send it to the

output Interface Module (OIM).

F. Report Generator Unit (RGU)

Report generator unit (RGU) counts and tabulates the

frequency for each rule and accumulates the numbers of

matched and unmatched packets. These results are

reported to the host PC about the detection and protection

processes.

RGU consists of a set of data gathering buffers,

searching module and a set of tables generators as shown

in Figure 11.

Figure 11. The Block-diagram of the Report Generator Unit

(RGU)

In practice, SPIMN is quite challenging: - 1-

Throughput: must run at line-rate (100Gbps). (2)

Parallelism: especially in header inspection and packet

reassembly units.

4. DESIGN AND IMPLEMENTATION

In this section, I presented the SPIMN procedure,

SPIMN design and implementation.

A. SPIMN Procedure

In the following, the SPIMN sequence of operation is

pointed out.

The SPIMN operational steps are shown in Figure 12.

Context Information
Table

Protection-Status

Matched

Detected
Reports

Data Gathering

Set of Tables

Generators Valid

Matched-ID
Search Intrusion Protection Unit (IPU)

1. Listen to Header Inspection Unit (HIU).

2. Receive matched and detected signals.

3. Receive the payload from the PPU.

4. Send the payload or the idle packet as a result of the

detected and matched signals to the PRU.

5. Send the protection-Status to the RGU.

Report Generator Unit (RGU)

1. Receive the number of Inspection, detected, and

matched signals from HIU.

2. Receive the Protection-Status from IPU

3. Generate reports about the infection and the

Protection-Status.

4. Send these reports to the OIU

Traffic

1. Receive the traffic from the network.

2. Convert the traffic to packets.

3. Queue the packets.

4. Send the packets to PPU.

Input Interface Module (IIM)

Packet Reassembly Unit (PRU)

1. Receive inspection signals from the HIU.
2. Receive the context information table from PPU.
3. Receive the payload or the idle packet from IPU.
4. Marshal the header and the payload into packets.
5. Direct the packets into client or server (via OIM).

Header Inspection Units (HIU)
1. Receive the context information table from PPU.

2. Analyze the values of header fields to know if there

are any anomalous values or not.

3. Send the inspection signals of table 2 to PRU.

4. Send the detected signal to IPU, and RGU.

5. Compare (match) the context information table with

header snort rules table to detect the intrusion.

6. Send the Matched signal to IPU and RGU.

1. Receive the packets from Input Interface Module (IIM).

2. Extract the packets into header and payload.

3. Parse the header into the context information table

classified by the protocol

4. Send the table to HIU, PRU and RGU.

5. Send the payload to IPU.

6. Send a request to new packet

Packet Processing Unit (PPU)

82 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

Figure 12. SPIMN Operational Steps

B. SPIMN Design and Implementation

I used Xilinx ISE 14.1 in both the design and

implementation of SPIMN to satisfy the requirements and

the architecture those given in section (3). The design and

implementation steps are shown in Figure 13.

In the load onto FPGA step, I select Xilinx Virtex-7

690T FPGA device. Because Virtex-7 FPGA series has

integrated features that include FIFO and ECC logic, DSP

blocks, PCI-Express controllers, Ethernet MAC blocks,

and high-speed transceivers (setting in SW). The Modules

are designed and developed in VHDL by using Xilinx ISE

14.1.

Figure 13. Implementation Steps

1. Input Output Interface Unit IOIU

IOIU is designed to support 512-bit width in 312 MHz

operation (to enable the work over 100 Gbps), full-duplex

100Gb/s with physical interfaces CGMII (100 Gigabit per

Second Media Independent Interface) and CAUI-10 (100

Gigabit per Second Attachment Unit Interface) connects

to the I/O of the FPGA. It was created by Xilinx Ethernet

multi-Giga Generator. Because of The registered Xilinx

14.1 ISE generates Ethernet LogiCORE for an integrated

facility to work with Ethernet level. It offers an integrated

100 Gigabit per second (Gbps) Ethernet Media Access

Controller (EMAC) and Physical Coding Sub-layer (PCS)

core of high-performance interconnect technologies for

communications equipment and flexible implementation

of the IEEE 802.3ba (standard includes 100GBase-SX

transmission over Multimode fiber). The PCS portion of

the IP can be configured in CAUI-10 (10 lanes x

10.3125G. Also Xilinx offers two wrappers for the

integrated block: AXI4-Stream and AXI4-non-stream and

high-speed GTH transceivers. We used AXI4 stream and

GTH because it is high-end low-power transceivers. Also

Xilinx 14.1 used to design and implement the other units

of the SPIMN and also in the simulation to test the

system.

