

International Journal of Computing and Network Technology
 @ 2014: Scientific Publishing Center, University of Bahrain

E-mail: tandel@southalabama.edu

Design and Implementation of Hiding Techniques to

Obfuscate Against Side-Channel Attacks on AES

Todd R. Andel1,*, Austin Fritzke2, Jeffrey W. Humphries3 and J. Todd McDonald1

1 School of Computing, University of South Alabama, Mobile, AL 36688 (USA)
2 Department of Electrical and Computer Engineering, Air Force Institute of Technology, Dayton, OH 45433 (USA)

3 Department of Computer Science, Covenant College, Lookout Mountain, GA 30750 (USA)

Received 26 Dec. 2013, Revised 22 Feb. 2014, Accepted 25 Feb. 2014, Published 1 May 2014

Abstract: While AES is computationally secure, it is not without weakness. Side-channel attacks on AES hardware implementations

can reveal its secret key. Because of this vulnerability, countermeasures to side-channel attacks are crucial to data security. This

paper assesses a current design and proposes a new design for securing AES, along with evaluating their implementation onto field

programmable gate arrays. Both countermeasures were successfully implemented, and the data remained secure against common side

channel attacks. Results indicate successful obfuscation of the secret key over the original AES algorithm.

Keywords: Side-Channels, FPGA, DPA, AES, Countermeasure

1. Introduction

 While the Advanced Encryption Standard (AES) is

known to be computationally secure, it is vulnerable to

side-channel attacks against hardware implementations.

One of the more common hardware attacks is

Differential Power Analysis (DPA) introduced by

Kocher et al. [1]. DPA is performed by sending the

AES algorithm known plaintext or receiving known

ciphertext. During the process, power and/or

electromagnetic traces from the encryption device are

recorded and are correlated to the known data and key

guesses. To counteract this vulnerability, DPA

countermeasures attempt to create independence

between the data and the power traces. The two main

countermeasure types are hiding and masking [2].

Hiding attempts to cover the message with noise from

the circuit or use other means such as timing variance

to create independence between the data and the traces.

Masking conceals the data by adding or multiplying

random numbers to the data during the encryption

process, and then removing the mask(s) before the

output is determined.

 This paper focuses on two hiding techniques to

obfuscate the data from an attacker. The first

countermeasure focuses on preventing traces from

being aligned by randomizing the clock frequency of

the circuit, therefore hindering DPA attempts by an

attacker. The idea was introduced by Zafar et al. [3]

and the concept was simulated using simulation

software such as MentorGraphics ModelSim. This

research differs in that it provides a realized

implementation outside of previous theoretical

simulated designs. The second countermeasure focuses

on a hiding technique called bit-balancing. The current

bit-balancing trend for AES is dual-rail logic, which

concurrently evaluates the data and the inverse of the

data at the gate level [2]. This research develops and

implements a countermeasure technique that provides

bit-balancing at the system level, therefore greatly

decreasing the complexity and size of the circuit

compared to AES with dual-rail logic gates. The

countermeasure described in this research is similar to

[4] in many key areas, but differs in both

implementation and design.

 The two countermeasures were chosen for their

potential effectiveness for obfuscation of the circuit

while minimizing costs to the user. Previous

obfuscation techniques, such as masking, have shown

to be effective in providing independence between the

data and power traces, typically requiring 2x to 10x

increase in circuit size and 3x to 90x decrease in circuit

speed [5]. The goal of this research is to provide

effective defense against power attacks on AES while

minimizing costs in circuit area, circuit speed, and

circuit power consumption.

 This paper is organized as follows: an overview

of the AES algorithm and common DPA techniques is

given in Section 2. Section 3 provides results of DPA

performed on hardware AES for the purpose of both

developing a baseline for comparison and supporting

the need for countermeasures. Section 4 discusses

66 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding…

hiding countermeasures designed to misalign power

traces and presents an implemented design of a

randomized clock. Section 5 looks at dual-rail logic

and bit-balancing countermeasures, as well as provides

an effective new system-level bit-balancing

implementation followed by conclusions in Section 6.

