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Abstract: Wireless communication security is a critical factor for secure communication among large scale of wireless networks. A 

limited resource constraint, such as power and memory size presents a significant challenge to implement existing cryptographic 

algorithms. One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipherthatis utilized in 

many real-time security applications. However, the RC4 cipher shows some weaknesses, including a correlation problem between 

the public known outputs of the internal state. In this paper, we propose RC4 stream cipher with a random initial state (RRC4) to 

solve the weak keys problem of the RC4 using a random initialization of internal state S. We also propose RC4 stream cipher with 

two state tables (RC4-2S) to solve the correlation problem between the public known outputs of the internal state using permutation 

between state1 (S1) and state 2 (S2) while requiring less time than RC4. Finally, we propose RC4 stream cipher with two state tables 

togenerate four keys (RC4-2S+) in each cycle which further enhances randomness overRC4-2S and RRC4. 
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1. INTRODUCTION 

Cryptographic algorithms that can provide fast 
implementation, small size, low complexity, and high 
security for resource-constrained devices such as 
wireless sensor devices are imperative. Conventional 
cryptographic algorithms are sequences of processes or 
rules, used to encrypt or decrypt messages in a 
cryptographic system to provide security services. 
Conventional cryptographic algorithms are very complex 
and consume a significant amount of power when used 
by resource-constrained devices for the provision of 
secure communication [1]. These include symmetric and 
asymmetric key algorithms, but asymmetric key 
algorithms are inappropriate for resource-constrained 
devices for several reasons, including the limited storage 
space and excessive energy usage [1, 2]. Therefore, 
security schemes should rely on symmetric key 
cryptography, especially when systems have limited 
hardware resources. 

Stream ciphers can be classified as synchronous and 
asynchronous. In a synchronous stream cipher, a 
sequence of keys is generated independently from the 
plaintext and ciphertext. The drawback of synchronous is 
that both the sender and the receiver have to be 
synchronized for key usages. It can detect any deletion or 
insertion of bits by an active attack directly, yet such an 

attack can cause immediate loss of synchronization [3]. 
Asynchronous stream ciphers depend on the previously 
generated ciphertext in order to continue generating new 
ones, yet it cannot regenerate the same sequence of 
ciphertext. On the other hand, synchronous stream 
ciphers can regenerate a sequence of ciphertext because a 
key sequence is independent of the plaintext. This case is 
referred to as self-synchronized because of the ability to 
re-synchronize after insertion or deletion of bits. 
Although self-synchronization can be an important 
property, this type of the stream cipher has not received 
much attention [4]. 

In the literature, there are many stream cipher 
algorithms presented to implement high-performance 
software. Such algorithms include the following: A5/1 
[5], ORYX [35], LEVIATHAN [36], IDEA [37], MUGI 
[38], W7 [40], RC4, Helix [39], SNOW [32], SOBER 
[34], and SEAL [33]. One-time pad, which is stronger 
than all of these aforementioned algorithms, is 
unbreakable since it never uses the same key more than 
once. Consequently, the sequence key is truly random 
and not generated in a deterministic manner as is the case 
with other algorithms. Thus, an attacker cannot deduce 
any information about the key from ciphertext [6]. The 
robustness of stream ciphers depends on Pseudo-Random 
Number Generator (PRNG) which has proved to be 
resistant to attacks if it passes the statistical tests.  
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RC4 is a proprietary stream cipher that was designed 
in 1987 by Ron Rivest. RC4 is widely used in security 
software based on the stream cipher, including one in the 
encryption of traffic to and from secure websites such as 
Transport Layer Security (TLS), Secure Socket Layer 
(SSL), and Wired Equivalent Privacy (WEP) 
implementations. RC4 is fast in comparison to other 
algorithms, and it has a simple design hardware 
implementation [7]. In addition, RC4 is five times faster 
than Data Encryption Standard (DES) and fifteen times 
faster than Triple-DES [4]. 

Many stream ciphers use a de-facto RC4 standard for 
meeting specific requirements, such as the limited 
storage size and power of the devices; however, there are 
many weaknesses found in stream ciphers caused by 
mathematical relationships between the key, ciphertext, 
and plaintext which attackers can use to assess the 
security of the cryptographic algorithms via 
cryptanalysis. Thus, the goal is to create a sequence of 
keys that approaches true randomness [8]. 

