
 

 

International Journal of Computing and Network Technology  
                                              @ 2014:  Scientific Publishing Center, University of Bahrain                                                  

 

 
E-mail: tandel@southalabama.edu 

 

 
Design and Implementation of Hiding Techniques to 

Obfuscate Against Side-Channel Attacks on AES 
 

Todd R. Andel1,*, Austin Fritzke2, Jeffrey W. Humphries3 and J. Todd McDonald1 
 

1 School of Computing, University of South Alabama, Mobile, AL 36688 (USA)  
2 Department of Electrical and Computer Engineering, Air Force Institute of Technology, Dayton, OH 45433 (USA) 

3 Department of Computer Science, Covenant College, Lookout Mountain, GA 30750 (USA)  

 

Received 26 Dec. 2013, Revised 22 Feb. 2014, Accepted 25 Feb. 2014, Published 1 May 2014 

___________________________________________________________________________________________________________ 

Abstract: While AES is computationally secure, it is not without weakness. Side-channel attacks on AES hardware implementations 

can reveal its secret key. Because of this vulnerability, countermeasures to side-channel attacks are crucial to data security. This 

paper assesses a current design and proposes a new design for securing AES, along with evaluating their implementation onto field 

programmable gate arrays. Both countermeasures were successfully implemented, and the data remained secure against common side 

channel attacks. Results indicate successful obfuscation of the secret key over the original AES algorithm. 
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1. Introduction 

       While the Advanced Encryption Standard (AES) is 

known to be computationally secure, it is vulnerable to 

side-channel attacks against hardware implementations. 

One of the more common hardware attacks is 

Differential Power Analysis (DPA) introduced by 

Kocher et al. [1]. DPA is performed by sending the 

AES algorithm known plaintext or receiving known 

ciphertext. During the process, power and/or 

electromagnetic traces from the encryption device are 

recorded and are correlated to the known data and key 

guesses. To counteract this vulnerability, DPA 

countermeasures attempt to create independence 

between the data and the power traces. The two main 

countermeasure types are hiding and masking [2]. 

Hiding attempts to cover the message with noise from 

the circuit or use other means such as timing variance 

to create independence between the data and the traces. 

Masking conceals the data by adding or multiplying 

random numbers to the data during the encryption 

process, and then removing the mask(s) before the 

output is determined.  

         This paper focuses on two hiding techniques to 

obfuscate the data from an attacker. The first 

countermeasure focuses on preventing traces from 

being aligned by randomizing the clock frequency of 

the circuit, therefore hindering DPA attempts by an 

attacker. The idea was introduced by Zafar et al. [3] 

and the concept was simulated using simulation 

software such as MentorGraphics ModelSim. This  

 

 

research differs in that it provides a realized 

implementation outside of previous theoretical 

simulated designs. The second countermeasure focuses 

on a hiding technique called bit-balancing. The current 

bit-balancing trend for AES is dual-rail logic, which 

concurrently evaluates the data and the inverse of the 

data at the gate level [2]. This research develops and 

implements a countermeasure technique that provides 

bit-balancing at the system level, therefore greatly 

decreasing the complexity and size of the circuit 

compared to AES with dual-rail logic gates. The 

countermeasure described in this research is similar to 

[4] in many key areas, but differs in both 

implementation and design. 

       The two countermeasures were chosen for their 

potential effectiveness for obfuscation of the circuit 

while minimizing costs to the user. Previous 

obfuscation techniques, such as masking, have shown 

to be effective in providing independence between the 

data and power traces, typically requiring 2x to 10x 

increase in circuit size and 3x to 90x decrease in circuit 

speed [5]. The goal of this research is to provide 

effective defense against power attacks on AES while 

minimizing costs in circuit area, circuit speed, and 

circuit power consumption. 