2. Background of AES and DPA

In order to put the remainder of the paper in context, a

brief overview of the AES algorithm and DPA attacks

is Provided.

2.1 AES Background

 The AES algorithm is a form of the Rijndael

algorithm and is the current standard for symmetric-

key cryptography [6]. It is a symmetric block cipher

that processes 128-bit data blocks and can operate on

keys with lengths of 128, 192, or 256 bits. Each data

block consists of 16 bytes and is four rows deep and

four columns wide. Each individual block is processed

through 10, 12, or 14 rounds, depending on the key

size. For this paper, when referring to the AES

algorithm, we assume a key length of 128 bits using a

total of 10 rounds. A pictorial overview of AES is

given in Figure 1. Each round consists of four

individual transformations of the data: SubBytes,

ShiftRows, MixColumns, and AddRoundKey. The

algorithm begins by adding the RoundKey and

continues into the rounds. The last round does not

contain the MixColumns function. Of the four

transformations, only the SubBytes function is non-

linear, and is therefore subject to great interest for

power attacks [7]. SubBytes is a table lookup from a

substitution box (SBOX), which simply substitutes a

byte out for respective byte input. Also, as seen in

Figure 1, the key is used to create round keys derived

from the key schedule. More detail on the AES

algorithm can be found from the FIPS publication [6].

2.2 DPA Background

 Differential Power Analysis is a powerful attack

that uses statistical analysis and error correction

techniques to extract information correlated to the

secret keys [1]. There are two main phases of a DPA

attack: data collection and data analysis. Data

collection is performed by sampling a circuit’s power

consumption or electromagnetic (EM) radiation during

operation of the cryptographic algorithm. Data analysis

is the more involved phase of DPA and often involves

correlation of the collected power traces to a

hypothetical power model created by the attacker.

There are several models used to create hypothetical

intermediate values used for correlation between the

data and the power traces. The most common models

are the bit model, Hamming Weight (HW) model,

Hamming Distance (HD) model, and the Zero-Value

(ZV) model [2].

 The bit model looks at one bit of an intermediate

value at a time and separates the collected power traces

into two groups. The first group is whether the

intermediate value should be a 0 for the current key

guess, and the second group is if the intermediate value

should be a 1. While straightforward, the bit model is

limited in scope and is generally not as effective as the

HW, HD, or ZV models [2].

 The HW model counts the number of ‘1’s in a binary

number and assigns that to its value. For example,

00011000 would have a HW of two. The HW model is

effective in modeling power traces because of the

difference in power drawn from a circuit evaluating a

‘1’ compared to a ‘0’.

 The HD model is even more effective than the HW

model, but requires knowledge of either the preceding

or following intermediate value, as well as the current

hypothetical intermediate value. The HD is the

difference in ‘1’s between two binary numbers. For

example, if a number were to change from 00011000 to

11111111, the HD would be six. There is usually a

significant change in power when a device in a circuit

changes its output value from ‘0’ to ‘1’ or vice versa.

In this way, the HD model can be a very effective

model for hypothetical power consumption.

 Finally, the ZV model assumes that the power

consumption for the data value 0 is lower than the

power consumption for all other values [2]. The data

within a ZV model is set as either a 0 or 1 depending

on whether the data evaluated is equal to 0.

 Regardless of the chosen model, they all require an

intermediate value to be calculated in order to operate.

When evaluating only one byte at a time, it is

beneficial to avoid the MixColumns function.

Otherwise, more than one byte of the intermediate

value (and therefore more than one byte for the key

guess) would have to be assumed [6]. This approach

would greatly increase the complexity of the DPA and

exponentially increase the processing time. Because of

this limitation, intermediate values before the first

MixColumns operation or after the last MixColumns

operation are attacked for DPA on AES.

