

International Journal of Computing and Network Technology
ISSN 2210-1519

Int. J. Com. Net. Teach. 3, No. 2 (May 2015)

E-mail: mmhammood@ualr.edu, kxyoshigoe@ualr.edu, ali.sagheer@gmail.com

http://journals.uob.edu.bh

Enhancing Security and Speed of RC4

Maytham M. Hammood
1, 2

, Kenji Yoshigoe
1
and Ali M. Sagheer

3

1 Department of Computer Science, University of Arkansas at Little Rock, Little Rock, USA

2Department of Computer Science and Mathematics, University of Tikrit, Iraq
3Computer College, University of Anbar, Iraq

Received: 10 Dec. 2014, Revised: 15 March, 2015, Accepted: 1 April 2015, Published: 1 (May) 2015

Abstract: Wireless communication security is a critical factor for secure communication among large scale of wireless networks. A

limited resource constraint, such as power and memory size presents a significant challenge to implement existing cryptographic

algorithms. One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipherthatis utilized in

many real-time security applications. However, the RC4 cipher shows some weaknesses, including a correlation problem between

the public known outputs of the internal state. In this paper, we propose RC4 stream cipher with a random initial state (RRC4) to

solve the weak keys problem of the RC4 using a random initialization of internal state S. We also propose RC4 stream cipher with

two state tables (RC4-2S) to solve the correlation problem between the public known outputs of the internal state using permutation

between state1 (S1) and state 2 (S2) while requiring less time than RC4. Finally, we propose RC4 stream cipher with two state tables

togenerate four keys (RC4-2S+) in each cycle which further enhances randomness overRC4-2S and RRC4.

Keywords: Encryption, Stream Cipher, RC4, Random Number Generator

1. INTRODUCTION

Cryptographic algorithms that can provide fast
implementation, small size, low complexity, and high
security for resource-constrained devices such as
wireless sensor devices are imperative. Conventional
cryptographic algorithms are sequences of processes or
rules, used to encrypt or decrypt messages in a
cryptographic system to provide security services.
Conventional cryptographic algorithms are very complex
and consume a significant amount of power when used
by resource-constrained devices for the provision of
secure communication [1]. These include symmetric and
asymmetric key algorithms, but asymmetric key
algorithms are inappropriate for resource-constrained
devices for several reasons, including the limited storage
space and excessive energy usage [1, 2]. Therefore,
security schemes should rely on symmetric key
cryptography, especially when systems have limited
hardware resources.

Stream ciphers can be classified as synchronous and
asynchronous. In a synchronous stream cipher, a
sequence of keys is generated independently from the
plaintext and ciphertext. The drawback of synchronous is
that both the sender and the receiver have to be
synchronized for key usages. It can detect any deletion or
insertion of bits by an active attack directly, yet such an

attack can cause immediate loss of synchronization [3].
Asynchronous stream ciphers depend on the previously
generated ciphertext in order to continue generating new
ones, yet it cannot regenerate the same sequence of
ciphertext. On the other hand, synchronous stream
ciphers can regenerate a sequence of ciphertext because a
key sequence is independent of the plaintext. This case is
referred to as self-synchronized because of the ability to
re-synchronize after insertion or deletion of bits.
Although self-synchronization can be an important
property, this type of the stream cipher has not received
much attention [4].

In the literature, there are many stream cipher
algorithms presented to implement high-performance
software. Such algorithms include the following: A5/1
[5], ORYX [35], LEVIATHAN [36], IDEA [37], MUGI
[38], W7 [40], RC4, Helix [39], SNOW [32], SOBER
[34], and SEAL [33]. One-time pad, which is stronger
than all of these aforementioned algorithms, is
unbreakable since it never uses the same key more than
once. Consequently, the sequence key is truly random
and not generated in a deterministic manner as is the case
with other algorithms. Thus, an attacker cannot deduce
any information about the key from ciphertext [6]. The
robustness of stream ciphers depends on Pseudo-Random
Number Generator (PRNG) which has proved to be
resistant to attacks if it passes the statistical tests.

38 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

RC4 is a proprietary stream cipher that was designed
in 1987 by Ron Rivest. RC4 is widely used in security
software based on the stream cipher, including one in the
encryption of traffic to and from secure websites such as
Transport Layer Security (TLS), Secure Socket Layer
(SSL), and Wired Equivalent Privacy (WEP)
implementations. RC4 is fast in comparison to other
algorithms, and it has a simple design hardware
implementation [7]. In addition, RC4 is five times faster
than Data Encryption Standard (DES) and fifteen times
faster than Triple-DES [4].

Many stream ciphers use a de-facto RC4 standard for
meeting specific requirements, such as the limited
storage size and power of the devices; however, there are
many weaknesses found in stream ciphers caused by
mathematical relationships between the key, ciphertext,
and plaintext which attackers can use to assess the
security of the cryptographic algorithms via
cryptanalysis. Thus, the goal is to create a sequence of
keys that approaches true randomness [8].

The structures of stream ciphers are presented more
than block ciphers. The security of the cryptographic
algorithms can be assessed by cryptanalysis. Many
weaknesses found in stream ciphers are triggered by
mathematical relations between the key, ciphertext, and
plaintext. The primary aim is to produce a random key
asymptotic to the true random key [8]. Cryptanalysis
refers to theoretical knowledge and uses numerous
statistical tools to find weaknesses in the ciphertext or
cryptosystems.

The rest of the paper is organized as follows. Section

2 reviewsrelated works. Section 3 presents the

description of RC4, and Section 4 shows some

weaknesses of RC4. We then present our proposed

algorithms to enhance RC4 algorithm in section 5.