Algorithm 1: Input Interface Module (IIM)

Receive a new frame from the Ethernet MAC Wrapper.

Convert the input traffic format from CAUI to CGMII to

handle “idle” patterns easily.

Strips off Preamble, SFD, Pad

Verify the FCS.

Send enable signal to FIFO (start of frame)

Store the frame remaining in a FIFO and frames marked

as invalid are dropped.

Store the packet in FIFO

Send EoF (End of Frame) to FIFO and PPU

Out the packet from FIFO to PPU

Algorithm 2: Output Interface Module (OIM)

Receive a new packet from the PRU.

Convert the packet into frame

Convert the format from CGMII to CAUI, to send into

the Ethernet MAC Wrapper.

Send enable signal to FIFO (start of frame)

Store the packet in FIFO

Send (end of frame) to FIFO

Out the packet from FIFO to network

IOIU actually consists of two sub-layers: 100Gb/s

MAC and 100GBASE- PCS support for CAUI-10

interfaces, and two Ethernet FIFO buffers as shown in

Figure 14. Each FIFO is two Dual Ports block RAMs

with 4096 bytes in each FIFO.

Matched-ID

Flow Testing

Circuits

Input Interface Module (IIM)

Packet Extractor

Header Parser

IPU RGU

Output Interface Unit
(OIM)

Matched Signal

PRU
Payload /

Idle Packet

Packets

Buffered Header

Fields
Context Information

Table Flow State Table

 Flow Statistics Table

 Flow Establish Table

 Flow Control Table

 Flow Monitor

Table Tracking

 Established

 C/S Flow

 Flag-

Output
Packet

Output

Report

Header Matching

Module (HMM)

Payload

Protection-

Status

 valid

 Flag

Vulnerability

Generate Compile

Load onto
FPGA

Synthesize
Place and

Route

VHDL
Code

Proprietary
Binary Format

Gate-Level using
Xilinx CLBs

Xilinx.Bin

Binary

Xilinx ISE
14.1

Behavioral
Simulation

83 Int. J. Com. Net. Tech. 5, No. 2, 77-88 (May 2017)

http://journals.uob.edu.bh

Rx Control

Frame FIFO

Frame FIFO T
ran

sceiv
er W

rap
p
er

.

.

.

Rx PCS
100G

Base-SX

Rx
MAC

100G

CGMII

L2 Packet

Generator

*10 Virtual

lines

CAUII Interface

10*10.3125

Tx PCS

100GBase-
SX

Tx

MAC
100G

L2 Packet

Checker O
p

tical M
o
d
u

le

Tx Control

100Gb/s MAC 100GBASE- PCS FIFO

Figure 14. The Gate-level of Input-Output Unit

2. Packet Processing Unit

PPU extracts the packets into header and payload and

after that useful header information from MAC Layer,

network layers (IPv4, ICMP), and transport layers (TCP,

UDP). Any other layer is not being decoded.

a. Packet Extractor Module (PEM)

The extractor divides the packets into header fields

and data after that it sends the header fields to the parser

and the data to the Intrusion Protection Unit (IPU) as

shown in Figure 15. It strips some frame elements as

preamble, start of frame delimiter (SFD), Pad and FCS. If

SFD did not receive, it generates a reset to the frame if

not, it generates a valid signal to enable the parser

module.

Algorithm 3: Packet Extractor Module (PEM)

Wait and listen

If Receive EoF=1 then

Enable the MAC state machine

Receive the data from the FIFO

Generate the frame elements

If (SFD ≠ 0xD5)

 Set valid=0

Exit

Else

Set valid=1

Store the Source address and destination address and

Ether-Type in the header fields’ buffer

Store the data in the payload buffer

Send the buffered header fields to the header parser

Send the payload into the IPU

Set new-frame=1

Send new frame to a FIFO buffer

Set EOE=1

Send EOF to the parser

Send valid to HPM, IPU, and RGU

It consists of a state machine, Demultiplexer, and

numbers of buffers as shown in Figure 15.

Figure 15. The Gatelevel of Packet Extractor Module (PEM)

b. Header Parser Module (HPM)

Header parser module receives EoE (End of

Extortion), valid frame, and the buffered header fields

from the extractor module to extract useful header

information from MAC layer, network layers (IPv4,

ICMP) and transport layers (TCP, UDP).