The structures of stream ciphers are presented more 
than block ciphers. The security of the cryptographic 
algorithms can be assessed by cryptanalysis. Many 
weaknesses found in stream ciphers are triggered by 
mathematical relations between the key, ciphertext, and 
plaintext. The primary aim is to produce a random key 
asymptotic to the true random key [8]. Cryptanalysis 
refers to theoretical knowledge and uses numerous 
statistical tools to find weaknesses in the ciphertext or 
cryptosystems. 

The rest of the paper is organized as follows. Section 

2 reviewsrelated works. Section 3 presents the 

description of RC4, and Section 4 shows some 

weaknesses of RC4. We then present our proposed 

algorithms to enhance RC4 algorithm in section 5. 

Section 6 describes the evaluation, and Section 7 presents 

the results of the analysis. Section 8 concludes the paper. 

2. RELATED WORK  

Many researchers have tried to enhance the security 

of RC4 and create variant algorithms. However, this 

enhancement slowed the implementation speed. On the 

other hand, many researchers have attempted to improve 

algorithmic speed, but this caused a decrease in the 

randomness. Zoltak [8] proposed Variably Modified 

Permutation Composition (VMPC) which was designed 

to be efficient in software implementations and solved a 

weakness found in the RC4 Key Scheduling Algorithm 

(KSA) that had been described by Fluhrer et al.[9].The 

structure of Pseudo-Random Generation Algorithm 

(PRGA) in VMPC was more complex in comparison 

with the RC4 which makes it more resistant to attacks. 

Paul and Preneel [10] presented RC4A as an 

enhancement over RC4 after exploring a new statistical 

weakness in the first two output bytes of the RC4 key 

stream generator. They argued that the number of outputs 

required for distinguishing the output of the RC4 random 

sequence with the presence of bias is 128, and they 

recommended the use of 256 to overcome this bias. 

RC4A is considered to be robust against most of the 

weaknesses of RC4, particularly its weakness of 

distribution in the first two output bytes. However, after 

one year, Maximov [11] proposed distinguishing attack 

on both VMPC and RC4A, which can distinguish the 

cipher output from a truly random number.  

Yu and Zhang [12] presented RC4 state combined with 

the hash function without affecting the simplicity and 

efficiency. The RC4 state based on the hash function can 

generate Message Authentication Code (MAC). The 

enhancement includes the offset, forward, and backward 

properties of RC4 states where the authors use offset to 

ignore the first few bytes of the key and started 

encrypting the data in determining the position which has 

led to an increase in the time of execution. Pardeep and 

Pateriya [13] proposed PardeepCipher-RC4 (PC-RC4) as 

an extension to the RC4 algorithm to improve 

randomness in KSA and PRGA, yet it increased the 

execution time. Kamble and Meshram found that RC4 

had a weakness to differential attack and showed how the 

plain text can be retrieved. In addition, the authors 

recommended how to avoid this attack using different 

sizes of key of greater than 32 bits [14]. 

Kadry and Smaili [15] presented Vigenère RC4 

(VRC4) which is a combination of the RC4 and the poly 

alphabetic cipher Vigenère. The plaintext is encrypted 

using the classic RC4 cipher followed by re-encrypting 

by Vigenère, which results in increased time of 

execution. Mironov [16] presented a new model of RC4 

and analyzed it by applying the theory of the random 

permutation. Based on this study, he recommended 

discarding at least the first 512 bytes to avoid those 

weaknesses which have led to an increase in the 

execution time.Mousa and Hamad examined the analysis 

of the effect of different parameters of the RC4 algorithm 

such as the execution time and the file size and 

concluded that the speed of encryption and decryption 

time is affected by the length of the encryption key and 

the size of the data file [17].Yao et al. presented analysis 

and enhancement of the security of the RC4 algorithm by 

using public key encryption with RC4, which has led to 

an increase in the size of the system and the time of 

execution [18]. 

Chefranov and Mazurova [19] presented an extension 

of RC4 (RC4E) in which they combined RC4 with a 

simple Heap’s algorithm to provide enumeration of all 

potential permutations for periodic change of RC4 state. 

However, their algorithm requires additional memory to 

keep one more permutation compared with RC4. RC4
+
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presented by S. Maitra and G. Paul [31] consists of three 

layers to avoid correlations and increase the randomness 

of RC4. It has a more complex output function which 

performs four additional lookups for each byte output. 