Section 6 describes the evaluation, and Section 7 presents

the results of the analysis. Section 8 concludes the paper.

2. RELATED WORK

Many researchers have tried to enhance the security

of RC4 and create variant algorithms. However, this

enhancement slowed the implementation speed. On the

other hand, many researchers have attempted to improve

algorithmic speed, but this caused a decrease in the

randomness. Zoltak [8] proposed Variably Modified

Permutation Composition (VMPC) which was designed

to be efficient in software implementations and solved a

weakness found in the RC4 Key Scheduling Algorithm

(KSA) that had been described by Fluhrer et al.[9].The

structure of Pseudo-Random Generation Algorithm

(PRGA) in VMPC was more complex in comparison

with the RC4 which makes it more resistant to attacks.

Paul and Preneel [10] presented RC4A as an

enhancement over RC4 after exploring a new statistical

weakness in the first two output bytes of the RC4 key

stream generator. They argued that the number of outputs

required for distinguishing the output of the RC4 random

sequence with the presence of bias is 128, and they

recommended the use of 256 to overcome this bias.

RC4A is considered to be robust against most of the

weaknesses of RC4, particularly its weakness of

distribution in the first two output bytes. However, after

one year, Maximov [11] proposed distinguishing attack

on both VMPC and RC4A, which can distinguish the

cipher output from a truly random number.

Yu and Zhang [12] presented RC4 state combined with

the hash function without affecting the simplicity and

efficiency. The RC4 state based on the hash function can

generate Message Authentication Code (MAC). The

enhancement includes the offset, forward, and backward

properties of RC4 states where the authors use offset to

ignore the first few bytes of the key and started

encrypting the data in determining the position which has

led to an increase in the time of execution. Pardeep and

Pateriya [13] proposed PardeepCipher-RC4 (PC-RC4) as

an extension to the RC4 algorithm to improve

randomness in KSA and PRGA, yet it increased the

execution time. Kamble and Meshram found that RC4

had a weakness to differential attack and showed how the

plain text can be retrieved. In addition, the authors

recommended how to avoid this attack using different

sizes of key of greater than 32 bits [14].

Kadry and Smaili [15] presented Vigenère RC4

(VRC4) which is a combination of the RC4 and the poly

alphabetic cipher Vigenère. The plaintext is encrypted

using the classic RC4 cipher followed by re-encrypting

by Vigenère, which results in increased time of

execution. Mironov [16] presented a new model of RC4

and analyzed it by applying the theory of the random

permutation. Based on this study, he recommended

discarding at least the first 512 bytes to avoid those

weaknesses which have led to an increase in the

execution time.Mousa and Hamad examined the analysis

of the effect of different parameters of the RC4 algorithm

such as the execution time and the file size and

concluded that the speed of encryption and decryption

time is affected by the length of the encryption key and

the size of the data file [17].Yao et al. presented analysis

and enhancement of the security of the RC4 algorithm by

using public key encryption with RC4, which has led to

an increase in the size of the system and the time of

execution [18].

Chefranov and Mazurova [19] presented an extension

of RC4 (RC4E) in which they combined RC4 with a

simple Heap’s algorithm to provide enumeration of all

potential permutations for periodic change of RC4 state.

However, their algorithm requires additional memory to

keep one more permutation compared with RC4. RC4
+

93 Int. J. Com. Net. Teach. 3, No. 2, 37-48 (May 2015)

http://journals.uob.edu.bh

presented by S. Maitra and G. Paul [31] consists of three

layers to avoid correlations and increase the randomness

of RC4. It has a more complex output function which

performs four additional lookups for each byte output.

The running time of KSA
+
 is around three times slower

than that of RC4 KSA, and PRGA
+
 is approximately 1.70

times slower than RC4 PRGA.

Hammood et al. proposed an RRC4 random initial state

algorithm with a new enhancement of RC4, and

improved randomness of the traditional RC4

[20],andproposed an RC4 with two state tables (RC4-2S)

which has improved the key generation time of the

conventional RC4 while also outperforming randomness

of the keys generated [21].

3. DESCRIPTION OF RC4

RC4 design avoids the use of Linear Feedback Shift

Registers (LFSRs), which many stream cipher

algorithms depend on, especially in hardware. The idea

of RC4 is to manipulate the elements by swapping them

to achieve superior randomness. The RC4 algorithm has

a variable key length, which ranges between 0 to 255

bytes for initializing 256-byte array in the initial state by

elements from S [0] to S [255]. As recommended in [9,

22] RC4 must use a key longer than 128 bytes. The

algorithm consists of KSA and PRGA, which are

executed sequentially. RC4 Key is initialized by KSA

while the pseudo-random number is produced by PRGA.

The pseudo codes for the two parts of the RC4 algorithm

are shown in Algorithm 1 and Algorithm 2 wherem is

the message length of plaintext,L is the length of the

initial key in bytes,N is the size of the array or stateS,

andi andj are indexed pointers. Such a self-modifying

lookup table is simple and has been applied efficiently in

software [23]. The output of the PRGA algorithm is a

key sequence that will be XOR-ed with plaintext (or

ciphertext) to get the ciphertext (or plaintext).