So it consists of a set of decoders for IP, TCP, UDP,

and ICMP. All of the generated header fields are stored in

registers (Context Information Table). A registered header

data output (width 120 bits) is created. The operations

states are illustrated in Figure 16.

Figure 16. Operational Steps of the Header Parser Module

(HPM)

Algorithm 4: The parser algorithm

Waite and listen

If (EOF =1 && Valid=1)

Receive the buffered header fields from the FIFO

// Check if it IP4

If Ether-Type = 0x800 // Extract IP4 elements

Valid =1

For i=0, i< 32, i++

Read the buffered header fields

Store in the source address register

Others IP

protocols

IP

Decoder Start

TCP

Decoder

UDP

Decoder

ICMP

Decoder

Invalid

Header

IP protocol =

x06

IP protocol

= x11

IP protocol

= x01

Reset

Ethertype=x0800

Eof=1

Context
Information

Table

Generator

SA, DA, PROT

ICMP

Type

SPRT,

DPRT

SPRT,DPRT

Drop the

packet

HIU

 RGU

 IPU

Data_In

Extractor

State

Machine

en

EoF

Packet

Clk

Preamble

SFD Start

of Frame

Delimiter

SA

Source
Address

DA
Destination

Address

Ethernet

type

Data

Header

Fields’

Buffer

Data

Reset

Frame

DMUX

1

Sel

Valid

EoE

84 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

For i=0, i< 32, i++

Read the buffered header fields

Store in the destination address register

For i=0, i< 8, i++

Read the buffered header fields

Store in the protocol register

// Check the protocol type

If protocol = 0x06 // Extract TCP elements

For i=0, i< 16, i++

Read the buffered header fields

Store in the source port register

For i=0, i< 16, i++

Read the buffered header fields

Store in the destination port register

Else If protocol = 0x11 // Extract UDP elements

For i=0, i< 16, i++

Read the buffered header fields

Store in the source port register

For i=0, i< 16, i++

Read the buffered header fields

Store in the destination port register

Else If protocol = 0x01 // Extract ICMP elements

For i= 0, i< 8, i++

Read the buffered header fields

Store in the ICMP type register

Else

Break

Else

Valid = 0

Send valid to HAM, IPU, and RGU

Figure 17 shows the Gate-Level of Header Parser

Figure 17. The Gate-level of the Header Parser Module (HPM)

3. Header Inspection Unit (HIU)

Such as architecture of HIU described in section 3.3,

a. Header Analyzer Module (HAM)

Header Analyzer checks the header fields’ values from

the points of validation, direction and the tracking. It

consists of a set of flow tables generators, and flow testers

(flow state, flow statistics, flow established, flow control,

and flow monitor).

The input is the context information table (described

in the Table 1) and the outputs are the inspection signals

(set of status and control signals as shown in a Table 2)

and detected signal. Figure 18 shows the Gate-level of

HAM.

Algorithm 5: Header Analyzer Module HAM

Wait and listen

Receive the valid signal

If (valid =1)

Receive the context information table

Generate the flow tables

Send the flow tables to flow testers

Generate the inspection signals table from the testers

result

Generate detected signal

Send the inspection signals to PRU

Send the detected signal to the HMM, IPU

TABLE II. TABLE 2 INSPECTION SIGNALS

Field Size Description

Establishment 1 bit

Connection Establishment Status

0: Not Established
1: Established

Half-Closed

1 bit

Half Closed Status

0: Half-Closed

1:Not Half-Closed

C/S Direction 1 bit
1: Packets are sent from the client side

0: Packets are sent from the server side

Flag-

vulnerability
1 bit

1: Infected packet

0 : Uninfected packet

Tracking 1 bit Flow the packet to the output latch

Down the

Connection

1 bit TTL

2 bits TCP flags (RST – FIN)

Figure 18. The Gate-level of the Header Analyzer Module

(HAM)

Flow

Establish

Table

Flow

Monitor

Table

Flow

Control

Table

Flow

Statistic

Table

Flow

Definition

and State

Table

Establish
Track C/S

Flow

Dow
n

H-
Closed

Termina
te

Flag-Sensibility

Vali
d

Context information

table
Flow Tables
Generator

Flow

State

Tester

Flow

Statistics

Tester

Flow

Establish

Tester

Flow

Control

Tester

Flow

Monitor

Tester

PRU

Detector

D
etected

Clk

Header
EoE

Protocol

Protocol

X"06"

Protocol

X"11"