3. DPA Results on Hardware AES

 For a baseline design, a simple iterative Verilog

version of AES is used [8], where each round is

performed sequentially before the next byte is

processed. Power traces are collected using the Riscure

Inspector side channel test suite, including an EM high

sensitivity probe, an EM Probe Station, and the Riscure

Inspector software. Power traces are measured using a

Lecroy WavePro 725Zi oscilloscope, and the AES

design is loaded onto a Xilix Virtex-5 FX FPGA

 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding… 67

evaluation board. A visual overview of the

experimental setup is given in Figure 2.

Fig. 1: The AES Algorithm [4]

Fig. 2: Experimental Setup

 The number of traces collected for each AES

system tested in this research is varied between 1,000

and 3,000,000. The frequency of the bus is set to 100

MHz. To minimize unwanted noise, the traces are

filtered using a bandpass filter between 90 and 210

MHz. Each trace uses the same key given in Equation

1, and the input data is randomized for every trace

using Java’s randomize function. An example of a

power trace is given in Figure 3, with AES encryption

occurring between 1.1 and 1.7 sec.

Key = 0001 0203 0405 0607 0809 0A0B

0C0D 0E0F (1)

Last Round Key = 1311 1D7F E394 4A17

F307 A78B 4D2B 30C5

 To effectively attack the AES algorithm, several

different models were used on both the first and last

round of the algorithm. Along with bit and ZV models,

HW and HD models were used to correlate the traces

to the data. During initial testing, the bit and ZV

models proved less effective than the HW and HD

attacks, and therefore were not considered in the final

evaluation of correlation effectiveness. When

performing HW and HD attacks on the circuit, seven

different intermediate values or intermediate value

pairs were chosen:

1.HW: First Round Before SubBytes

2.HW: First Round After SubBytes

3.HW: Last Round Before SubBytes

4.HW: Last Round After SubBytes

5.HD: First Round Between Values Before and After

SubBytes

6.HD: Last Round Between Values Before and After

SubBytes

7.HD: Last Round Between Values Before SubBytes

and Ciphertext Output

 When evaluating the last round, the original key

cannot be used, but instead the last round key as given

in Equation 1. This is due to the fact that each round

adds its corresponding round key, and the round key is

only equal to the original key for the first round.

Subsequent rounds use keys generated during the key

expansion process of AES. The correlation is

performed using MATLAB software. After evaluating

each modeling technique on the different intermediate

values, it appears the HD on the last round between the

intermediate value before the SubBytes and the

ciphertext (choice 7) provides the highest correlation.

The results on an attack on the first byte are given in

Figure 4. The correlation for the correct key guess (19)

is given by the solid blue line, and the attack is

performed while the number of traces is varied. DPA is

successfully performed when the number of traces is

greater than or equal to 500,000 traces, as indicated

when the correlation of the correct guess exceeds the

peak false positive. The attack on the unprotected AES

system gives a process baseline to compare to AES

implementations with added countermeasures. The

goal of this research is to effectively eliminate

correlations such as seen in Figure 4 with minimal cost

in added execution time and circuit area. The first

countermeasure increases the challenge of aligning

traces, therefore greatly increasing the difficulty of

processing the power traces after collection. The

second countermeasure effectively flattens the power

signatures of the intermediate values in relation to the

Hamming Weight and Hamming Distance of the bits.

4. Trace Alignment Countermeasures

In order to perform an effective DPA attack, trace

alignment must be accomplished for correlation

between the power traces and the power model.

Without alignment, each power trace/expected

intermediate value pair would have to be evaluated

individually for each trace.

4.1 Existing Approaches

 A relatively popular method for accomplishing

misalignment is to randomly insert delay cells into the

68 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding…

algorithm. In general, inserting delay cells effectively

misaligns the traces and hinders the effectiveness

Fig. 3: Power Trace of Hardware AES

Fig. 4: DPA Results Based on Number of Traces for Baseline

AES

 of a DPA attack [9,10]. Figure 5 shows how

misalignment can effectively minimize correlation

between the traces and the data.

 However, as stated in [11], there are methods to

pinpoint and eliminate the delay cells within the power

trace, therefore eliminating the misalignment attempts.