Algorithm 1. Key Scheduling Algorithm (KSA) for RC4

INPUT: K[k1, k2, …. ,k n],m

OUTPUT: State S=S0, S1, ….,S255

1. S[i]=i, for i=0, 1, 2, ….. , 255

2. j ← 0

3. For i ← 0 to 255 Do

3.1. j ← (j+S[i]+ K[i mod keylength]) mod 256

3.2. Swap S[i] withS[j]

4. Return(S)

Algorithm 2. Pseudo-Random Generation

Algorithm(PRGA) for RC4

INPUT: State S

OUTPUT: Key sequence Kseq

1. j← 0

2. i← 0

3. While not end of sequence Do

3.1. i ← (i+1) mod 256

3.2. j ← (j+S[i]) mod 256

3.3. SwapS[i] withS[j]

3.4. Kseq ← S [(S[i] +S[j]) mod 256]

4. Return(Kseq)

S. O. Sharif and S.P. Mansoor provided a

comparison between different encryption algorithms

using different data sizes and key sizes. The simulation

results clarify preponderance of the RC4 algorithm over

other algorithms in terms of speed and throughput [24]

as shown in Fig. 1 and 2.

Figure 1. Encryption and Decryption time for stream cipher [24]

Figure 2. Throughput of the Stream Cipher [24]

40 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

N. Singhal and J.P.S.Raina [30] conducted a

performance evaluation of the AES algorithm and RC4

algorithm.The performance metrics were the time of the

CPU, encryption\decryption time, memory utilization,

throughput and size of the key. The results exhibited that

the RC4 is faster than AES and more energy efficient for

encryption and decryption. In addition, the AES

consumes more memory.

4. THE WEAKNESSES OF RC4

After RC4 had been revealed to the public in 1994,

interest in its cryptanalysis grew swiftly, especially after

it was used for the Wired Equivalent Privacy (WEP)

implementations. As a result, several weaknesses in RC4

were identified, including the one in KSA and one in the

relations between the S-box in different time. Some of

these weaknesses are simple and can be solvedeasily,

but others are critical because they can be exploited by

attackers. Initial state of the PRGA achieves a pretty

good efficiency against a number of attempted

attacks.Mantin and Shamir [25] distinguished statistical

weakness in the RC4 algorithm that the probability of

the second round output byte generated is zero output

bytes is twice than other values, which can exploit this

weakness by the practical ciphertext-only attack. This

ciphertext-only attack is limited to broadcast

applications in which different keys are used to encrypt

the same plaintext for multiple recipients. Since a fairly

straightforward approach such as a brute force attack

infers the internal state of the PRGA, increased internal

state size is recommended, yet it results in increased

encryption and decryption time.

Roos [26] studied the weaknesses of RC4 and found

a significant correlation between the first few values in

the state table and generated value. The main reason for

that is the state table is first initialized with the sequence

(0, 1, 2,..., 255). For at least one out of every 256

possible keys, the initial byte of the key generated by

RC4 is strongly correlated with a few bytes of the key.

Occasionally, therefore, the keys allow prediction of the

first bytesof the output of the PRGA. To eliminate this

problem, has been recommended to reject at least the

first 256 bytes of the key stream output to discourage

this attack [16].

Our algorithms will address this problem without the

need to neglect the first byte of output by increasing the

permutation between the elements or use a random

initial state. This weakness is caused by the utilization of

the regular sequence of numbers from0 to255 as the

initial state. This gives the attacker a starting point to

track numbers because the initial state has a regular

sequence. Furthermore, there is a significant statistical

bias in the first output bytes which can be used to mount

a ciphertext-only attack [9]. There are many other

attacks described in [9] such as a sub-key guessing

attack, linear consistency attack, inversion attack, etc. In

addition, an algebraic attack is a new type of higher

order correlation attack

5. NEW METHODS

RC4 has a significant number of weaknesses in the
phases of KSA and PRGA. Many researchers have tried
to solve these problems by creating variant algorithms.
However, there is still an issue in the randomness b or
the speed of these algorithms. We have attempted to
increase the randomness as well as increase the speed of
implementation. In our methods, all addition operations
are carried out modulo N or N/2. KSA takes a key k
consisting of one n-bit word. After the setup, the round
algorithm is executed once for each word output. In
reality, all practical applications of the developed RC4
are implemented withn = 8 in which case all the entries
of S along withi andj are bytes:

A. RC4 Stream Cipher with A Random Initial State

(RRC4)

RC4 has a significant number of weaknesses
initsKSA and PRGA phases. One of the causes of these
weaknesses is that the initialization process produces a
deterministic sequence (0, 1, 2, ... 255) which gives
anadvantage to the attacker from the first place.We
describe theRC4 stream cipher with a random initial state
(RRC4), recently proposed in [20],to improve
randomness of keystream generated by RC4. Since the
correlation among the publicly known outputs of the
internal state depends on the randomness of the key
sequence, RRC4 further tries to reduce the correlation
problem that various RC4 attacks target by exploiting
strong correlation among the publicly known outputs of
the internal state.

RRC4 simplyconsists ofa revised KSA (as shown in
Algorithm 3) followed by the PRGA of RC4.

In KSA phase, the content of Sconsisting of N values
of 0 to N-1 without duplicationcan be saturated via aid of
any pseudo-random number generator for later
distribution to the receiver as an additional secret key.
The system can re-generate new random initial state table
and replace it with the previous one periodically as
needed.

The input secret key k is used as a seed for the stateS.
In the systems or implementations which dynamically
updatek between a sender and a receiver,S andk can be
shared at the same time.Therefore,S becomes a secret
random input to the PRGA phase as shown in Algorithm
2. S in PRGA is used to produce a sequence of the output
stream which will be XOR-ed with plaintext to get
ciphertext or XOR-ed with ciphertext to get plaintext.