X"01" en

en

en

UDP

MUX

TCP

DMUX
Comp

Comp

Comp

TCP State

Machine

UDP

State

Machine

ICMP

State

Machine

S-Port

MUX

D-Port

MUX

SA

32-bit

DA

32-bit

Prot

8-bit

SP

16-bit
DP

16-bit

Type

8-bit

Sel
en Parser

State

Machine

Header

DMUX
Comp

Ether-Type

X"800"

85 Int. J. Com. Net. Tech. 5, No. 2, 77-88 (May 2017)

http://journals.uob.edu.bh

b. Header Matching Module (HMM)

HMM generates the rule detector for each rule by

using the table index. So the header table generator is used

to repeat the header vector to 20 bit register comparator to

compare to the rules in the parallel, and the comparator

module compares the context information table with the

header snort rules. It is implemented by FPGA because it

is more suitable to implement thousands of pattern

comparators operating in parallel. The table index

indicates whether the header is matching results

corresponding to the Snort rule. The outputs of

comparator module are Matched signal and Matched-ID

(matched identification).

Algorithm 6: Header Matching Module (HMM)

Generate the header snort rules patterns

Distribute the snort rule pattern to the comparators

Receive the context information table

Receive the detected signal

If (Detected ==1)

 Exit

Else

Generate the header vector

Repeat the header and distribute to 20 comparators

Compare the header vectors with the snort pattern rules

If match

Matched = 1

Encode the comparators results

Send the Matched-ID to RGU

Else

Matched signal = 0

Send a matched signal to the IPU, and RGU.

Figure 19 shows the Gate-level of Header Matching

Module.

Figure 19. The Gate-level of the Header Matching Module (HMM)

4. Intrusion Protection Unit Gate-Level

Figure 20 shows the processes states in the IPU.

Figure 20. Processes State of the Intrusion Protection Unit (IPU)

The intrusion-protection unit is used to prevent the

matched attacks and intrusions. The inputs are the

payload, idle packet, and detecting, matching signal and

terminating. The output is the packet or the idle pattern as

shown in Figure 21.

Algorithm 7: Intrusion Protection Unit (IPU)

Wait and listen

Receive payload

Receive detected signal

Receive the Matched signal

Receive valid signal

If Matched signal=0 and detected=0 and valid=1

Send the payload to PRU

Protection-Status = 0

Else

Replace the packet with idle pattern

Send the idle pattern to the PRU

Protection-Status =1

Send the Protection-Status to RGU

Return

Figure 21. The Gatalevel of the Intrusion Protection unit (IPU)

5. Packet Reassembly Unit Gate Level

The packet reassembly unit is the opposite of the

packet extraction. It generates a packet, and also routes it

to the server or to the client side.

Algorithm 8: Packet Reassembly Unit (PRU)

Receive the inspection signals from the HIU

Receive the header and header information from the PEM

Receive the payload or idle packet from the IPU

Detect

ed

e

Comparator

Read

Encoder

Header Snort

Rules Memory

Snort Rules Decoder Header Tables
Generator

Set of repeated

header vectors

Set of Header

Snort rules

Matche

d IPU RGU

0

 . .

. .

 . .

 . .
.

Matched-
ID

Context
Informatio

n Table e
n

Go to receive a new

message

The Status
Replace the packet by the idle pattern

RGU

Valid=0 or
Detected=1 or

Matched =1

Replacement

Receive a new

message
Wait

&

Listen

Check

the

message

No message

Send

Packet/ idle pattern

PRU

Valid=1 and Detected=0 and Matched =0

Valid Signal

MUX

Matched Signal

Payload

Idle Packet

Packet / Idle Packet

Detected Signal
Protection-Status

86 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

If C/S =0

Reassemble the TCP stream to the server side

Else

Reassemble the TCP stream to the client side

 PRU consists of four parts: two Dispatchers (one for

the header and the other for the data), Server Stream,

Client Stream, and two Block-Memories as shown in

Figure 22.

Figure 22. The Gatalevel of the Packet Reassembly Unit (PRU)

6. Report Generator Unit (RGU) Gate-Level

Report Generator Unit generates a status table that

contains the number of invalid, anomalous, infected

packets, and the type of infection. Also the report shows

the intrusion protection status. Figure 23 shows the

operation states of the RGU. The search module used to

search in the index table by the Matched-ID to find out the

snort type (Snort Identification, Alert).

Figure 23. The Operation States of the Report Generator Unit

(RGU)

The inputs are Context Information Table and the

signals (Matched, Matched-ID, Valid, Detected, and

Protection-Status). The output is a status report about

detection and the protection. The report generator unit

consists of a lookup table, signal checker, table generator.