           This paper is organized as follows: an overview 

of the AES algorithm and common DPA techniques is 

given in Section 2. Section 3 provides results of DPA 

performed on hardware AES for the purpose of both 

developing a baseline for comparison and supporting 

the need for countermeasures. Section 4 discusses 
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hiding countermeasures designed to misalign power 

traces and presents an implemented design of a 

randomized clock. Section 5 looks at dual-rail logic 

and bit-balancing countermeasures, as well as provides 

an effective new system-level bit-balancing 

implementation followed by conclusions in Section 6. 

 

2. Background of AES and DPA 

In order to put the remainder of the paper in context, a 

brief overview of the AES algorithm and DPA attacks 

is Provided. 

 

2.1 AES Background 

        The AES algorithm is a form of the Rijndael 

algorithm and is the current standard for symmetric-

key cryptography [6]. It is a symmetric block cipher 

that processes 128-bit data blocks and can operate on 

keys with lengths of 128, 192, or 256 bits. Each data 

block consists of 16 bytes and is four rows deep and 

four columns wide. Each individual block is processed 

through 10, 12, or 14 rounds, depending on the key 

size. For this paper, when referring to the AES 

algorithm, we assume a key length of 128 bits using a 

total of 10 rounds. A pictorial overview of AES is 

given in Figure 1. Each round consists of four 

individual transformations of the data: SubBytes, 

ShiftRows, MixColumns, and AddRoundKey. The 

algorithm begins by adding the RoundKey and 

continues into the rounds. The last round does not 

contain the MixColumns function. Of the four 

transformations, only the SubBytes function is non-

linear, and is therefore subject to great interest for 

power attacks [7]. SubBytes is a table lookup from a 

substitution box (SBOX), which simply substitutes a 

byte out for respective byte input. Also, as seen in 

Figure 1, the key is used to create round keys derived 

from the key schedule. More detail on the AES 

algorithm can be found from the FIPS publication [6]. 

 

2.2 DPA Background 

     Differential Power Analysis is a powerful attack 

that uses statistical analysis and error correction 

techniques to extract information correlated to the 

secret keys [1]. There are two main phases of a DPA 

attack: data collection and data analysis. Data 

collection is performed by sampling a circuit’s power 

consumption or electromagnetic (EM) radiation during 

operation of the cryptographic algorithm. Data analysis 

is the more involved phase of DPA and often involves 

correlation of the collected power traces to a 

hypothetical power model created by the attacker. 

There are several models used to create hypothetical 

intermediate values used for correlation between the 

data and the power traces. The most common models 

are the bit model, Hamming Weight (HW) model, 

Hamming Distance (HD) model, and the Zero-Value 

(ZV) model [2].  

     The bit model looks at one bit of an intermediate 

value at a time and separates the collected power traces 

into two groups. The first group is whether the 

intermediate value should be a 0 for the current key 

guess, and the second group is if the intermediate value 

should be a 1. While straightforward, the bit model is 

limited in scope and is generally not as effective as the 

HW, HD, or ZV models [2].  

    The HW model counts the number of ‘1’s in a binary 

number and assigns that to its value. For example, 

00011000 would have a HW of two. The HW model is 

effective in modeling power traces because of the 

difference in power drawn from a circuit evaluating a 

‘1’ compared to a ‘0’.  

    The HD model is even more effective than the HW 

model, but requires knowledge of either the preceding 

or following intermediate value, as well as the current 

hypothetical intermediate value. The HD is the 

difference in ‘1’s between two binary numbers. For 

example, if a number were to change from 00011000 to 

11111111, the HD would be six. There is usually a 

significant change in power when a device in a circuit 

changes its output value from ‘0’ to ‘1’ or vice versa. 

In this way, the HD model can be a very effective 

model for hypothetical power consumption. 

       Finally, the ZV model assumes that the power 

consumption for the data value 0 is lower than the 

power consumption for all other values [2]. The data 

within a ZV model is set as either a 0 or 1 depending 

on whether the data evaluated is equal to 0.  

      Regardless of the chosen model, they all require an 

intermediate value to be calculated in order to operate. 