14 Int. J. Com. Net. Teach. 3, No. 2, 37-48 (May 2015)

http://journals.uob.edu.bh

Algorithm 3. Key Scheduling for RRC4

INPUT: Keys k,n

OUTPUT: S

1. For i ← 0 to N - 1 Do

 S[i] ← Randomi

where SS=SS=S={0, 1, 2, 3, 4… N-1}

2. j← 0

3. For i ← 0 to N - 1 Do {

3.1. j ← (j + S[i] + k [i mod keylength]) mod N

3.2. Swap S[i] with S[j] }

4. j← 0

5. Return (S)

B. RC4 Stream Cipher with Two State Tables (RC4-2S)

The RC4 stream cipher with two state tables (RC4-

2S), recently proposed in [21],was designed to reduce

the correlation problem between the public known

outputs of the internal state while also improving the

speed of encryption and decryption.RC4-2Sconsists of

KSA and PRGA phases as shown in Algorithms 4 and 5,

respectively.

In KSA phase, S1 is filled with values ranging from0

to (N/2)-1 whileS2is filled with the remaining N/2

numbers from N/2 to N-1. The input secret key, k, as a

seed, is used to make permutations and swapping of the

elements of S1 and S2. Consequently, S1 and S2 become

two secret random inputs for PRGA phase.

In PRGA phase, S1 and S2 produce two keys in each key

generationcycle (instead of one byRC4). In this

algorithm, there are more elements to be swapped

between S1 and S2 by three pointers: i, j1 = j1 + S1[i],

and j2 = j2 + S2[i] in the S-box. S1 and S2 in PRGA are

used to produce the sequence of output stream , which is

XOR-ed with data to encrypt data or XOR-ed with the

ciphertext to decrypt data.

Algorithm 4. Key Scheduling forRC4-2S

INPUT: Keys k, n

OUTPUT: S1, S2

1. For i ← 0 to N/2 - 1 Do

 S1[i] ← i

2. For i ← N/2 to N - 1 Do

 S2[i-N/2] ←i

3. j← 0

4. For i ← 0 to N/2 - 1 Do {

4.1. j ← (j + S1[(i+ k [i mod L])mod N/2] + k [i

mod L]) mod N/2

4.2. Swap S1[i] with S1[j] }

4.3. j← 0

5. For i ← 0 to N/2 - 1 Do {

5.1. j ← (j + S2[i] + k [i mod L]) mod N/2

5.2. Swap S2[i] with S2[j]}

6. Return (S1 and S2)

Algorithm 5. PRGAforRC4-2S

INPUT: S1, S2.

OUTPUT: Key sequence Kseq

1. i, j1, j2 ← 0.

2. While not end of half sequence Do

2.1 i ← (i+1) mod N/2

2.2 j1 ← (j1+S1[i]) mod N/2

2.3 Swap S1[i] with S2[j1]

2.4 t1 ← S1[(S1[i] +S1[j1]) mod N/2]

2.5 j2← j2 + S2[i] mod N/2

2.6 Swap (S2[i] with S1[j2])

2.7 t2← S2[(S2[i] + S2[j2]) modN/2]

2.8 Swap (S1[t1] with S2[t2])

2.9 Kseq← [t1, t2]

3. Return (Kseq)

C. RC4 Stream Cipher with Two State Tables to

generate 4 Keys (RC4-2S
+
)

Many researchers have attempted to enhance the
security of RC4, which have resulted in added
complexity and delay. Others have tried to improve the
speed of the cipher, which have weaken the randomness
of the generated keys. RC4-2S

+
 is designed to improve

the randomness of the generated keys without impacting
the speed of RC4 by generating four keys in each of the
key generation cycle The RC4-2S

+
 algorithm consists of

KSA and an output phase (PRGA) as shown in
Algorithms 4 and 6, respectively.

In KSA, S1 is filled with values ranging from 0 to

(N/2)-1 whileS2is filled with the remaining N/2 numbers

from N/2 to N-1. The input secret key, k, as a seed, is

used to make permutations and swapping of the

elements of S1 and S2. Consequently, S1 and S2 become

two secret random inputs for PRGA phase.
In PRGA, S1 and S2 produce four keys in each of the

key generation cycle instead of one or two keys by RC4
and RC4-2S, respectively. In this algorithm, there are
four swapping operations between S1 and S2 by five
pointers: i, j1 = j1 + S1 [i], j2 = j2 + S2 [i], t2 = S2[(S2[i]+
S2[j2])], and t3 = S1[(S2[i]+ S1[j2])], in each cycle of the
S-box. S1 and S2 in PRGA are used to produce the
sequence of theoutput stream which is XOR-ed with
plaintext (or ciphertext) to generate the ciphertext (or
plaintext).

Algorithm 6. PRGA forRC4-2S
+

INPUT: S1, S2.