The running time of KSA
+
 is around three times slower 

than that of RC4 KSA, and PRGA
+
 is approximately 1.70 

times slower than RC4 PRGA.  

Hammood et al. proposed an RRC4 random initial state 

algorithm with a new enhancement of RC4, and 

improved randomness of the traditional RC4 

[20],andproposed an RC4 with two state tables (RC4-2S) 

which has improved the key generation time of the 

conventional RC4 while also outperforming randomness 

of the keys generated [21]. 

3. DESCRIPTION OF RC4 

RC4 design avoids the use of Linear Feedback Shift 

Registers (LFSRs), which many stream cipher 

algorithms depend on, especially in hardware. The idea 

of RC4 is to manipulate the elements by swapping them 

to achieve superior randomness. The RC4 algorithm has 

a variable key length, which ranges between 0 to 255 

bytes for initializing 256-byte array in the initial state by 

elements from S [0] to S [255]. As recommended in [9, 

22] RC4 must use a key longer than 128 bytes. The 

algorithm consists of KSA and PRGA, which are 

executed sequentially. RC4 Key is initialized by KSA 

while the pseudo-random number is produced by PRGA.  

The pseudo codes for the two parts of the RC4 algorithm 

are shown in Algorithm 1 and Algorithm 2 wherem is 

the message length of plaintext,L is the length of the 

initial key in bytes,N is the size of the array or stateS, 

andi andj are indexed pointers. Such a self-modifying 

lookup table is simple and has been applied efficiently in 

software [23]. The output of the PRGA algorithm is a 

key sequence that will be XOR-ed with plaintext (or 

ciphertext) to get the ciphertext (or plaintext). 

 

Algorithm 1. Key Scheduling Algorithm (KSA) for RC4 

INPUT: K[k1, k2, …. ,k n],m 

OUTPUT: State S=S0, S1, ….,S255 

1. S[i]=i,   for i=0, 1, 2, ….. , 255 

2. j ← 0 

3. For i ← 0 to 255 Do 

3.1.  j ← (j+S[i]+ K[i mod keylength]) mod 256 

3.2.  Swap S[i] withS[j]  

4. Return(S) 

 

 

 

 

 

Algorithm 2. Pseudo-Random Generation 

Algorithm(PRGA) for RC4 

INPUT: State S 

OUTPUT: Key sequence Kseq 

1. j← 0 

2. i← 0 

3. While not end of sequence Do  

3.1.  i ← (i+1) mod 256 

3.2.  j ← (j+S[i]) mod 256 

3.3.  SwapS[i] withS[j] 

3.4.  Kseq ← S [(S[i] +S[j]) mod 256] 

4. Return(Kseq) 

 

 

S. O. Sharif and S.P. Mansoor provided a 

comparison between different encryption algorithms 

using different data sizes and key sizes. The simulation 

results clarify preponderance of the RC4 algorithm over 

other algorithms in terms of speed and throughput [24] 

as shown in Fig. 1 and 2. 

 

 

Figure 1.  Encryption and Decryption time for stream cipher [24] 

 

 

Figure 2.  Throughput of the Stream Cipher [24] 
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N. Singhal and J.P.S.Raina [30] conducted a 

performance evaluation of the AES algorithm and RC4 

algorithm.The performance metrics were the time of the 

CPU, encryption\decryption time, memory utilization, 

throughput and size of the key. The results exhibited that 

the RC4 is faster than AES and more energy efficient for 

encryption and decryption. In addition, the AES 

consumes more memory. 

4. THE WEAKNESSES OF RC4 

After RC4 had been revealed to the public in 1994, 

interest in its cryptanalysis grew swiftly, especially after 

it was used for the Wired Equivalent Privacy (WEP) 

implementations. As a result, several weaknesses in RC4 

were identified, including the one in KSA and one in the 

relations between the S-box in different time. Some of 

these weaknesses are simple and can be solvedeasily, 

but others are critical because they can be exploited by 

attackers. Initial state of the PRGA achieves a pretty 

good efficiency against a number of attempted 

attacks.Mantin and Shamir [25] distinguished statistical 

weakness in the RC4 algorithm that the probability of 

the second round output byte generated is zero output 

bytes is twice than other values, which can exploit this 

weakness by the practical ciphertext-only attack. This 

ciphertext-only attack is limited to broadcast 

applications in which different keys are used to encrypt 

the same plaintext for multiple recipients. Since a fairly 

straightforward approach such as a brute force attack 

infers the internal state of the PRGA, increased internal 

state size is recommended, yet it results in increased 

encryption and decryption time. 

