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Abstract: One-way analysis of variance (ANOVA) model is very famous and versatile statistical 
technique for studying the relation between response variable and one or more explanatory or 
predictor variables. In effect, ANOVA extends the two sample t-test for testing the equality of two 
population means to a more general null hypothesis of comparing the equality of more than two 
means. Meanwhile, the analysis of means (ANOM) is a graphical method for presenting multiple 
group comparisons with an overall mean. ANOM has enjoyed great popularity in quality control, 
and piles of extensions and applications have been discussed. The single-factor ANOVA and 
ANOM models are discussed and compared with each other‟s using actual data. The results on the 
cash offers and productivity improvement data are shown that the two models are not always 
giving the same results.  
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Introduction 

Fisher (1918) introduced the term 
variance and proposed its formal analysis. 
His first application of the analysis of 
variance was published in 1921. Analysis of 
variance became widely known after being 
included in Fisher's (1925) book. Analysis 
of variance (ANOVA) is a collection of 
statistical models that used to analyze the 
differences among group means and their 
associated procedures (such as variation 
within and between groups) where the 
observed variance in a particular variable is 
partitioned into components attributable to 
different sources of variation. ANOVAs are 
useful for testing three or more means for 
statistical significance. Actually, ANOVA 
models are versatile statistical tools for 
studying the relation between a response 
variable and one or more explanatory or 
predictor variables. These models do not 
require any assumptions about the nature of 
the statistical relation between the response 

and explanatory variables, nor do they 
require that explanatory variables be 
quantitative; see, for example, Neter et. al 
(1996). 

The ANOVA and ANOM models are 
reviewed and studied in details with 
application to business data. The results on 
these data these two models are not always 
the same and they could be different in some 
cases. But ANOM has advantage that one 
can identify immediately that which 
subgroup is difference from the group. Also, 
one more important difference is that 
ANOVA assumes that the data follow a 
normal distribution, while ANOM can be 
used with data that follows a normal, 
binomial, or Poisson distribution. Our 
comparison is restricted to single-factor 
model.  

Single factor ANOVA model is reviewed 
in Section 2 while ANOM is reviewed in 
Section 3. Application to cash offers and 
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productive improvement data is presented in 
Section 4. Section 5 is devoted to 
conclusion.  

Single-Factor ANOVA Models 

Assume there are   different groups with 
individuals in each group    ,           , 
           and         . Let 
     ̅  is the total deviation (  ̅  
∑ ∑    

  
 

 
    ),  ̅   ̅  is the deviation of 

grouped mean (  ̅  ∑       
  
   ) around 

the overall mean, and      ̅  is the 
deviation of individuals around the grouped 
mean. 

It is useful to describe the observations 
from an experiment with a model. One way 
to write the means model is 

 

                           and  
          

   is the value of the response variable in  th 
trial for the  th trial or treatment,    are 
parameters,     are independent normal with 
 (    ). 
An alternative way to write a model for the 
data is to define  

   

        

so that the effects model can be written as  

 

             
  is the parameter common to all treatments 
called the overall mean, and   is a 
parameter unique to the  th treatment called 
the  th treatment effect. 

Both models are also called the one-way 
or single-factor analysis of variance 
(ANOVA) model because only one factor is 
investigated. Furthermore, it will be required 
that the experiment be performed in random 
order so that the environment in which the 

treatments are applied (often called the 
experimental units) is as uniform as 
possible. Thus, the experimental design is a 
completely randomized design. For 
hypothesis testing, the model errors are 
assumed to be normally and independently 
distributed random variables with mean zero 
and variance   . The variance    is 
assumed to be constant for all levels of the 
factor. This implies that the observations 
 

     (       ) 
 

and that the observations are mutually 
independent. 

It is interested in testing the equality of 
 trearment means; that is,  (   )    
            , the appropriate 
hypotheses are 
 

                                  
           for at least one pair 

equivalently, 

 

                                    
          for at least one                        
The name analysis of variance is derived 

from a partitioning of total variability into 
its component parts. The total corrected sum 
of squares 

    ∑∑(     ̅)
 

  

   

 

   
 

is used as a measure of overall variability in 
the data. Intuitively, this is reasonable 
because if it had to divide     by the 
appropriate number of degrees of freedom 
(    ), it would have the sample variance 
of the  . The sample variance is a standard 
measure of variability. 