OUTPUT: Key sequence Kseq

1. i, j1, j2 ← 0

2. While not end of quarter sequence Do

2.1 i ← (i+1) mod N/2

2.2 j1← (j1+S1[i]) mod N/2

42 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

2.3 Swap S1[i] with S2[j1]

2.4 t1← S1[(S1[i] +S1[j1]) mod N/2]

2.5 j2←j2 + S2[i] mod N/2

2.6 Swap S2[i] with S1[j2]

2.7 t2← S2[(S2[i]+ S2[j2]) mod N/2]

2.8 t11←t1 mod N/2

2.9 t22←t2 mod N/2

2.10 Swap S1[t11] with S2[t22]

2.11 t3← S1[(S2[i]+ S1[j2]) mod N/2]

2.12 t33←(t1+ t2+ t3)mod N/2

2.13 t44←t3 mod N/2

2.14 Swap S1[t33] with S2[t44]

2.15 t4← S2[(S1[i]+ S2[j1]) mod N/2]

2.16 Kseq← [t1, t3, t2, t4]

3. Return (Kseq)

Therefore, we encrypt four bytes of plaintext each time
as:

Ci=mi t1 (1)

Ci+1=mi+1 t3 (2)

Ci+2=mi+2 t2 (3)

Ci+3=mi+3 t4 (4)

6. EVALUATION

The binary generated sequences were tested by the
National Institute of Standards and Technology (NIST)
Test Suite. The statistical package of random number
generation testing consists of 16 statistical tests to
measure the randomness of the output sequences of true
random number generators or pseudo-random number
generators [27]. The NIST context depends on
hypothesis testing. Hypothesis testing is a procedure to
determine the probability that a given hypothesis is
reasonable by using statistics. NIST test includes tests to
determine whether or not a generated sequence of zeroes
and ones are random. These tests can detect a diversity of
various non-randomness that may well exist in a
generation sequence:

A. Randomness Test

Generally, these sixteen tests are categorized into two

groups. The first group is called non-parameterized test

and includes: Frequency Test, Cumulative Sums Test

(forward and backward), Discrete Fourier Transform

(Spectral) Test, Lempel-Ziv compression Test, test for

Longest Run of Ones in a Block, Rank Test, Runs Test,

Random Excursions Test, and Random Excursions

Variant Test.The second group, referred to as a

parameterized test, includes Serial Test, Linear

Complexity Test, Overlapping Template of All Ones

Test, Non-overlapping Template Matching Test,

Approximate Entropy Test, Block Frequency Test, and

Universal Statistical Test. A brief description of each test

follows:

 Frequency Test: Determines if the ratio of the
number of ones and zeros in a generated
sequence is approximately the same. It is a worth
mention recommendationby NIST that the
Frequency test be applied first, since this test
provides the most fundamental evidence for
whether or not the presence of non-randomness
in the generated sequences such as non-
uniformity.

 Approximate Entropy Test: Determines whether
a sequence appears more regular by comparison
with anticipated results from a truly random
sequence.

 Block Frequency Test: Determines whether the
number of zeros and ones in each m-bit block are
approximately the same to have a random
distribution.

 Cumulative Sums (Forward) Test: Determines
whether or not the maximum of the cumulative
sums in a sequence possesses significant zeros or
large ones at the beginning of the sequences.
This test could be considered a random walk.
The results of the random walk must be close to
zero.

 Cumulative Sums (Reverse) Test: Determines
whether the maximum of the cumulative sums in
a sequence contains too many zeros or ones at
the end of the sequences. This test could be
considered a random walk. The results of the
random walk must be close to zero.

 Discrete Fourier Transform Test: Determines the
spectral frequency of the binary sequence that
would be expected for a truly random sequence.

 Lempel - Ziv Compression Test: Determines
whether or not a sequence is more compressed
than a truly random sequence.

 Linear Complexity Test: Assesses whether the
generated sequence is complex enough to be
considered random or not.

 Longest Run of One's Test: Assesses the
distribution of long runs of ones within an m-
bitblock to determine if it agrees with the
theoretical probabilities.

 Non-periodic Templates Test: Determines
whether or not there are too many occurrences of
non-periodic templates.

19 Int. J. Com. Net. Teach. 3, No. 2, 37-48 (May 2015)

http://journals.uob.edu.bh

 Overlapping Templates of All One's Test:
Determines the frequency of m-bit periodic
templates.

 Random Excursions Test: Assesses whether the
distribution of the quantity of calls of a random
walk to a particular state.

 Random Excursions Variant Test: Assesses the
distribution of the entire amount of visits across
many random walks to a particular state and
concludes whether or not it has exceeded the
truly random sequence.

 Rank Test: Assesses rank distribution of the
corresponding random sequence due to the
periodicity of sub-sequences that repeat.

 Runs Test: Assesses whether the entire number
of runs denotes that the frequency in the bit
stream is very fast or very slow.

 Serial Test: Assesses whether the number of
occurrences of m-bit overlapping patterns is
approximately the same.

 Universal Statistical Test: Assesses the
compressibility by determining whether or not
the binary sequence can be considerably
compressed without loss of information.

B. Configuration

The design of the proposed was done using Visual
C

++
 and the tests of this PRNG were conducted using

NIST STS-1.6. The probability of good or bad random
number generator is represented by p-value. The testing
process compared p-value to 0.01. If the p-value is more
than 0.01, then the process accepts the sequence;
otherwise, it rejects the sequence because the sequence is
not random. Conversely, some tests accept large sizes of
sequence and others fail in a small size; still other tests
accept both sizes.

If the tests give a p-value asymptotically to 1, then
the sequence appears to have perfect randomness. A p-
value of zero indicates that the sequence appears to be
completely non-random. The SUCCESS indicates the
sequence is acceptable and has enough randomness,
whereas the FAILURE indicates that the sequence is not
acceptable due to non-randomness.

 In the NIST statistical suite, there are two tests
(Random Excursion and Random Excursion Variant) that
do not provide results each running because these tests
give a result when the number of cycles exceeds 500.
Where, the random hypothesis is depending on the
number of cycles in the sequence as shown in equation 5
if the equation is truethat is mean doesn’t give the result
[29].