Roos [26] studied the weaknesses of RC4 and found 

a significant correlation between the first few values in 

the state table and generated value. The main reason for 

that is the state table is first initialized with the sequence 

(0, 1, 2,..., 255). For at least one out of every 256 

possible keys, the initial byte of the key generated by 

RC4 is strongly correlated with a few bytes of the key. 

Occasionally, therefore, the keys allow prediction of the 

first bytesof the output of the PRGA. To eliminate this 

problem, has been recommended to reject at least the 

first 256 bytes of the key stream output to discourage 

this attack [16]. 

Our algorithms will address this problem without the 

need to neglect the first byte of output by increasing the 

permutation between the elements or use a random 

initial state. This weakness is caused by the utilization of 

the regular sequence of numbers from0 to255 as the 

initial state. This gives the attacker a starting point to 

track numbers because the initial state has a regular 

sequence. Furthermore, there is a significant statistical 

bias in the first output bytes which can be used to mount 

a ciphertext-only attack [9]. There are many other 

attacks described in [9] such as a sub-key guessing 

attack, linear consistency attack, inversion attack, etc. In 

addition, an algebraic attack is a new type of higher 

order correlation attack 

5. NEW METHODS 

RC4 has a significant number of weaknesses in the 
phases of KSA and PRGA. Many researchers have tried 
to solve these problems by creating variant algorithms. 
However, there is still an issue in the randomness b or 
the speed of these algorithms. We have attempted to 
increase the randomness as well as increase the speed of 
implementation. In our methods, all addition operations 
are carried out modulo N or N/2. KSA takes a key k 
consisting of one n-bit word. After the setup, the round 
algorithm is executed once for each word output. In 
reality, all practical applications of the developed RC4 
are implemented withn = 8 in which case all the entries 
of S along withi andj are bytes: 

A. RC4 Stream Cipher with A Random Initial State 

(RRC4) 

RC4 has a significant number of weaknesses 
initsKSA and PRGA phases. One of the causes of these 
weaknesses is that the initialization process produces a 
deterministic sequence (0, 1, 2, ... 255) which gives 
anadvantage to the attacker from the first place.We 
describe theRC4 stream cipher with a random initial state 
(RRC4), recently proposed in [20],to improve 
randomness of keystream generated by RC4. Since the 
correlation among the publicly known outputs of the 
internal state depends on the randomness of the key 
sequence, RRC4 further tries to reduce the correlation 
problem that various RC4 attacks target by exploiting 
strong correlation among the publicly known outputs of 
the internal state. 

RRC4 simplyconsists ofa revised KSA (as shown in 
Algorithm 3) followed by the PRGA of RC4. 

In KSA phase, the content of Sconsisting of N values 
of 0 to N-1 without duplicationcan be saturated via aid of 
any pseudo-random number generator for later 
distribution to the receiver as an additional secret key. 
The system can re-generate new random initial state table 
and replace it with the previous one periodically as 
needed. 

The input secret key k is used as a seed for the stateS. 
In the systems or implementations which dynamically 
updatek between a sender and a receiver,S andk can be 
shared at the same time.Therefore,S becomes a secret 
random input to the PRGA phase as shown in Algorithm 
2. S in PRGA is used to produce a sequence of the output 
stream which will be XOR-ed with plaintext to get 
ciphertext or XOR-ed with ciphertext to get plaintext. 
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Algorithm 3. Key Scheduling for RRC4 

INPUT: Keys k,n 

OUTPUT: S 

1. For i ← 0 to N - 1 Do 

                    S[i] ← Randomi  

where SS=SS=S={0, 1, 2, 3, 4… N-1} 

2. j← 0 

3. For i ← 0 to N - 1 Do { 

3.1.  j ← (j + S[i] + k [i mod keylength]) mod N 

3.2. Swap S[i] with S[j] } 

4. j← 0 

5. Return (S) 
 

 

 

B. RC4 Stream Cipher with Two State Tables (RC4-2S) 

The RC4 stream cipher with two state tables (RC4-

2S), recently proposed in [21],was designed to reduce 

the correlation problem between the public known 

outputs of the internal state while also improving the 

speed of encryption and decryption.RC4-2Sconsists of 

KSA and PRGA phases as shown in Algorithms 4 and 5, 

respectively. 