When evaluating only one byte at a time, it is 

beneficial to avoid the MixColumns function. 

Otherwise, more than one byte of the intermediate 

value (and therefore more than one byte for the key 

guess) would have to be assumed [6]. This approach 

would greatly increase the complexity of the DPA and 

exponentially increase the processing time. Because of 

this limitation, intermediate values before the first 

MixColumns operation or after the last MixColumns 

operation are attacked for DPA on AES. 

 

3. DPA Results on Hardware AES 

    For a baseline design, a simple iterative Verilog 

version of AES is used [8], where each round is 

performed sequentially before the next byte is 

processed. Power traces are collected using the Riscure 

Inspector side channel test suite, including an EM high 

sensitivity probe, an EM Probe Station, and the Riscure 

Inspector software. Power traces are measured using a 

Lecroy WavePro 725Zi oscilloscope, and the AES 

design is loaded onto a Xilix Virtex-5 FX FPGA 
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evaluation board. A visual overview of the 

experimental setup is given in Figure 2. 

 

 

Fig. 1: The AES Algorithm [4] 

 

 

 

Fig. 2: Experimental Setup 

 

          The number of traces collected for each AES 

system tested in this research is varied between 1,000 

and 3,000,000. The frequency of the bus is set to 100 

MHz. To minimize unwanted noise, the traces are 

filtered using a bandpass filter between 90 and 210 

MHz. Each trace uses the same key given in Equation 

1, and the input data is randomized for every trace 

using Java’s randomize function. An example of a 

power trace is given in Figure 3, with AES encryption 

occurring between 1.1 and 1.7 sec. 

 
Key = 0001 0203 0405 0607 0809 0A0B 

0C0D 0E0F (1) 

Last Round Key = 1311 1D7F E394 4A17 

F307 A78B 4D2B 30C5 

 

        To effectively attack the AES algorithm, several 

different models were used on both the first and last 

round of the algorithm. Along with bit and ZV models, 

HW and HD models were used to correlate the traces 

to the data. During initial testing, the bit and ZV 

models proved less effective than the HW and HD 

attacks, and therefore were not considered in the final 

evaluation of correlation effectiveness. When 

performing HW and HD attacks on the circuit, seven 

different intermediate values or intermediate value 

pairs were chosen: 

1.HW: First Round Before SubBytes 

2.HW: First Round After SubBytes 

3.HW: Last Round Before SubBytes 

4.HW: Last Round After SubBytes 

5.HD: First Round Between Values Before and After 

SubBytes 

6.HD: Last Round Between Values Before and After 

SubBytes 

7.HD: Last Round Between Values Before SubBytes 

and Ciphertext Output 
 

   When evaluating the last round, the original key 

cannot be used, but instead the last round key as given 

in Equation 1. This is due to the fact that each round 

adds its corresponding round key, and the round key is 

only equal to the original key for the first round. 

Subsequent rounds use keys generated during the key 

expansion process of AES. The correlation is 

performed using MATLAB software. After evaluating 

each modeling technique on the different intermediate 

values, it appears the HD on the last round between the 

intermediate value before the SubBytes and the 

ciphertext (choice 7) provides the highest correlation. 

The results on an attack on the first byte are given in 

Figure 4. The correlation for the correct key guess (19) 

is given by the solid blue line, and the attack is 

performed while the number of traces is varied. DPA is 

successfully performed when the number of traces is 

greater than or equal to 500,000 traces, as indicated 

when the correlation of the correct guess exceeds the 

peak false positive. The attack on the unprotected AES 

system gives a process baseline to compare to AES 

implementations with added countermeasures. The 

goal of this research is to effectively eliminate 

correlations such as seen in Figure 4 with minimal cost 

in added execution time and circuit area. The first 

countermeasure increases the challenge of aligning 

traces, therefore greatly increasing the difficulty of 

processing the power traces after collection. The 

second countermeasure effectively flattens the power 

signatures of the intermediate values in relation to the 

Hamming Weight and Hamming Distance of the bits. 