 √ (5)

Where J is the total number of cycles in the sequence
and when the p-value is small, the random hypothesis is
rejected. Therefore, the test results are shown as a text
file in NIST. The results of the random excursion test and
the random excursion variant test are shown in Fig. 3 and
4 respectively.

Figure 3. Screenshot of Stats.txt file in NIST for random

excursion test

Figure 4. Screenshot of Stats.txt file in NIST for random

excursion variant test

7. RESULTS

In our program, we used a large size 134,000 bytes
(1,072,000 bits) generated by each key. These sequences
were tested, and we subsequently calculated the average
of the p-values resulting from these tests. As shown in
Table 1, the p-values are acceptable when greater than
0.01, and the produced sequence can be deemed random,
uniformly distributed and suitable for cryptography.

A. RRC4

This technique solves the weak keys problem by

using initial randomization of S. As shown in Fig. 5 the

output of RRC4 is more randomness than RC4.

B. RC4-2S

This technique solves the correlation between the

public known outputs of the internal state.RC4-2S is

better than RC4 in most of the NIST tests as shown in

Fig.6. Moreover, it's faster than RC4 because RC4-2S

requires two swaps and five modulo functions to

generate two bytes of key per iteration in the PRGA

algorithm while RC4 requires one swap and three

modulo functions to generate only one byte of the key.

44 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

TABLE I. THE RESULTS OF RUNNING THE NIST SITE OVER THE SET DATA PRODUCED BY THE PROPOSED RC4-2S,

RRC4, RC4-2S+
 AND RC4A WITH STANDARD RC4

Figure 5. NIST Statistical Test comparison between

RC4 and RRC4

Figure 6. NIST Statistical Test comparison between

RC4 and RC4-2S

Test

No.
Name of Statistical Test

RC4 RC4-2S RRC4 RC4-2S+ RC4A

P-VALUE P-VALUE P-VALUE P-VALUE P-VALUE

1 Approximate Entropy 0.49167 0.22135 0.50085 0.45257 0.44579

2 Block Frequency 0.48946 0.59337 0.51171 0.60949 0.52911

3 Cumulative Sums (Forward) 0.51176 0.55508 0.55566 0.56419 0.46738

4 Cumulative Sum (Reverse) 0.50993 0.53429 0.56214 0.61422 0.4937

5 FFT 0.49877 0.51413 0.47113 0.55594 0.5196

6 Frequency 0.50632 0.53623 0.55633 0.55185 0.4456

7 Lempel-Ziv compression 1 1 1 1 1

8 Linear Complexity 0.50012 0.50293 0.47445 0.53915 0.55512

9 Longest Runs 0.46033 0.47262 0.49413 0.4785 0.43785

10 Nonperiodic Templates 0.5005 0.4997 0.50374 0.49981 0.50006

11 Overlapping Template 0.49631 0.47713 0.43561 0.46976 0.50154

12 Random Excursions 0.46179 0.49832 0.50801 0.50867 0.49938

13 Random Excursions Variant 0.49698 0.64245 0.52241 0.50545 0.51135

14 Rank 0.45641 0.47568 0.53163 0.46103 0.49098

15 Runs 0.45766 0.49993 0.57525 0.51482 0.5276

16 Serial 0.53627 0.42557 0.55914 0.48328 0.50561

17 Universal Statistical 0.44057 0.54208 0.48426 0.52704 0.4397

14 Int. J. Com. Net. Teach. 3, No. 2, 37-48 (May 2015)

http://journals.uob.edu.bh

RC4-2S
+

This technique increases the randomness of the

initial internal states with permutation of the two state

tables during key generation to solve the correlation

problem between the public known outputs of the

internal. The output sequence, which generated by RC4-

2S
+
 is, possessed high randomness compared with the

RC4 as shown in Fig. 7.

C. Overall Results

There are some statistical tests of PRNG that are

very common and must be included in test suites, such as

the Runs test, Frequency test, and Universal test [28]. In

these tests, the p-values of the proposed algorithms are

greater than the p-values of the standard RC4, as shown

in Fig. 8. We have also tested RC4A algorithm, which is

known to be resistant against most known attacks on RC4

[10]. Our test results showed the proposed algorithms

have improved randomness over RC4A as shown in

Fig.9.

It is worth mention that RRC4 and RC4-2S
+

performed better randomness than standard RC4 and

RC4-2S. However, the key generation time of RC4-2S

was faster than that of the original RC4 and the others by

approximately 20% for different amounts of keys

generated as shown in Table 2 and Fig. 10.

Figure 7. NIST Statistical Test comparison between

RC4 and RC4-2S+

Figure 8. NIST Statistical Testfor all algorithms

TABLE II. KEY GENERATION TIME FOR RC4, RC4-2S

Amount of Key

in KB
RC4 (ms) RC4-2S

100 232.726 189.4

500 1372.36 970.195

1000 2407.425 1932.196

Figure 9. NIST Statistical Testfor Algorithms with RC4A

46 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

Figure 10. Key Generation Time for RC4 and RC4-2S

8. CONCLUSION

Many security applications use the stream cipher for
data encryption, and the robustness of the cipher depends
on the strength of the key stream being generated. The
RC4 cipher system is an important encryption algorithm
that can be used to protect the information on various
communication networks as its implementation is simpler,
and its cryptographic function is faster than that of AES.
RC4 with a random initial state (RRC4) provides more
randomness in the sequences, including its initial state and
is more secure than RC4. The RC4 stream cipher with two
state tables (RC4-2S) offers an enhanced randomness in
the generated key sequences while the key generation
time of RC4-2S is faster than that of RC4. RC4 stream
cipher with two state tables to generate four key in each
cycle (RC4-2S

+
) achieves improved randomness in the

generated key sequences without impacting its speed. The
generated output sequences of all proposed algorithms
have passed the NIST suite of statistical tests. The
suggested algorithms are not complex at all, and can be
implemented in either software or hardware.