In KSA phase, S1 is filled with values ranging from0 

to (N/2)-1 whileS2is filled with  the remaining N/2 

numbers from N/2 to N-1. The input secret key, k, as a 

seed, is used to make permutations and swapping of the 

elements of S1 and S2. Consequently, S1 and S2 become 

two secret random inputs for PRGA phase. 

In PRGA phase, S1 and S2 produce two keys in each key 

generationcycle (instead of one byRC4). In this 

algorithm, there are more elements to be swapped 

between S1 and S2 by three pointers: i, j1 = j1 + S1[i], 

and j2 = j2 + S2[i] in the S-box. S1 and S2 in PRGA are 

used to produce the sequence of output stream , which is 

XOR-ed with data to encrypt data or XOR-ed with the 

ciphertext to decrypt data. 
 

Algorithm 4. Key Scheduling forRC4-2S 

INPUT: Keys k, n 

OUTPUT: S1, S2 

1. For i ← 0 to N/2 - 1 Do  

                    S1[i] ← i  

2. For i ← N/2 to N - 1 Do  

                    S2[i-N/2] ←i   

3. j← 0 

4. For i ← 0 to N/2 - 1 Do { 

4.1. j ←  (j + S1[(i+ k [i mod L])mod N/2] + k [i 

mod L]) mod N/2 

4.2. Swap S1[i] with S1[j] } 

4.3. j← 0 

5. For i ← 0 to N/2 - 1 Do { 

5.1. j ← ( j + S2[i] + k [i mod L]) mod N/2 

5.2. Swap S2[i] with S2[j]} 

6. Return (S1 and S2) 

Algorithm 5. PRGAforRC4-2S 

INPUT: S1, S2. 

OUTPUT: Key sequence Kseq 

1. i, j1,  j2 ← 0. 

2. While not end of half sequence  Do  

2.1      i ← (i+1) mod N/2 

2.2      j1 ← (j1+S1[i]) mod N/2 

2.3      Swap S1[i] with S2[j1] 

2.4      t1 ← S1[(S1[i] +S1[j1]) mod N/2] 

2.5      j2← j2 + S2[i] mod N/2 

2.6      Swap (S2[i] with S1[j2]) 

2.7      t2←  S2[(S2[i] + S2[j2]) modN/2] 

2.8      Swap (S1[t1] with S2[t2]) 

2.9      Kseq← [t1, t2] 

3. Return (Kseq) 

 
 

C. RC4 Stream Cipher with Two State Tables to 

generate 4 Keys (RC4-2S
+
) 

Many researchers have attempted to enhance the 
security of RC4, which have resulted in added 
complexity and delay.  Others have tried to improve the 
speed of the cipher, which have weaken the randomness 
of the generated keys. RC4-2S

+
 is designed to improve 

the randomness of the generated keys without impacting 
the speed of RC4 by generating four keys in each of the 
key generation cycle The RC4-2S

+
 algorithm consists of 

KSA and an output phase (PRGA) as shown in 
Algorithms 4 and 6, respectively. 

In KSA, S1 is filled with values ranging from 0 to 

(N/2)-1 whileS2is filled with  the remaining N/2 numbers 

from N/2 to N-1. The input secret key, k, as a seed, is 

used to make permutations and swapping of the 

elements of S1 and S2. Consequently, S1 and S2 become 

two secret random inputs for PRGA phase. 
In PRGA, S1 and S2 produce four keys in each of the 

key generation cycle instead of one or two keys by RC4 
and RC4-2S, respectively. In this algorithm, there are 
four swapping operations between S1 and S2 by five 
pointers: i, j1 = j1 + S1 [i], j2 = j2 + S2 [i], t2 = S2[(S2[i]+ 
S2[j2])], and t3 =  S1[(S2[i]+ S1[j2])],  in each cycle of the 
S-box. S1 and S2 in PRGA are used to produce the 
sequence of theoutput stream which is XOR-ed with 
plaintext (or ciphertext) to generate the ciphertext (or 
plaintext). 