In order to prevent this re-alignment, Zafar et al.

introduced in [11] a clock variance method to

accomplish misalignment with the same results as

delay insertion, but without the risk of the delays being

manually removed during DPA processing. This idea is

further improved in [3] by randomizing each clock

cycle instead of changing the clock frequency after a

specified period of time. By using this approach, trace

alignment is virtually impossible to accomplish using

traditional methods. The downside of randomizing

every clock cycle is an increase in the delay of the

system. If the frequency of the clock is varied from

100% to 50% (from 1x to 2x slower), the average

frequency will be 75% of the original (1.5x slower on

average). This degradation is significant when

comparing to a handful of manually inserted single

clockcycle delay cells added to the overall system

runtime.

4.2 Randomized Clock Implementation

 In order to randomize the clock in this research, a

16-bit linear feedback shift register (LFSR) is polled at

the end of each clock cycle to pseudo-randomly choose

between four clock cycle lengths. The LFSR is seeded

with a pseudo-random value at the beginning of each

encryption process to ensure variance between

algorithm runs. Optimally, the clock should vary

between 100% and 50% of the original frequency.

However, for this research, the clock varies between

33% and 16.7%. Initially, the idea was to simply

increase the clock frequency on the Virtex-5 bus by

300%, but the clock was already set near its maximum

frequency (100 MHz with a limit of 125 MHz). An

external clock could be added to the system, but that is

out of the current scope of the project. The randomized

clock design unique to this research is given in Figure

6. Note that the clock in Figure 6 represents the clock

period. Therefore, the clock generator effectively

slows the clock rate by the indicated amounts.

Fig. 5: Correlation Before and After Delay Cell Insertion [9]

Fig. 6: Random Clock Countermeasure Module

 A power trace of the algorithm running on a

randomized clock is given in Figure 7. It is important

to notice the variation when compared to Figure 3. In

fact, the power signature varies greatly for each

iteration when there is a randomized clock. In order to

determine effectiveness in obfuscation of the circuit,

the same DPA attack is performed on the circuit with a

 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding… 69

randomized clock as performed on the original circuit.

The key guess results for byte 1 are shown in Figure 8

 As expected, there is no apparent correlation for

the correct key guess. The main difficulty in

performing DPA is aligning the traces of the AES

algorithm using a randomized clock frequency. Riscure

Inspector software includes several advanced

alignment algorithms, however, they did not provide

correct alignment against the randomized clock

countermeasure.

 By randomizing the clock, the circuit is

effectively protected from common DPA attacks by

preventing alignment of the traces. The total area of the

circuit changes only minimally to add the random

clock generator. However, the runtime of the circuit

averages to 4.5x longer than the original, or an average

25% of the original frequency. Optimally, if an

external clock was added to the system, the runtime of

the circuit could be minimized to 1.5x longer than the

original, or an average 75% of the original frequency.

5. Dual-Rail and Bit-Balancing

Countermeasures

 One of the more popular hiding countermeasures

is the attempt to flatten the power signature of all

components directly within the circuit’s hardware for

all values of data. This approach commonly utilizes

dual-rail or bit-balancing logic as countermeasures.

Fig. 7: Power Trace with Random Clocking

Fig. 8: DPA Results Based on Number of Traces for

Randoml Clocked AES

5.1 Existing Approaches

 An effective method is performed at the cell level

using dual-rail precharge (DRP) logic blocks [2]. The

idea behind DRP logic is to create logic cells that make

power consumption constant during each clock cycle.

Every input and output into a cell is paired with its

inverse and therefore a constant balance of ‘0’s and

‘1’s are entering and exiting the cell at all times. Figure

9 gives an example of a dual-rail AND gate.

Fig. 9: Dual-Rail AND Gate

 There have been several dual-rail designs attempted

in order to protect cryptographic algorithms, and in

general are quite effective [12,13,14]. However, one

major problem with dual-rail systems is the increase in

circuit area and associated decrease in speed. Designs

such as [12] increase circuit area by 4.5x and increase

runtime by nearly double. While dual-rail logic is

effective in minimizing the effectiveness of HW and

HD attacks, its complexity does not come without a

price.