ACKNOWLEDGMENT

This work was supported in part by the National
Science Foundation under Grant CRI CNS-0855248,
Grant EPS-0701890, Grant EPS-0918970, and Grant MRI
CNS-0619069.

REFERENCES

[1] Sharma, K., Ghose, M.K., Kumar, D., Singh, R.P.K.,
Pandey V.K.: A Comparative Study of Various Security
Approaches Used in Wireless Sensor Networks.In:
International Journal of Advanced Science and
Technology, vol. 177, no. 77, Apr. 2010.

[2] Wu, Y., Ma, D., Li, T., Deng, R.H.: Classify Encrypted

Data in Wireless Sensor Networks. In:Proc. IEEE 60th

Vehicular TechnologyConf., pp. 3236-3239,2004.

[3] Turan, M.S, Doganaksoy, A., Calik, C.: Statistical

Analysis of Synchronous Stream Ciphers. In: SASC 2006:

Stream Ciphers Revisited,2006.

[4] Ahmad, S., Beg, M.R., Abbas, Q., Ahmad, J., Atif, S.:

Comparative Study between Stream Cipher and Block

Cipher using RC4 and Hill Cipher. In: International

Journal of Computer Applications (0975 - 8887), vol. 1,

no. 25, 2010.

[5] Bakhtiari, M., Maarof, M.A.:An Efficient Stream Cipher
Algorithm for Data Encryption. In:IJCSI International
Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1,
May 2011.

[6] Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook
of Applied Cryptography.In:CRC Press, Boston, 2001.

[7] Gupta, S.S., Chattopadhyay, A., Sinha, K., Maitra, S.,

Sinha, B.: High-Performance Hardware Implementation

for RC4 Stream Cipher. In: Computers, IEEE

Transactions, vol.62, no.4, pp.730 -743, April 2013.

[8] Zoltak, B.: VMPC One-way Function and Stream

Cipher.In: Fast Software Encryption. 11th International

Workshop,FSE’ 2004, Springer-Verlag, pp. 210–225,

2004.

[9] Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the

keyScheduling Algorithm of RC4. Proceedings of Annual

Workshop on Selected Areas in Cryptography, vol. 2259,

Toronto, Canada, pp. 1-24, Springer, 2001.

[10] Paul,S.,Preneel, B.: A New Weakness in the RC4

Keystream Generator and an Approach to Improve the

Security of the Cipher.In:Fast Software Encryption, FSE

2004, pp. 245–259, Springer-Verlag, 2004.

[11] Maximov, A.: Two Linear Distinguishing Attacks on

VMPC and RC4A and Weakness of the RC4 Family of

Stream Ciphers. In: Fast Software Encryption, FSE 2005,

Vol 3557, pp 342-358, Springer, 2005.

[12] Yu, Q., Zhang,C.: RC4 State and Its Applications. In:

Ninth Annual International Conference on Privacy,

Security, and Trust, pp.264-269, 2011.

[13] Pardeep, Pateriya, P.: PC-RC4 Algorithm: An

Enhancement Over Standard RC4 Algorithm.

In:International Journal of Computer Science and Network

(IJCSN),Vol. 1, Issue 3, June 2012.

[14] Kamble, B.H., Meshram, B.B.: Robustness of RC4

Against DifferentialAttack. In: International Journal of

Advanced Research in Computer Engineering &

Technology, Volume 1, Issue 4, ISSN: 2278 -1323, June

2012.

[15] Kadry,S.,Smaili, M.: An Improvement of RC4 Cipher

Using Vigenère Cipher. In:International Journal of

Computational Intelligence and Information Security, Vol.

1, No. 3, May 2010.

[16] Mironov, I.: (Not So) Random Shuffles of RC4. In:

Advances in Cryptology- CRYPTO 2002, 22nd Annual

International Cryptology Conference, vol. 2442 of Lecture

Notes in Computer Science, pp. 304-319,Springer, 2002.

[17] Mousa, A., Hamad, A.: Evaluation of the RC4 Algorithm

for Data Encryption. In: International Journal of

Computer Science & Application, Vol. 3, No. 2, June

2006.

[18] Yao,Y., Chong,J., Xingwei,W.: Enhancing RC4 Algorithm

for WLAN WEP Protocol. In Control and Decision

Conference (CCDC), pp.3623-3627, IEEE, 2010.

14 Int. J. Com. Net. Teach. 3, No. 2, 37-48 (May 2015)

http://journals.uob.edu.bh

[19] Chefranov, A.G., Mazurova, T.A.: Pseudo-Random

Number Generator RC4 Period Improvement. In:

Automation, Quality and Testing, Robotics, 2006 IEEE

International Conference, May 2006.

[20] Hammood, M.M.,Yoshigoe, K., Sagheer, A.M.: RC4

Stream Cipher with A Random Initial State. Proceedings

in 10th FTRA International Conference on Secure and

Trust Computing, data management, and Applications

(STA’13), Lecture Notes in Electrical Engineering,

Springer, 2013.

[21] Hammood, M.M.,Yoshigoe, K., Sagheer, A.M.: RC4-2S:

RC4 Stream Ciphers with Two State Tables. Proceedings

in 5th FTRA International Conference on Information

Technology Convergence and Services (ITCS’13),Lecture

Notes in Electrical Engineering, Springer, 2013.