SPIMN exports the monitoring data to an external host

through a standard RS-232 serialed approach. This

approach requires minimal hardware. I use snort because

it is a popular open source in network intrusion detection

and easy to customize.

Algorithm 9: Report Generator Unit (RGU)

Receive the Valid signal

Receive the Detected signal

Receive the Matched signal

Receive the Matched-ID signal

Receive the Protection-Status

Receive the Header Buffered Table

If valid = 0

Accumulate the invalid_ packet.

If Detected =1

Accumulate the detected-packet

If Matched =1

Accumulate the matched-packet

Search in L.U.T by Matched-ID to get the alert

message

Store in a table

Send the table to the monitoring PC (Output The Report)

5. SPIMN VERIFICATION AND VALIDATION

To test the design and implementation of section (VI),

two steps are carried out: - one for simulating SPIMN, as

such, using ModelSim ISE6.0, and the second is verifying

it.

1. SPIMN Verification

SPIMN as an entire prototype, implemented

experimentally by making use of the above components.

Figure 24 shows the realization of the information flow.

Figure 24. SPIMN Realization

In SPIMN:

1) The input section consists of:

I. One port connects to the router connected with 4

PCs generated the traffic.

II. Clock: The clock signal is used as input for each

component in the SPIMN to perform an operation of the

synchronization.

III. Reset: The reset signal is used as a control input

signal for each component of the SPIMN.

2) Internal SPIMN components

O/P
Interface
Module
(OIM)

Header

Dispatcher

Payload

Dispatcher

Dispatcher Streaming
Trackin

g

Block M

Add
r D

i D

o

Client

Packet

O/p

Server

Packet

O/p

Trackin

Tracking

Heade

r

C/S flow

Server TCP
Stream

Reassembly

Client TCP
Stream

Reassembly

Established

Payload

/Idle

Packet

Block M

Add
r

D

i

D

o

Tracking

Receive a

new message Checking

the

message

Wait

&
Listen

Acc.

Acc.

Searching

Creating
the

report

Sending Reporting Table

Acc.

Acc.

No message
Traffic

Generator
Traffic Traffic

Router

 Client 1

Client 2

Client 3

Client 4

Client 5

Monitor

Clk

Reset

Fiber

Cable

Traffic

SPIMN

I

n

p

u

t

O

u
t

p

u
t

87 Int. J. Com. Net. Tech. 5, No. 2, 77-88 (May 2017)

http://journals.uob.edu.bh

3) The output section consists of one port connects to the

monitored PC.

2. Validation

Finally, 1 test and evaluate the SPIMN model to make

a comparative study between SPIMN and the other

systems. The main result of this comparative study is, it

can work with 100 Gigabit Ethernet network without any

modification. Rule match module used a sub-set of 100

Snort rules in testing the design and implementation of

SPIMN (because of the difficulty of generated the snort

rules manually so it is planned to recover it in the future).

The steps of SPIMN test as the following :- 1)

Generate traffic that includes certain types of attacks and

intrusions, 2) Send this traffic to PC1 which contains a

standard Snort detection system and notice the report, 3)

Send this traffic also to SPIMN and note the output report,

which is will sent to the PC2, 4) Compare these reports to

check the accuracy (Inspection) and 5) Resend the output

traffic from SPIMN to PC to detect again to see that the

detected intrusion are removed or not (to satisfy from the

protection unit). It is shown in the figure 25.

Figure 25. SPIMN Test

The performance of an SPI-based intrusion-detection

system mainly depends on the performance of the

processing context information table. SPIMN can also do

stateful packet inspection in real time and perform two

states of detections (header analyzer to detect anomaly

values – header matching with the snort rules) to allow

more efficient generation of detection. These are the main

contributions in SPIMN improving. SPIMN implemented

on Xilinx ISE 14.1 Virtex-7 XC7V2000T with ‘–2’ speed

grade FPGA device. This model can achieve the

throughput over 100 Gbps with dual port memory while it

can support more than 2,000 Snort rules. Processing the

data flow on the Server side and the Client side in parallel

and fully considering context information on the TCP

connection are our main contributions to improving the

processing of TCP connections in NIDS.

6. CONCLUSION

In the present paper, we described the architecture,

design and hardware implementation of 100 gigabits

Stateful inspection using FPGA. The proposed model

(SPIMN) presents intrusion detection, protection, and

report generation.