Note that the total corrected sum of 
squares    may be written as 
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Where      is called the sum of squares 
due to treatments (i.e., between treatments), 
 

     ∑  ( ̅   ̅)
 

 

   
 

and     is called the sum of squares due to 
error (i.e., within treatments)  
 

    ∑∑(     ̅ )
 

  

   

 

   
 

Therefore, 
 

∑∑(     ̅)
 

  

   

 

   

 ∑  ( ̅   ̅)
 

 

   

 ∑∑(     ̅ )
 

  

   

 

   
 

It states that the total variability in the 
data, as measured by the total corrected sum 
of squares, can be partitioned into a sum of 
squares of the differences between the 
treatment averages and the grand average 
plus a sum of squares of the differences of 
observations within treatments from the 
treatment average. Now, the difference 
between the observed treatment averages 
and the grand average is a measure of the 
differences between treatment means, 
whereas the differences of observations 
within a treatment from the treatment 
average can be due to only random error. 

Specifically, the mean squares for the 
treatment can be written as  

          (   )

 ∑  ( ̅   ̅)
 

 

   
 ( 

  ) 

is an estimate of   if the treatment means 
are equal. The reason for this may be seen as 

follows: The quantity ∑ ( ̅   ̅)
  

    (  
 ) estimates      , the variance of the 

treatment averages, so ∑   ( ̅   ̅)
  

    
(   )  must estimate   if there are no 
differences in treatment means. 

Also the mean squares error is 
 

    ∑∑(     ̅ )
 

  

   

 

   
 (    ) 

is a pooled estimate of the common variance 
  within each of the  treatments. 

Actually, the expected value of     is  
 

 (   )     

and the expected value for      is  
 

 (    )     
∑       
   
    

See, for example, Montgomery (2013) 
and Neter et al. (1996). 

Therefore, if treatment means do differ, 
the expected value of the treatment mean 
square is greater than   . Therefore, it can 
investigate how a formal test of the 
hypothesis of no differences in treatment 
means (              ) can be 
performed. Because it is assumed that the 
errors    are normally and independently 
distributed with mean zero and variance   , 
the observations    are normally and 
independently distributed with mean   
  and variance   . Thus,     is a sum of 
squares in normally distributed random 
variables; consequently, it can be shown that 
       is distributed as chi-square with 
    degrees of freedom. Furthermore, it 
can be shown that        is chi-square 
with      degrees of freedom and that 
        is chi-square with    degrees 
of freedom if the null hypothesis    is true.  
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Because the degrees of freedom for     
and    add to     , the total number of 
degrees of freedom, Cochran‟s theorem 
implies that         and        are 
independently distributed chi-square random 
variables. Therefore, if the null hypothesis 
of no difference in treatment means is true, 
the ratio 
 

   
    
   

 
∑   ( ̅   ̅)

  
    (   )

∑ ∑ (     ̅ )
   

   
 
    (    )

 

 

is distributed as   with     and      
degrees of freedom, see, for example, 
Montgomery (2013). 

From the expected mean squares it can 
be seen that, in general,     is an unbiased 
estimator of   . Also, under the null 
hypothesis, MSTR is an unbiased estimator 
of   . However, if the null hypothesis is 
false, the expected value of      is greater 
than   . Therefore, under the alternative 
hypothesis, the expected value of the      
is greater than the expected value of the 
denominator, and    should be rejected on 
values of the test statistic that are too large. 
This implies an upper-tail, one-tail critical 
region. Therefore, it can conclude that there 
are differences in the treatment means if 

 

               
 

where   is the computed value. 
Alternatively, it could be used the P-value 
approach for decision making. Therefore, 
reject    if  
 

          

 

The following ANOVA table summarises 
the equations. 

 

Table 1: ANOVA table for the single factor, 
fixed effect model 

Variation SS df Mean 
square 

   

Treatment SSTR  
   

MSTR     
    

Error SSE   
   

MSE  

Total SST   
   

  

 

Note that, in some single-factor 
experiments, the number of observations 
taken within each treatment may be 
different. It is then say that the design is 
unbalanced. The analysis of variance 
described above is still be used but there are 
two advantages in choosing a balanced 
design. First, the test statistic is relatively 
insensitive to small departures from the 
assumption of equal variances for the   
treatments if the sample sizes are equal. This 
is not the case for unequal sample sizes. 
Second, the power of the test is maximized 
if the samples are of equal size. 