 Similar to dual-rail logic, system-level bit-

balancing attempts to balance the Hamming Weight for

every intermediate value. Attempted by [4], system-

level bit-balancing runs two concurrent cryptographic

algorithms. The first algorithm performs as expected

and delivers the correct output data. The second

algorithm processes the inverse of the data and

produces inverse output data. When evaluated as a

whole, the Hamming Weight of the AES system

remains constant during the entire encryption process.

The challenge is combining the two circuits in such a

way that an attacker cannot differentiate the power

emanating from the two separate algorithms.

5.2 System Level Bit-Balancing Design

 In addition to the randomized clock, this research

develops a system level bit-balancing design to further

obfuscate the circuit against HW and HD attacks. The

bit-balancing design is similar to [4], but differs in

several key areas. First, the key remains unchanged as

opposed to [4]. Second, the key schedule is left

untouched and the round keys remain the same. Third,

70 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding…

the input data is inverted before entering the AES

algorithm, unlike the design in [4]. The design for the

inverted circuit is given in Figure 10. To begin, the

input data is inverted before entering the system. Due

to their linearity, the AddRoundKey, ShiftRows, and

MixColumns components of the AES algorithm retain

the inversion of the data (inverted input = inverted

output from the components). However, the main

design challenge comes from the non linear SubBytes

component. Finally, this design includes HD resistance,

while [4] does not.

 In order for the output data from the SBOX to be

inverted when provided an inverted input, it is helpful

to look at how the SBOX handles the data. For the

specific AES algorithm used in this research, a lookup

table is used for the SubBytes function. The SBOX

lookup table is given in Table 1 [6].

 Each cell is indexed by the input value. For example,

an input of 0x03 would output 0x7B. Because the

output needs to be inverted, each value within the

SBOX is replaced with its inverted value (0x7B would

be replaced with 0x84) for the inverted AES algorithm.

However, one more step must be taken to ensure an

inverted output. Because the input data will be

inverted, indexing must also be inverted. Therefore,

what was in the top left cell must now be moved to the

bottom right, etc. Once this index “rotation” is

accomplished, the new SBOX is ready to output

inverted data given an inverted input. The new SBOX

for the inverted circuit is shown in Table 2. Note that

0x84 (the inverse of 0x7B) is now indexed by 0xFC,

the inverse of the original index 0x03.

 Simply inverting all the intermediate values only

protects against HW attacks and not HD attacks. This

is a problem, especially since HD attacks are

commonplace and relatively easy to perform. The

system-level bit-balancing design for this research also

differentiates itself by including features to resist HD

attacks along with its HW resistance. In order to

protect against HD attacks, gate level pre-charging has

been used in the past [2,12,13]. However, this research

uses system-level bit-balancing, so system-level pre-

charging is needed. To minimize the vulnerability from

HD attacks, 10 buffer cycles are added between the

rounds to clear the intermediate values within the

rounds. This system-level precharging is accomplished

by sending a 0 as the input data and key into the round.

This buffering allows for the

HW bit-balancing to effectively prevent against HD

attacks as well.

 Of course, the output of the rounds must be stored

between clock cycles while the system is clearing the

intermediate values. This register storage introduces a

potential vulnerability. To mitigate the potential for an

attacker to perform HD correlation on the registers

storing the intermediate values between rounds, an

extra feature is added to the design. An LFSR is

connected to a multiplexer, and the outputs of the

rounds are stored in one of four locations randomly

chosen by the LFSR. In this way, there is only a 25%

chance of the HD recorded by the EM probe matching

the data. Therefore, the HD leakage is effectively

minimized. Depending on security requirements the

number of possible register locations could be

increased, but at a cost of required circuit area and

speed. A graphical view of the correlation between the

traces and power models is given in Figure 11. As

expected, the system-level bit-balancing design is

resistant to common DPA attacks with up to three

million or more traces collected.