 

Algorithm 6. PRGA forRC4-2S
+
 

INPUT: S1, S2. 

OUTPUT: Key sequence Kseq 

1. i, j1,  j2 ← 0 

2. While not end of quarter  sequence  Do  

2.1     i ← (i+1) mod N/2 

2.2     j1← (j1+S1[i]) mod N/2 
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2.3    Swap S1[i] with S2[j1] 

2.4    t1← S1[(S1[i] +S1[j1]) mod N/2] 

2.5     j2←j2 + S2[i] mod N/2 

2.6    Swap S2[i] with S1[j2] 

2.7    t2← S2[(S2[i]+ S2[j2]) mod N/2] 

2.8    t11←t1 mod N/2 

2.9    t22←t2 mod N/2 

2.10    Swap S1[t11] with S2[t22] 

2.11    t3← S1[(S2[i]+ S1[j2]) mod N/2] 

2.12    t33←(t1+ t2+ t3 )mod N/2 

2.13    t44←t3 mod N/2 

2.14    Swap  S1[t33] with  S2[t44] 

2.15   t4← S2[(S1[i]+ S2[j1]) mod N/2] 

2.16    Kseq← [t1, t3, t2, t4] 

3. Return (Kseq) 

 

 
Therefore, we encrypt four bytes of plaintext each time 
as: 

Ci=mi t1             (1) 

Ci+1=mi+1  t3            (2) 

Ci+2=mi+2  t2        (3) 

Ci+3=mi+3 t4           (4) 

6. EVALUATION 

The binary generated sequences were tested by the 
National Institute of Standards and Technology (NIST) 
Test Suite. The statistical package of random number 
generation testing consists of 16 statistical tests to 
measure the randomness of the output sequences of true 
random number generators or pseudo-random number 
generators [27]. The NIST context depends on 
hypothesis testing. Hypothesis testing is a procedure to 
determine the probability that a given hypothesis is 
reasonable by using statistics. NIST test includes tests to 
determine whether or not a generated sequence of zeroes 
and ones are random. These tests can detect a diversity of 
various non-randomness that may well exist in a 
generation sequence: 

A. Randomness Test 

Generally, these sixteen tests are categorized into two 

groups. The first group is called non-parameterized test 

and includes: Frequency Test, Cumulative Sums Test 

(forward and backward), Discrete Fourier Transform 

(Spectral) Test, Lempel-Ziv compression Test, test for 

Longest Run of Ones in a Block, Rank Test, Runs Test, 

Random Excursions Test, and Random Excursions 

Variant Test.The second group, referred to as a 

parameterized test, includes Serial Test, Linear 

Complexity Test, Overlapping Template of All Ones 

Test, Non-overlapping Template Matching Test, 

Approximate Entropy Test, Block Frequency Test, and 

Universal Statistical Test. A brief description of each test 

follows: 

 Frequency Test: Determines if the ratio of the 
number of ones and zeros in a generated 
sequence is approximately the same. It is a worth 
mention  recommendationby NIST that the 
Frequency test be applied first, since this test 
provides the most fundamental evidence for 
whether or not the presence of non-randomness 
in the generated sequences such as non-
uniformity. 

 Approximate Entropy Test: Determines whether 
a sequence appears more regular by comparison 
with anticipated results from a truly random 
sequence. 

 Block Frequency Test: Determines whether the 
number of zeros and ones in each m-bit block are 
approximately the same to have a random 
distribution. 

 Cumulative Sums (Forward) Test: Determines 
whether or not the maximum of the cumulative 
sums in a sequence possesses significant zeros or 
large ones at the beginning of the sequences. 
This test could be considered a random walk. 
The results of the random walk must be close to 
zero.  

 Cumulative Sums (Reverse) Test: Determines 
whether the maximum of the cumulative sums in 
a sequence contains too many zeros or ones at 
the end of the sequences. This test could be 
considered a random walk. The results of the 
random walk must be close to zero.  

 Discrete Fourier Transform Test: Determines the 
spectral frequency of the binary sequence that 
would be expected for a truly random sequence. 

 Lempel - Ziv Compression Test: Determines 
whether or not a sequence is more compressed 
than a truly random sequence. 

 Linear Complexity Test: Assesses whether the 
generated sequence is complex enough to be 
considered random or not. 