Diagnostics 

The decomposition of the variability in 
the observations through an analysis of 
variance identity is a purely algebraic 
relationship. However, the use of the 
partitioning to test formally for no 
differences in treatment means requires that 
certain assumptions be satisfied. 
Specifically, these assumptions are that the 
observations are adequately described by the 
model 
 

             
and that the errors are normally and 
independently distributed with mean zero 
and constant but unknown variance   . If 
these assumptions are valid, the analysis of 
variance procedure is an exact test of the 
hypothesis of no difference in treatment 
means. 



21J. Emp. Res. Acc. Aud. 3, No. 1, 17-30 (Apr. 2016)

http://journals.uob.edu.bh

  

In practice, these assumptions will 
usually not hold exactly. Consequently, it is 
usually unwise to rely on the analysis of 
variance until the validity of these 
assumptions has been checked. Violations of 
the basic assumptions and model adequacy 
can be easily investigated by the 
examination of residuals. The residual for 
observation   in treatment  is 
 

         ̂       ( ̂   ̂ )
     ( ̅  ( ̅   ̅))
      ̅  

 

This gives the result that the estimate of 
any observation in the  th treatment is just 
the corresponding treatment average. 
Examination of the residuals should be an 
automatic part of any analysis of variance. If 
the model is adequate, the residuals should 
be structureless; that is, they should contain 
no obvious patterns. Through analysis of 
residuals, many types of model inadequacies 
and violations of the underlying assumptions 
can be discovered. 

A check of the normality assumption 
could be made by plotting a histogram of the 
residuals. If the NID (0,   ) assumption on 
the errors is satisfied, this plot should look 
like a sample from a normal distribution 
cantered at zero. Unfortunately, with small 
samples, considerable fluctuation in the 
shape of a histogram often occurs, so the 
appearance of a moderate departure from 
normality does not necessarily imply a 
serious violation of the assumptions. Gross 
deviations from normality are potentially 
serious and require further analysis. An 
extremely useful procedure is to construct a 
normal probability plot of the residuals, see, 
for example, Neter et. al (1996). 

A very common defect that often shows 
up on normal probability plots is one 
residual that is very much larger than any of 
the others. Such a residual is often called an 
outlier. The presence of one or more outliers 
can seriously distort the analysis of variance, 
so when a potential outlier is located, careful 

investigation is called for. Frequently, the 
cause of the outlier is a mistake in 
calculations or a data coding or copying 
error. If this is not the cause, the 
experimental circumstances surrounding this 
run must be carefully studied. If the outlying 
response is a particularly desirable value 
(high strength, low cost, etc.), the outlier 
may be more informative than the rest of the 
data. We should be careful not to reject or 
discard an outlying observation unless we 
have reasonably nonstatistical grounds for 
doing so. At worst, you may end up with 
two analyses; one with the outlier and one 
without. 

Several formal statistical procedures may 
be used for detecting outliers [e.g., see 
Stefansky (1972), John and Prescott (1975), 
and Barnett and Lewis (1994)]. Some 
statistical software packages report the 
results of a statistical test for normality 
(such as the Anderson-Darling test) on the 
normal probability plot of residuals. This 
should be viewed with caution as those tests 
usually assume that the data to which they 
are applied are independent and residuals are 
not independent. 

A rough check for outliers may be made 
by examining the standardized residuals 
 

    
   

√   
 

 

If the errors    are  (    ) , the 
standardized residuals should be 
approximately normal with mean zero and 
unit variance. Thus, about 68 percent of the 
standardized residuals should fall within the 
limits   , about 95 percent of them should 
fall within   , and virtually all of them 
should fall within  3. A residual bigger than 
3 or 4 standard deviations from zero is a 
potential outlier. 

Although residual plots are frequently used 
to diagnose inequality of variance, several 
statistical tests have also been proposed. 
These tests may be viewed as formal tests of 
the hypotheses 
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   equal is not true  
 

A widely used procedure is Bartlett‟s 
test. The procedure involves computing a 
statistic whose sampling distribution is 
closely approximated by the chi-square 
distribution with    degrees of freedom 
when the   random samples are from 
independent normal populations. Because 
Bartlett‟s test is sensitive to the normality 
assumption, there may be situations where 
an alternative procedure would be useful. 
Anderson and McLean (1974) present a 
useful discussion of statistical tests for 
equality of variance. The modified Levene 
test [see Levene (1960) and Conover et al. 
(1981)] is a very nice procedure that is 
robust to departures from normality. 