 For the bit-balancing design, the added 10 clock

cycles adds minimal delay to the system, while the area

and power consumed by the countermeasure are around

triple that of the unprotected design. These costs are

still desirable over comparable dual-rail logic designs.

The system-level bit-balancing design is resistant to

both HW and HD attacks, and is implemented as one

interspersed module on the chip - making

differentiation of the two halves of the algorithm

significantly difficult.

 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding… 71

Fig. 10: System Level Bit Balancing Design

Fig. 11: Max Correlation of all 256 Key Guesses for Bit-

Balanced AES

6. Conclusion

 The countermeasures developed and tested in

this research are effective in obfuscating the key and

intermediate data of the AES algorithm from standard

DPA attacks. Those attacks include correlation with

bit, Hamming Weight, Hamming Distance, and Zero-

Value models used to determine the secret key. The

randomized clock prevents an attacker from easily

aligning traces, a step necessary to perform DPA. The

second countermeasure, system-level bit-balancing,

was designed with HW and HD attacks in mind, and is

implemented on a single chip. Of course, there are

added costs to the user in terms of circuit delay, area,

and power consumed, but all costs are within

reasonable levels compared to similar hiding

countermeasures. The results are summarized in Table

3. The DPA resistance is given in number of traces

needed to attack the circuit. However, it is important to

note that the randomized clock and bit-balancing

countermeasures were never successfully attacked,

therefore concluding that over three million traces

would be needed to eventually attack the circuits.

 Because of the relative independence between the

two countermeasures, combining the randomized clock

and system-level bit-balancing design would only add

to the side-channel attack resistance of the circuit, and

should be considered for maximizing obfuscation. This

research provides contributions for the protection of

information processed using hardware AES. The

results and analysis indicate successful demonstration

of the goals of this research, mainly to obfuscate

sensitive data against side-channel attacks. Not only

was a design developed and presented, but

implementation and real-world testing were performed

using an FPGA system. It is hypothesized that results

would be similar in customized application specific

integrated circuit (ASIC) designs.

Acknowledgement

This material is based in part upon work supported by

the National Science Foundation under Grant No.

1305369

References

[1] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.

Differential Power Analysis. In M. Wiener, editor,

Proceedings of the 19th Annual International

Cryptology Conference on Advances in Cryptology,

CRYPTO ’99, pages 388–397, London, UK, UK, 1999.

Springer-Verlag.

[2] Stefan Mangard, Elisabeth Oswald, and Thomas

Popp. Power Analysis Attacks: Revealing the Secrets of

Smart Cards (Advances in Information Security).

Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2007.

[3] Y. Zafar, Jihan Park, and Dongsoo Har. Random

clocking induced DPA attack immunity in FPGAs. In

Industrial Technology (ICIT), 2010 IEEE International

Conference on, pp. 1068–1070, 2010.

[4] J.A. Ambrose, S. Parameswaran, and A. Ignjatovic.

MUTEAES: A Multiprocessor Architecture to Prevent

Power Analysis Based Side Channel Attack of the AES

Algorithm. In Computer-Aided Design, 2008. ICCAD

2008. IEEE/ACM International Conference on, pp. 678

–684, nov. 2008.

[5] Matthieu Rivain and Emmanuel Prouff. Provably

Secure Higher-Order Masking of AES. In Stefan

Mangard and Franois-Xavier Standaert, editors,

Cryptographic Hardware and Embedded Systems,

72 Int. J. Com. Net. Tech. 2, No. 2,65-72 (2014) T. R. Andel et. al.: Design and Implementation of Hiding…

CHES 2010, volume 6225 of Lecture Notes in

Computer Science, pp. 413–427. Springer Berlin

Heidelberg, 2010.

[6] NIST. Announcing the Advance Encryption

Standard (AES). Federal Information Processing

Standards Publication 197, 2001.