 

4. Trace Alignment Countermeasures 

In order to perform an effective DPA attack, trace 

alignment must be accomplished for correlation 

between the power traces and the power model. 

Without alignment, each power trace/expected 

intermediate value pair would have to be evaluated 

individually for each trace. 

 

4.1 Existing Approaches 

      A relatively popular method for accomplishing 

misalignment is to randomly insert delay cells into the 
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algorithm. In general, inserting delay cells effectively 

misaligns the traces and hinders the effectiveness  

 

 
 

 

 

Fig. 3: Power Trace of Hardware AES 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: DPA Results Based on Number of Traces for Baseline 

AES 

 

 of a DPA attack [9,10]. Figure 5 shows how 

misalignment can effectively minimize correlation 

between the traces and the data.  

      However, as stated in [11], there are methods to 

pinpoint and eliminate the delay cells within the power 

trace, therefore eliminating the misalignment attempts. 

In order to prevent this re-alignment, Zafar et al. 

introduced in [11] a clock variance method to 

accomplish misalignment with the same results as 

delay insertion, but without the risk of the delays being 

manually removed during DPA processing. This idea is 

further improved in [3] by randomizing each clock 

cycle instead of changing the clock frequency after a 

specified period of time. By using this approach, trace 

alignment is virtually impossible to accomplish using 

traditional methods. The downside of randomizing 

every clock cycle is an increase in the delay of the 

system. If the frequency of the clock is varied from 

100% to 50% (from 1x to 2x slower), the average 

frequency will be 75% of the original (1.5x slower on 

average). This degradation is significant when 

comparing to a handful of manually inserted single 

clockcycle delay cells added to the overall system 

runtime. 

 

4.2 Randomized Clock Implementation 

         In order to randomize the clock in this research, a 

16-bit linear feedback shift register (LFSR) is polled at 

the end of each clock cycle to pseudo-randomly choose 

between four clock cycle lengths. The LFSR is seeded 

with a pseudo-random value at the beginning of each 

encryption process to ensure variance between 

algorithm runs. Optimally, the clock should vary 

between 100% and 50% of the original frequency. 

However, for this research, the clock varies between 

33% and 16.7%. Initially, the idea was to simply 

increase the clock frequency on the Virtex-5 bus by 

300%, but the clock was already set near its maximum 

frequency (100 MHz with a limit of 125 MHz). An 

external clock could be added to the system, but that is 

out of the current scope of the project. The randomized 

clock design unique to this research is given in Figure 

6. Note that the clock in Figure 6 represents the clock 

period. Therefore, the clock generator  effectively 

slows the clock rate by the indicated amounts. 

 

 
Fig. 5: Correlation Before and After Delay Cell Insertion [9] 

Fig. 6: Random Clock Countermeasure Module 

 
      A power trace of the algorithm running on a 

randomized clock is given in Figure 7. It is important 

to notice the variation when compared to Figure 3. In 

fact, the power signature varies greatly for each 

iteration when there is a randomized clock. In order to 

determine effectiveness in obfuscation of the circuit, 

the same DPA attack is performed on the circuit with a 
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randomized clock as performed on the original circuit. 

The key guess results for byte 1 are shown in Figure 8 

        As expected, there is no apparent correlation for 

the correct key guess. The main difficulty in 

performing DPA is aligning the traces of the AES 

algorithm using a randomized clock frequency. Riscure 

Inspector software includes several advanced 

alignment algorithms, however, they did not provide 

correct alignment against the randomized clock 

countermeasure. 

         By randomizing the clock, the circuit is 

effectively protected from common DPA attacks by 

preventing alignment of the traces. The total area of the 

circuit changes only minimally to add the random 

clock generator. However, the runtime of the circuit 

averages to 4.5x longer than the original, or an average 

25% of the original frequency. Optimally, if an 

external clock was added to the system, the runtime of 

the circuit could be minimized to 1.5x longer than the 

original, or an average 75% of the original frequency. 