To test the hypothesis of equal variances 
in all treatments, the modified Levene test 
uses the absolute deviation of the 
observations    in each treatment from the 
treatment median. Denote these deviations 
by 
 

    |     ̃ | 
The modified Levene test then evaluates 

whether or not the means of these deviations 
are equal for all treatments. It turns out that 
if the mean deviations are equal, the 
variances of the observations in all 
treatments will be the same. The test statistic 
for Levene‟s test is simply the usual 
ANOVA F statistic for testing equality of 
means applied to the absolute deviations. 

Comparisons among treatment means 

When the null hypothesis is rejected, 
there are differences between the treatment 
means but exactly which means differ is not 
specified. Sometimes in this situation, 
further comparisons and analysis among 
groups of treatment means may be useful. 
The  th treatment mean is defined as 
       , and    is estimated by  ̅ . 
Comparisons between treatment means are 

made in terms of either the treatment totals 
or the treatment averages. The procedures 
for making these comparisons are usually 
called multiple comparison methods. 
Suppose that it is interested in comparing all 
pairs of   treatment means and that the null 
hypotheses that we wish to test are       
   for all    . 
Tukey’s Test 

Suppose that, following an ANOVA in 
which we have rejected the null hypothesis 
of equal treatment means, we wish to test all 
pairwise mean comparisons: 
 

         
         

 

for all    . Tukey (1953) proposed a 
procedure for testing hypotheses for which 
the overall significance level is exactly   
when the sample sizes are equal and at most 
  when the sample sizes are unequal. His 
procedure can also be used to construct 
confidence intervals on the differences in all 
pairs of means. For these intervals, the 
simultaneous confidence level is    (  
 ) percent when the sample sizes are equal 
and at least    (   )  percent when 
sample sizes are unequal. In other words, the 
Tukey procedure controls the 
experimentwise or “family” error rate at the 
selected level  . Tukey‟s procedure makes 
use of the distribution of the studentized 
range statistic 
 

   ̅     ̅   
√     

 

 

Where  ̅    and  ̅   are the largest and 
smallest sample means, respectively, out of 
a group of   sample means. 

Tukey‟s test declares two means 
significantly different if the absolute value 
of their sample differences exceeds 
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     (   )√      

  (   ) the upper   percentage points of  , 
where  is the number of degrees of freedom 
associated with the   . 

The Fisher Least Significant Difference 
(LSD) Method 

The Fisher method for comparing all 
pairs of means controls the error rate   for 
each individual pairwise comparison but 
does not control the experimentwise or 
family error rate. This procedure uses the   
statistic 

for testing                
 

   
 ̅   ̅ 

√   (     
 
  )

 

Assuming a two-sided alternative, the 
pair of means   and   would be declared 
significantly different if   

 

| ̅   ̅ |          √   (
 
  
  
  
) 

The quantity 

 

      
      

√   (    
  
  
) 

 

is called the least significant difference. 

Note that it is focused on using the 
analysis of variance and related methods to 
determine which factor levels result in 
differences among treatment or factor level 
means. It is customary to refer to these 
effects as location effects. If there was 
inequality of variance at the different factor 
levels, it could be used transformations to 
stabilize the variance to improve inference 
on the location effects. In some problems, 

however, it is interested in discovering 
whether the different factor levels affect 
variability; that is, it is interested in 
discovering potential dispersion effects. This 
will occur whenever the standard deviation, 
variance, or some other measure of 
variability is used as a response variable; 
see, Neter et.al (1996). 