[7] Elisabeth Oswald, Stefan Mangard, Norbert

Pramstaller, and Vincent Rijmen. A Side-Channel

Analysis Resistant Description of the AES S-Box. In

Henri Gilbert and Helena Handschuh, editors, Fast

Software Encryption, volume 3557 of Lecture Notes in

Computer Science, pp. 413–423. Springer Berlin

Heidelberg, 2005.

[8] Akashi Satoh. AES Encryption/Decryption Macro.

Tohoku, University [Online]

(http://www.aoki.ecei.tohoku.ac.jp/crypto/), 2007.

[9] S. Soydan. Analyzing the DPA Leakage of the

Masked Sbox via Digital Simulation and Reducing the

Leakage by Inserting Delay Cells. In Emerging

Security Information Systems and Technologies

(SECURWARE), 2010 Fourth International

Conference on, pp. 221 –227, july 2010.

[10] Yingxi Lu, M.P. O’Neill, and J.V. McCanny.

FPGA implementation and analysis of random delay

insertion countermeasure against DPA. In ICECE

Technology, 2008. FPT 2008. International

Conference on, pp. 201–208, 2008.

[11] Yousaf. Zafar, , and Dongsoo Har. A Novel

Countermeasure to Resist Side Channel Attacks on

FPGA Implementations. International Journal On

Advances in Security, vol 2, issue 1, pp. 1–7, June

2009.

[12] Thomas Popp and Stefan Mangard. Masked Dual-

Rail Pre-charge Logic: DPA-Resistance Without

Routing Constraints. In JosyulaR. Rao and Berk Sunar,

editors, Cryptographic Hardware and Embedded

Systems CHES 2005, volume 3659 of Lecture Notes in

Computer Science, pp. 172–186. Springer Berlin

Heidelberg, 2005.

[13] Zhimin Chen and Yujie Zhou. Dual-Rail Random

Switching Logic: A Countermeasure to Reduce Side

Channel Leakage. In Louis Goubin and Mitsuru

Matsui, editors, Cryptographic Hardware and

Embedded Systems-CHES 2006, volume 4249 of

Lecture Notes in Computer Science, pp. 242–254.

Springer Berlin Heidelberg, 2006.

[14] D. Sokolov, J.Murphy, A. Bystrov, and A.

Yakovlev. Design and analysis of dual-rail circuits for

security applications.

Computers, IEEE Transactions on, vol. 54, issue 4, pp.

449–460, 2005.

Todd Andel is an Associate Professor

at the University of South Alabama’s

School of Computing. Dr. Andel

received his Ph.D. in Computer

Science from Florida State University

in 2007, his M.S. in Computer

Engineering from the Air Force

Institute of Technology in 2002, and

his B.S. in Computer Engineering from the University

of Central Florida in 1998. His research interests

include computer and information security, side-

channel analysis, hardware/software partitioning,

network security protocols, and formal methods.

Austin Fritzke received his B.S. in Electrical

Engineering from the U.S. Air Force

Academy in 2010 and a M.S. in

Electrical Engineering from the Air

Force Institute of Technology in

2012. His research interests include

microcontrollers, control systems,

computer architecture, VLSI, side-

channel analysis, and hardware encryption.

Jeffrey Humphries is an Associate

Professor of Computer Science in the

Department of Computer Science at

Covenant College. Dr. Humphries

received a B.S. in Computer Science

from the U.S. Air Force Academy, a

M.S. degree in Computer Science

from Georgia Institute of

Technology, and a Ph.D. in Computer Science from

Texas A&M University in 2001. His research interests

include cryptography, computer/network security,

information assurance, cyber operations, and software

protection.

Jeffrey “Todd” McDonald is an

Associate Professor in the School of

Computing at the University of

South Alabama. Dr. McDonald

received his Ph.D. in Computer

Science from Florida State

University in 2006, his M.S. in

Computer Engineering from the Air

Force Institute of Technology in 2000, and his B.S. in

Computer Science from the U.S. Air Force Academy in

1990. His research interests include program protection

and exploitation, secure software engineering, and

information assurance.

http://www.aoki.ecei.tohoku.ac.jp/crypto/