 Longest Run of One's Test: Assesses the 
distribution of long runs of ones within an m-
bitblock to determine if it agrees with the 
theoretical probabilities. 

 Non-periodic Templates Test: Determines 
whether or not there are too many occurrences of 
non-periodic templates. 
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 Overlapping Templates of All One's Test: 
Determines the frequency of m-bit periodic 
templates. 

 Random Excursions Test: Assesses whether the 
distribution of the quantity of calls of a random 
walk to a particular state. 

 Random Excursions Variant Test: Assesses the 
distribution of the entire amount of visits across 
many random walks to a particular state and 
concludes whether or not it has exceeded the 
truly random sequence.  

 Rank Test: Assesses rank distribution of the 
corresponding random sequence due to the 
periodicity of sub-sequences that repeat. 

 Runs Test: Assesses whether the entire number 
of runs denotes that the frequency in the bit 
stream is very fast or very slow. 

 Serial Test: Assesses whether the number of 
occurrences of m-bit overlapping patterns is 
approximately the same. 

 Universal Statistical Test: Assesses the 
compressibility by determining whether or not 
the binary sequence can be considerably 
compressed without loss of information. 

B. Configuration 

The design of the proposed was done using Visual 
C

++
 and the tests of this PRNG were conducted using 

NIST STS-1.6. The probability of good or bad random 
number generator is represented by p-value. The testing 
process compared p-value to 0.01. If the p-value is more 
than 0.01, then the process accepts the sequence; 
otherwise, it rejects the sequence because the sequence is 
not random. Conversely, some tests accept large sizes of 
sequence and others fail in a small size; still other tests 
accept both sizes.  

If the tests give a p-value asymptotically to 1, then 
the sequence appears to have perfect randomness. A p-
value of zero indicates that the sequence appears to be 
completely non-random. The SUCCESS indicates the 
sequence is acceptable and has enough randomness, 
whereas the FAILURE indicates that the sequence is not 
acceptable due to non-randomness. 

 In the NIST statistical suite, there are two tests 
(Random Excursion and Random Excursion Variant) that 
do not provide results each running because these tests 
give a result when the number of cycles exceeds 500. 
Where, the random hypothesis is depending on the 
number of cycles in the sequence as shown in equation 5 
if the equation is truethat is mean doesn’t give the result 
[29].  

               √       (5) 

Where J is the total number of cycles in the sequence 
and when the p-value is small, the random hypothesis is 
rejected. Therefore, the test results are shown as a text 
file in NIST. The results of the random excursion test and 
the random excursion variant test are shown in Fig. 3 and 
4 respectively. 

 

Figure 3.  Screenshot of Stats.txt file in NIST for random 

excursion test 

 

Figure 4.  Screenshot of Stats.txt file in NIST for random 

excursion variant test 

7. RESULTS 

In our program, we used a large size 134,000 bytes 
(1,072,000 bits) generated by each key. These sequences 
were tested, and we subsequently calculated the average 
of the p-values resulting from these tests. As shown in 
Table 1, the p-values are acceptable when greater than 
0.01, and the produced sequence can be deemed random, 
uniformly distributed and suitable for cryptography. 

A. RRC4 

This technique solves the weak keys problem by 

using initial randomization of S. As shown in Fig. 5 the 

output of RRC4 is more randomness than RC4. 

B. RC4-2S 

This technique solves the correlation between the 

public known outputs of the internal state.RC4-2S is 

better than RC4 in most of the NIST tests as shown in 

Fig.6. Moreover, it's faster than RC4 because RC4-2S 

requires two swaps and five modulo functions to 

generate two bytes of key per iteration in the PRGA 

algorithm while RC4 requires one swap and three 

modulo functions to generate only one byte of the key. 
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TABLE I.   THE RESULTS OF RUNNING THE NIST  SITE OVER THE SET DATA PRODUCED BY THE PROPOSED RC4-2S, 

RRC4,  RC4-2S+
   AND  RC4A WITH  STANDARD RC4 

 

 

Figure 5.  NIST Statistical Test comparison between 

RC4 and RRC4 

 

 
Figure 6.  NIST Statistical Test comparison between 

RC4 and RC4-2S 

 

 

 

 

 

 