Analysis of means (ANOM) 

The basic idea of ANOM was first used 
by Laplace, almost 100 years before Fisher 
(1918, 1925, 1935) introduced ANOVA. 
Laplace was interested in studying the 
homogeneity over the calendar year of the 
lunar atmospheric tide in Paris. He had 
available data on the mean change in 
barometric pressure from 9:00 a.m. to 3:00 
p.m. over a period of 11 years. His analysis 
for homogeneity consisted of computing the 
average change for each season and 
comparing these with the average change 
over the entire year. He evaluated what we 
would now call the descriptive level of 
significance. While Laplace correctly 
concluded there were significant differences 
between the four seasons, he made what 
today would be considered two fundamental 
errors. First, he didn‟t account for the 
dependence among the four differences 
(seasonal averages minus the overall 
average), and second, rather than using the 
pooled seasonal variances as the measure of 
variability, he used the variance over the 
entire year. The next appearance of an 
ANOM-type procedure was the multiple 
significance test of Halperin et al. (1955) for 
several normally distributed populations. 
They correctly used the pooled sample 
variances to measure variability, and to 
account for the dependence among the 
treatment means minus the overall mean, 
they used Bonferroni inequalities to obtain 
upper and lower bounds on the appropriate 
critical values. They conjectured that the 
exact critical values were closer to the lower 
bounds. Ott (1967) suggested applying the 
test of Halperin et al. (1955) in a graphical 
form and, based on their conjecture, 
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provided tables of approximate critical 
values that were the average of the lower 
and upper Bonferroni bounds. 

Ott (1967) not only used approximate 
critical values but also advocated using 
sample ranges rather than sample variances 
to measure variability. Schilling (1973) 
extended Ott‟s work to designs more 
complicated than factorial designs with 
fixed effects (e.g., balanced incomplete 
block designs and mixed effect designs) and 
discussed using the ANOM with non normal 
data. Rather than using the approximate 
critical values proposed by Ott (1967), he 
used the upper bounds from Halperin et al. 
(1955). Schilling (1973) also advocated 
using sample ranges to measure variability. 
Following on Schilling‟s work, a number of 
authors discussed various aspects of the 
ANOM; see, Nelson et.al (2005). All of this 
work continued to be based on conservative 
critical values obtained using Bonferonni‟s 
inequality. 

In 1982, exact ANOM critical values for 
the main effects of ANOM in balanced 
designs were obtained (see Nelson et.al 
(2005)). These exact values were based on 
the variability being estimated using the 
pooled sample variances.  

The analysis of means (ANOM) is a 
graphical procedure for comparing a 
collection of means, rates, or proportions to 
see if any of them are significantly different 
from the overall mean, rate, or proportion. 
An ANOM decision chart is similar in 
appearance to a control chart. It has a center 
line, located at the overall mean (rate or 
proportion), and upper and lower decision 
limits. The group means (rates or 
proportions) are plotted, and those that fall 
beyond the decision limits are said to be 
significantly different from the overall 
value. These differences are statistical 
differences, if they exist. The chart also 
allows one to easily evaluate the practical 
differences. 

Any individual group mean not 
contained in this interval is deemed 

significantly higher than the overall average 
of all groups if it lies above the upper 
decision line. Similarly, any group mean that 
falls below the lower decision line is 
declared significantly lower than the overall 
group average. 

As with confidence interval estimation, 
to compute the upper and lower decision 
lines (UDL and LDL) for ANOM, you must 
add and subtract a measure of sampling 
error around the statistic of interest.  
 

 ̅       √
(   )   

  
 

where 

    is pooled variance, an estimate of the 
inherent variability in the data computed by 
averaging the G group variances 

      critical value of Nelson‟s   statistic 
with   groups and equal observations per 
group obtained from the table of the 
 statistic; see, … 

So that  
 

     ̅       √
(   )   

  
 

and 
 

     ̅       √
(   )   

  
 

 

One important assumption of ANOM is 
that the samples are approximately normally 
distributed and a second important 
assumption of ANOM is that the populations 
from which each of the   samples of size    
were selected do not differ with respect to 
variability. That is, for ANOM. Note that, 
the package used for analysis is ANOM 
package; see, Pallmann (2016). 
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Applications 

Application1: Cash offers 

A consumer organization studied the 
effect of age of automobile owner on size of 
cash offers for a used car by utilizing 12 in 
each of three age group (young (A), middle 
(B), elderly (C)) who acted as the owner of a 
used car. A medium price, six year old car 
was selected for the experiment, and the 
owners solicited cash offers for this car from 
36 dealers selected at random from the 
dealers in the region. Randomization was 
used in assigning the dealers to the owners. 