 

5. Dual-Rail and Bit-Balancing 

Countermeasures 

         One of the more popular hiding countermeasures 

is the attempt to flatten the power signature of all 

components directly within the circuit’s hardware for 

all values of data. This approach commonly utilizes 

dual-rail or bit-balancing logic as countermeasures. 

 

 
Fig. 7: Power Trace with Random Clocking 

 

 
 

Fig. 8: DPA Results Based on Number of Traces for 

Randoml Clocked AES 

 

 

 
5.1 Existing Approaches  

        An effective method is performed at the cell level 

using dual-rail precharge (DRP) logic blocks [2]. The 

idea behind DRP logic is to create logic cells that make 

power consumption constant during each clock cycle. 

Every input and output into a cell is paired with its 

inverse and therefore a constant balance of ‘0’s and 

‘1’s are entering and exiting the cell at all times. Figure 

9 gives an example of a dual-rail AND gate. 
 

 

 
 

Fig. 9: Dual-Rail AND Gate 

 

 

 

     There have been several dual-rail designs attempted 

in order to protect cryptographic algorithms, and in 

general are quite effective [12,13,14]. However, one 

major problem with dual-rail systems is the increase in 

circuit area and associated decrease in speed. Designs 

such as [12] increase circuit area by 4.5x and increase 

runtime by nearly double. While dual-rail logic is 

effective in minimizing the effectiveness of HW and 

HD attacks, its complexity does not come without a 

price. 

      Similar to dual-rail logic, system-level bit-

balancing attempts to balance the Hamming Weight for 

every intermediate value. Attempted by [4], system-

level bit-balancing runs two concurrent cryptographic 

algorithms. The first algorithm performs as expected 

and delivers the correct output data. The second 

algorithm processes the inverse of the data and 

produces inverse output data. When evaluated as a 

whole, the Hamming Weight of the AES system 

remains constant during the entire encryption process. 

The challenge is combining the two circuits in such a 

way that an attacker cannot differentiate the power 

emanating from the two separate algorithms. 

 

 

5.2 System Level Bit-Balancing Design 

     In addition to the randomized clock, this research 

develops a system level bit-balancing design to further 

obfuscate the circuit against HW and HD attacks. The 

bit-balancing design is similar to [4], but differs in 

several key areas. First, the key remains unchanged as 

opposed to [4]. Second, the key schedule is left 

untouched and the round keys remain the same. Third, 
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the input data is inverted before entering the AES 

algorithm, unlike the design in [4]. The design for the 

inverted circuit is given in Figure 10. To begin, the 

input data is inverted before entering the system. Due 

to their linearity, the AddRoundKey, ShiftRows, and 

MixColumns components of the AES algorithm retain 

the inversion of the data (inverted input = inverted 

output from the components). However, the main 

design challenge comes from the non linear SubBytes 

component. Finally, this design includes HD resistance, 

while [4] does not. 

    In order for the output data from the SBOX to be 

inverted when provided an inverted input, it is helpful 

to look at how the SBOX handles the data. For the 

specific AES algorithm used in this research, a lookup 

table is used for the SubBytes function. The SBOX 

lookup table is given in Table 1 [6]. 

 

 

 
 

     
 Each cell is indexed by the input value. For example, 

an input of 0x03 would output 0x7B. Because the 

output needs to be inverted, each value within the 

SBOX is replaced with its inverted value (0x7B would 

be replaced with 0x84) for the inverted AES algorithm. 

However, one more step must be taken to ensure an 

inverted output. Because the input data will be 

inverted, indexing must also be inverted. Therefore, 

what was in the top left cell must now be moved to the 

bottom right, etc. Once this index “rotation” is 

accomplished, the new SBOX is ready to output 

inverted data given an inverted input. The new SBOX 

for the inverted circuit is shown in Table 2. Note that 

0x84 (the inverse of 0x7B) is now indexed by 0xFC, 

the inverse of the original index 0x03. 