[22] Grosul,A., Wallach,D.:ARelated-Key Cryptanalysis of

RC4.Department of Computer Science, Rice University,

Technical Report TR - 00-358, June 2000.

[23] Stamp,M.: Information Security Principles and

Practice.John Wiley & Sons, Inc., 2006.

[24] Sharif, S.O., Mansoor, S.P.: Performance Analysisof

Stream and Block Cipher Algorithms. In: 3rd International

Conference on Advanced Computer Theory and

Engineering (ICACTE), vol.1, pp 522-525 IEEE, 2010.

[25] Mantin,I., Shamir,A.: A Practical Attack on Broadcast

RC4.In: 8th International Workshop, FSE,pp152-164,

2001.

[26] Roos, A.: A Class of Weak Keys in the RC4 Stream

Cipher. In: Vironix Soft-ware Laboratories, Westville,

South Africa Sep. 1995.

[27] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,

Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert,

A., Dray, J., Vo, S.: A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic

Applications.NIST special publication 800-22, National

Institute of Standards and Technology (NIST),

Gaithersburg, MD, USA (2001); See

http://csrc.nist.gov/rng/ .

[28] Stallings,W.: Cryptography and Network Security

Principles and Practices.Prentice Hall, Fifth Edition,

Pearson, 2011.

[29] Mohamed,E. M.,El-Etriby, S.,Abdul-Kadar, H. S.:
Randomness Testing of Modern Encryption Techniques in
Cloud Environment.8thInternational Conference on
INFOrmatics System, 2012.

[30] Singhal, N.,Raina, J. P. S.:Comparative Analysis of AES
and RC4 Algorithms for Better Utilization.International
Journal of Computer Trends and Technology,ISSN: 2231-
280, July to Aug Issue 2011, pp. 177-18, 2011.

[31] Maitra,S.,Paul, G.: Analysis of RC4 and Proposal of
Additional Layers for Better Security Margin. Proc.
Indocrypt, vol. 5362,of LNCS,pp 27-39, 2008.

[32] Ekdahl, P.,Johansson, T.: SNOW - A New Stream Cipher*.
Proceedings of first NESSIE Workshop, Heverlee,
Belgium, 2000.

[33] Rogaway,P.,Coppersmith,D.: A Software Optimized
Encryption Algorithm.Journal of Cryptology, 11(4):273-
287, 1998

[34] Hawkes, P., Rose, G.: Primitive Specification and
SupportingDocumentationfor SOBER-t32 Submission to
NESSIE. Proceedings of the first NESSIE Workshop,
Heverlee, Belgium, 2000.

[35] Wagner,D., Schneier,B.,Kelsey,J.: Cryptanalysis of
ORYX. In: Proc.5th Annu. Workshop Selected Areas in
Cryptography (WSK), pp. 296 - 305, 1998.

[36] McGrew,D., Fluhrer, S.: The Stream Cipher Leviathan.
NESSIE projectsubmission, October 2000.

[37] Lai, X., Massey, J.:A Proposal for a New Block
Encryption Standard.In: Proc. Eurocrypt '90, volume 473
of LNCS,pp 389-404, Berlin,Springer,1991.

[38] Watanabe, D. Furuya, S., Yoshida, H., Preneel,B.: A New
Keystream Generator MUGI. In: Fast Software Encryption
(FSE) 2002, Lecture Notes in Computer Science, vol.
2365, pp179-194 Springer, 2002.

[39] Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks,
S., Kohno, T., Helix: Fast Encryption and Authentication
in a Single Cryptographic Primitive, In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer,
Heidelberg, 2003.

[40] Galanis, M.D., Kitsos, P., Kostopoulos, G., Sklavos, N.,
Koufopavlou, O.,Goutis, C.E.: Comparison of the
hardwareArchitectures and FPGA Implementations of
Stream Ciphers.In:Proceedings of the 2004 11th IEEE
International Conferenceon Electronics, Circuits and
Systems (ICECS'04), pp.571 - 574, 2004.

http://csrc.nist.gov/rng/
http://ieeexplore.ieee.org/xpl/downloadCitations

48 Maytham M. Hammood, et. al.: Enhancing Security and Speed of RC4

http://journals.uob.edu.bh

Maytham M. Hammood

received his B.Sc. and M.Sc. in

Computer Science from the

University of Technology,

Baghdad, Iraq in 2002 and 2005

respectively. He received M.S. in

Applied Science from the

University of Arkansas at Little

Rock, USA, December 2013.He is

presently a Ph.D. candidate of

Computer Science, the University of Arkansas at Little, USA.

His research areas of interest are of data protection mechanisms

for wireless sensor network and security algorithms

enhancements.

Kenji Yoshigoeis an Associate

Professor in the Department of

Computer Science and the Director

of Computational Research Center

(CRC) at UALR. He received his

Ph.D. degree in Computer Science

and Engineering from the University

of South Florida. He is currently

investigating the reliability, security,

and scalability of various

interconnected systems ranging from

tightly coupled high performance computing systems to

resource-constrained wireless sensor networks.

Ali M. Sagheer is an Associate

Professor in the Computer College

at Al-Anbar University. He received

his B.Sc. of Information System

(2001), M.Sc. in Data Security

(2004), and his Ph.D. in Computer

Science (2007) from the University

of Technology, Baghdad, Iraq. He is

interested in the following Fields;

Cryptology, Information Security,

Number Theory, Multimedia

Compression, Image Processing, Coding Systems, and Artificial

Intelligence. He has published many papers in different

conferences and scientific journals.