 

Table 1: cash offers data for used cars by utilizing 
12 in each of three age groups 

A B C 

19 28 25 

19 27 20 

21 25 23 

20 22 18 

23 25 24 

20 27 22 

18 25 22 

24 24 19 

23 26 21 

22 25 23 

22 25 24 

25 29 20 

 

Normality test: 

The most widely used test for normality 
is the Shapiro-Wilks test. The function to 
perform this test is called shapiro.test in R-
software. The test has the null hypothesis 
that the normal distribution is suitable for 
data and the alternative hypothesis that 
normal is not suitable for data  

 

Shapiro-Wilk normality test 
 

W = 0.96976, p-value = 0.4191 
 

Where the p-value is 0.4191 more than 
0.05, the normality assumption could not be 
rejected. Moreover, quantile-quantile plot is 
very useful to check for normality 

 

 

Figure 1 normal Q-Q plot for cash offers data 
 

Figure 1 support the assumption of the 
normality of the data. 

Homogeneity of variances: 

Bartlett‟s test allows us to compare the 
variance of two or more samples to 
determine whether they are drawn from 
populations with equal variance. It is 
suitable for normally distributed data. The 
test has the null hypothesis that the 
variances are equal and the alternative 
hypothesis that they are not equal. By using 
R-software the results are 
 

Bartlett test of homogeneity of variances 
 

Bartlett's K-squared = 1.0408, df = 2, p-valu
e = 0.5943 

From the output we can see that the p-
value of 0.5943 is not less than the 



Elsayed A. H. Elamir: Analysis of Variance versus Analysis of Means ...26

http://journals.uob.edu.bh

significance level of 0.05. This means it 
cannot be rejected the null hypothesis that 
the variance is the same for all treatment 
groups. This means that there is no evidence 
to suggest that the variance in data is 
different for the three treatment groups. 

Moreover, it can use the hovPlot function 
graphs in R-software to check for the 
components of the Brown and Forsyth test 
statistic from an ordinary one-way analysis 
of variance on the absolute deviations from 
the median. 

Also the Brown-Forsyth supports the 
same results where the p-value is 0.5816 and 
the boxplot in Figure 2 is in one direction 
for MAD. 

 
Brown-Forsyth 

 
F = 0.55089, df:e1 = 2, df:Residuals =33, p-

value = 0.5816 
alternative hypothesis: variances are not 
identical 
 

 

Figure 2 boxplots for cash offers data, the data 
with the median subtracted and the absolute 

deviations from the median 

ANOVA: 

The ANOVA test for cash offers data is  

 

            

   two not equal 
 

ANOVA table 
 
          Df  Sum Sq  Mean Sq   F value    Pr(>
F)     
Between   2   137.2     68.58     15.76   1.57e
-05 *** 
Residuals  33  143.6      4.35                      
--- 
Signif. codes:    „***‟  .  1 „**‟  . 1 „*‟  .
 5 „.‟  .1 „ ‟ 1 
 

From this table p-value < 0.05, the    id 
rejected but the test not tell us which 
treatments are different. Therefore, the 
pairwise t test is  

 

Pairwise comparisons using t tests with pool
ed SD  
 
    A          B       
B  4.3e-05     -       
C  1.00000   0.00018 
 

It is clear from this the averages of 
treatments A, B and B, C are different. 
Therefore, treatment B is quite different 
from others in terms of average. 

Also, the Tukey test is  
 

Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
       diff       lwr       upr       p adj 
B-A 4.3333333   2.243760   6.422907   0.00
00414 
C-A 0.4166667  -1.672907   2.506240   0.87
68688 
C-B-3.9166667  -6.006240  -1.827093   0.00
01729 
 

As we see from p-adj the values the less 
then 0.05 for B-A and C-B 
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ANOM 

The analysis of means can be obtained 
directly from ANOM package in R software. 
By using this package the ANOM for cash 
offers data is 

 

 

Figure 3 ANOM chart for the cash offers data 

 

It is clear from Figure 3 the treatments A 
and B outside the lower and upper limits that 
support the rejections of equal averages 
among the treatments. 

Application2: productivity improvement 

An economist compiled data on 
productivity improvements for a sample of 
firms producing electronic computing 
equipment. The firms were classified 
according to the level of their average 
expenditure for research and development in 
the past three years (low (A), moderate (B) 
and high (C)).  The results of the study 
follow with productivity improvement are 
measured on a scale from 0 to 50. Are the 
means with productivity improvement differ 
according to the level of research and 
development expenditure. 