SPIMN is experimentally tested via two steps. The

first step is based on a Xilinx simulation environment for

ensuring the correctness of the system architecture before

the implementation and by creating a test bench circuit. It

is also used for measuring the average response time of

SPIMN at 100Gbps, where the system performance is

reported and evaluated. The second step is an

experimental verification for SPIMN through a network.

In the third step, we test and evaluate SPIMN to perform a

comparative study between the proposed system and the

others. In particular, we demonstrated performance

improved by optimized, efficient memory access in FPGA

logic unit and parallel processing in both the parts of

header inspection unit and also in the unit of packet

reassembly. And also the processes in both PRU and HIU

are working in parallel. The use of FPGA made it easy to

modify and develop the system.

It is planned to extend SPIMN in three directions. The

first direction takes place by replacing the header parser

with a programmable parser to work with any protocol

and to generate the rules of matching automatically

(Dynamic SPIMN) and the second direction by improving

the Stateful packet inspection to inspect the payload and

header together (Deep Packet Inspection DPI). The third

direction is to create a circuit to handle regular

expressions and by developing a sequencer to handle non-

pattern-matching rules.

REFERENCES

[1] CRONIN, Brendan. Hardware acceleration of network
intrusion detection and prevention. 2014. PhD Thesis.
Dublin City University.

[2] AV-Test Institute (2013). Malware statistics. AV-Test
Institute, Germany; Obtained through the internet:Web:
http://www.av-test.org/en/statistics/malware/ [accessed 4
Oct. 2013]

[3] Seungyong Yoon, Jintae Oh, Jongsoo Jang "Design of SPI
module in large-scale network"Conference: Advanced
Communication Technology, 2006. ICACT 2006. The 8th
International Conference, Volume: 3

[4] Parsons, Christopher. Deep Packet Inspection in
Perspective: Tracing its lineage and surveillance potentials.
Queen's University, Surveillance Studies Centre, 2008.

[5] Chang-Su Moon and Sun-Hyung Kim "A Study on the
Integrated Security System based Real-time Network
Packet Deep Inspection" International Journal of Security
and Its Applications Vol.8, No.1 (2014), pp.113-122

[6] Ashok Kumar Tummala and Parimal Patel “Distributed
IDS using Reconfigurable Hardware” IEEE 2007.

[7] Sampath V.P “An FPGA-Based Network Intrusion
Detection System “ World Journal of Science and
Technology, www.worldjournalofscience.com 1 (8): (100-
102) 2011

[8] M. Attig and G. Brebner. 400Gbps Programmable Packet
Parsing on a Single FPGA. In Proc. ANCS '11, pages 12
{23, 2011.

[9] Yang, Y., and Prasanna, V. 2010. High Throughput and
Large Capacity Pipelined Dynamic Search Tree on FPGA.
In Proceedings of the 18th ACM/SIGDA International

Infected

Traffic

Reports

Traffic

Generator Router

SPIMN

PC1

Tester

PC1

Monitor

Protected

Traffic

http://www.av-test.org/en/statistics/malware/
http://www.worldjournalofscience.com/

88 Amr Ibrahim: SPIMN Stateful Packet Inspection for Multi Gigabits Networks

http://journals.uob.edu.bh

Symposium on Field Programmable Gate Arrays
(Monterey, CA, USA, Feb. 2010), 83-92.

[10] SNORT Network Intrusion Detection System,
http://www.snort.org

[11] C. Kozanitis, J. Huber, S. Singh, and G. Varghese. Leaping
Multiple Headers in a Single Bound: Wire-Speed Parsing
Using the Kangaroo System. In Proc. INFOCOM 2010,
pages 1 {9, Mar. 2010.

[12] Wang Yong-gang, Zhang Tao, Zheng Yu-Feng, Yang
Yang “Realization of FPGA-based Packet Classification in
Embedded System” Technology Conference, Singapore,
I2MTC 2009 International Instrumentation and
Measurement 5-7 May 2009

[13] Abhishek Das, David Nguyen, Joseph Zambreno,
GokhanMemik, and AlokChoudhary,“ An FPGA-based
Network Intrusion Detection Architecture” IEEE
Transactions On Information Forensics And Security, Vol.
3, No. 1, March 2008

[14] Ioannis Sourdis “Designs & Algorithms for Packet and
Content Inspection” Thesis Printed in The Netherlands
Copyright 2007 Ioannis SOURDIS electronic and
computer engineer Technical University of Crete
Geborente Corfu, Griekenland 2007

http://www.snort.org/