 

    Simply inverting all the intermediate values only 

protects against HW attacks and not HD attacks. This 

is a problem, especially since HD attacks are 

commonplace and relatively easy to perform. The 

system-level bit-balancing design for this research also 

differentiates itself by including features to resist HD 

attacks along with its HW resistance. In order to 

protect against HD attacks, gate level pre-charging has 

been used in the past [2,12,13]. However, this research 

uses system-level bit-balancing, so system-level pre-

charging is needed. To minimize the vulnerability from 

HD attacks, 10 buffer cycles are added between the 

rounds to clear the intermediate values within the 

rounds. This system-level precharging is accomplished 

by sending a 0 as the input data and key into the round. 

This buffering allows for the 

HW bit-balancing to effectively prevent against HD 

attacks as well. 

        Of course, the output of the rounds must be stored 

between clock cycles while the system is clearing the 

intermediate values. This register storage introduces a 

potential vulnerability. To mitigate the potential for an 

attacker to perform HD correlation on the registers 

storing the intermediate values between rounds, an 

extra feature is added to the design. An LFSR is 

connected to a multiplexer, and the outputs of the 

rounds are stored in one of four locations randomly 

chosen by the LFSR. In this way, there is only a 25% 

chance of the HD recorded by the EM probe matching 

the data. Therefore, the HD leakage is effectively 

minimized. Depending on security requirements the 

number of possible register locations could be 

increased, but at a cost of required circuit area and 

speed. A graphical view of the correlation between the 

traces and power models is given in Figure 11. As 

expected, the system-level bit-balancing design is 

resistant to common DPA attacks with up to three 

million or more traces collected. 

        For the bit-balancing design, the added 10 clock 

cycles adds minimal delay to the system, while the area 

and power consumed by the countermeasure are around 

triple that of the unprotected design. These costs are 

still desirable over comparable dual-rail logic designs. 

The system-level bit-balancing design is resistant to 

both HW and HD attacks, and is implemented as one 

interspersed module on the chip - making 

differentiation of the two halves of the algorithm 

significantly difficult. 
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Fig. 10: System Level Bit Balancing Design 

 

 
Fig. 11: Max Correlation of all 256 Key Guesses for Bit- 

Balanced AES 
 

 

6. Conclusion 

          The countermeasures developed and tested in 

this research are effective in obfuscating the key and 

intermediate data of the AES algorithm from standard 

DPA attacks. Those attacks include correlation with 

bit, Hamming Weight, Hamming Distance, and Zero-

Value models used to determine the secret key. The 

randomized clock prevents an attacker from easily 

aligning traces, a step necessary to perform DPA. The 

second countermeasure, system-level bit-balancing, 

was designed with HW and HD attacks in mind, and is 

implemented on a single chip. Of course, there are 

added costs to the user in terms of circuit delay, area, 

and power consumed, but all costs are within 

reasonable levels compared to similar hiding 

countermeasures. The results are summarized in Table 

3. The DPA resistance is given in number of traces 

needed to attack the circuit. However, it is important to 

note that the randomized clock and bit-balancing 

countermeasures were never successfully attacked, 

therefore concluding that over three million traces 

would be needed to eventually attack the circuits. 

 
 

        Because of the relative independence between the 

two countermeasures, combining the randomized clock 

and system-level bit-balancing design would only add 

to the side-channel attack resistance of the circuit, and 

should be considered for maximizing obfuscation. This 

research provides contributions for the protection of 

information processed using hardware AES. The 

results and analysis indicate successful demonstration 

of the goals of this research, mainly to obfuscate 

sensitive data against side-channel attacks. Not only 

was a design developed and presented, but 

implementation and real-world testing were performed 

using an FPGA system. It is hypothesized that results 

would be similar in customized application specific 

integrated circuit (ASIC) designs. 
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