 

 

 

Table 1: cash offers data for used cars by utilizing 
12 in each of three age groups 

A B C 

17.08 20.55 17.22 

19.02 19.59 20.43 

21.69 21.10 14.31 

21.69 27.77 18.92 

21.48 17.96 9.21 

15.40 25.27 21.52 

20.25 14.38 20.05 

20.41 18.08 13.47 

16.51 22.62 20.02 

26.47 25.41 17.99 

21.46 22.07 20.51 

14.80 26.49 21.20 

 

Normality test: 

The test has the null hypothesis that the 
normal distribution is suitable for data and 
the alternative hypothesis that normal is not 
suitable for data  

 

Shapiro-Wilk normality test 
 

W = 0.9695, p-value = 0.4119 
 

Where the p-value is 0.4119 more than 
0.05, the normality assumption could not be 
rejected. Moreover, quantile-quantile plot is 
very useful to check for normality 
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Figure 4 normal Q-Q plot for productivity data 
 

Figure 4 supports the assumption of the 
normality of the data. 
 

Homogeneity of variances: 

The test has the null hypothesis that the 
variances are equal and the alternative 
hypothesis that they are not equal. By using 
R-software the results are 

 

Bartlett test of homogeneity of variances 
 

Bartlett's K-squared = 0.36243, df = 2, p-val
ue = 0.8343 

 

From the output we can see that the p-
value of 0.8343 is not less than the 
significance level of 0.05. This means it 
cannot be rejected the null hypothesis that 
the variance is the same for all treatment 
groups. This means that there is no evidence 
to suggest that the variance in data is 
different for the three treatment groups. 

Moreover, it can use the hovPlot function 
graphs in R-software to check for the 
components of the Brown and Forsyth test 
statistic from an ordinary one-way analysis 

of variance on the absolute deviations from 
the median. 

Also the Brown-Forsyth supports the 
same results where the p-value is 0.8031 and 
the boxplot in Figure 5 for MAD. 

 

Brown-Forsyth 
 

F = 0.22071, df:e1 = 2, df:Residuals = 
33, p-value = 0.8031 

alternative hypothesis: variances are not ide
ntical 

 

 

Figure 5 boxplots for cash offers data, the data 
with the median subtracted and the absolute 

deviations from the median 
 

ANOVA: 

The ANOVA test for productivity 
improvement data is  

 

            

   two not equal 

ANOVA table 

 
           Df Sum Sq  Mean Sq  F value  Pr(>F)
   
Treatments 2   89.9   44.97    3.293    0.0496 
* 
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Residuals  33  450.6  13.66                  
--- 
Signif. codes:    „***‟  .  1 „**‟  . 1 „*‟  .
 5 „.‟  .1 „ ‟ 1 
 

From this table p-value < 0.05, the    id 
rejected but the test not tell us which 
treatments are different. Therefore, the 
pairwise t test is  

 

Pairwise comparisons using t tests with pool
ed SD  
 
   A       B     
B  0.526   -     
C  0.740   0.045 
 

It is clear from this the averages of 
treatments C and B are different and that 
support the F test. 

Also, the Tukey test is  
 

Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
     diff      lwr        upr        p adj 
B-A  2.088916  -1.612956  5.7907885  0.36
03650 
C-A -1.778794  -5.480667  1.9230782  0.47
37571 
C-B -3.867710  -7.569583  -0.1658379 0.03
90605 
 

As we see from p-adj the value the less than 
0.05 for C-B. Also this is supporting F test. 

ANOM 

The analysis of means can be obtained 
directly from ANOM package in R software. 
By using this package the ANOM for for 
productivity improvement data data is 

 

 

Figure 6 ANOM chart for the productivity data 
 

It is clear from Figure 6 there are no 
treatments A and B outside the lower and 
upper limits and therefore we could not 
reject equal averages among the treatments. 
These results are different from what we get 
in ANOVA. 

Conclusion 

Although ANOVA and ANOM have been 
used for the same purpose but sometimes 
they can produce different result and .Often 
both analyses yield similar results.  One 
more important difference is that ANOVA 
assumes that your data follow a normal 
distribution, while ANOM can be used with 
data that follows normal and non-normal 
distributions. Moreover, it can compares 
these method with recent methods that has 
been introduced by Elamir (2015) and 
Elsayed (2015).  
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