Test 

No. 
Name of Statistical Test 

RC4 RC4-2S RRC4 RC4-2S+ RC4A 

P-VALUE P-VALUE P-VALUE P-VALUE P-VALUE 

1 Approximate Entropy 0.49167 0.22135 0.50085 0.45257 0.44579 

2 Block Frequency 0.48946 0.59337 0.51171 0.60949 0.52911 

3 Cumulative Sums (Forward) 0.51176 0.55508 0.55566 0.56419 0.46738 

4 Cumulative Sum (Reverse) 0.50993 0.53429 0.56214 0.61422 0.4937 

5 FFT 0.49877 0.51413 0.47113 0.55594 0.5196 

6 Frequency 0.50632 0.53623 0.55633 0.55185 0.4456 

7 Lempel-Ziv compression 1 1 1 1 1 

8 Linear Complexity 0.50012 0.50293 0.47445 0.53915 0.55512 

9 Longest Runs 0.46033 0.47262 0.49413 0.4785 0.43785 

10 Nonperiodic Templates 0.5005 0.4997 0.50374 0.49981 0.50006 

11 Overlapping Template 0.49631 0.47713 0.43561 0.46976 0.50154 

12 Random Excursions 0.46179 0.49832 0.50801 0.50867 0.49938 

13 Random Excursions Variant 0.49698 0.64245 0.52241 0.50545 0.51135 

14 Rank 0.45641 0.47568 0.53163 0.46103 0.49098 

15 Runs 0.45766 0.49993 0.57525 0.51482 0.5276 

16 Serial 0.53627 0.42557 0.55914 0.48328 0.50561 

17 Universal Statistical 0.44057 0.54208 0.48426 0.52704 0.4397 
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RC4-2S
+
 

This technique increases the randomness of the 

initial internal states with permutation of the two state 

tables during key generation to solve the correlation 

problem between the public known outputs of the 

internal. The output sequence, which generated by RC4-

2S
+
 is, possessed high randomness compared with the 

RC4 as shown in Fig. 7. 

C. Overall Results 

There are some statistical tests of PRNG that are 

very common and must be included in test suites, such as 

the Runs test, Frequency test, and Universal test [28]. In 

these tests, the p-values of the proposed algorithms are 

greater than the p-values of the standard RC4, as shown 

in Fig. 8. We have also tested RC4A algorithm, which is 

known to be resistant against most known attacks on RC4 

[10]. Our test results showed the proposed algorithms 

have improved randomness over RC4A as shown in 

Fig.9. 

It is worth mention that RRC4 and RC4-2S
+
 

performed better randomness than standard RC4 and 

RC4-2S. However, the key generation time of RC4-2S 

was faster than that of the original RC4 and the others by 

approximately 20% for different amounts of keys 

generated as shown in Table 2 and Fig. 10. 

 

Figure 7.  NIST Statistical Test comparison between 

RC4 and RC4-2S+ 

 

 

 

 

 

 

Figure 8.  NIST Statistical Testfor all algorithms  

 

TABLE II.  KEY GENERATION TIME FOR RC4, RC4-2S 

Amount of Key 

in KB 
RC4 (ms) RC4-2S 

100 232.726 189.4 

500 1372.36 970.195 

1000 2407.425 1932.196 

 

 

Figure 9.  NIST Statistical Testfor Algorithms with RC4A 
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Figure 10.  Key Generation Time for RC4 and RC4-2S 

8. CONCLUSION 

Many security applications use the stream cipher for 
data encryption, and the robustness of the cipher depends 
on the strength of the key stream being generated. The 
RC4 cipher system is an important encryption algorithm 
that can be used to protect the information on various 
communication networks as its implementation is simpler, 
and its cryptographic function is faster than that of AES. 
RC4 with a random initial state (RRC4) provides more 
randomness in the sequences, including its initial state and 
is more secure than RC4. The RC4 stream cipher with two 
state tables (RC4-2S) offers an enhanced randomness in 
the generated key sequences while the key generation 
time of RC4-2S is faster than that of RC4. RC4 stream 
cipher with two state tables to generate four key in each 
cycle (RC4-2S

+
) achieves improved randomness in the 

generated key sequences without impacting its speed. The 
generated output sequences of all proposed algorithms 
have passed the NIST suite of statistical tests. The 
suggested algorithms are not complex at all, and can be 
implemented in either software or hardware. 
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