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Abstract: Mean absolute deviation about median is partitioned into two parts in terms of median to obtain a measure of 

skewness that is zero for symmetric distributions and into four parts in terms of percentiles to obtain a measure of 

equality between the middle and the sides of a distribution that is zero for the normal distribution. Based on these 

partitions a powerful and informative graph called H-graph is produced that can provide more insight into the nature of 

the data and assess goodness of fit for a data set to a theoretical model. This graph enriches the visual information 

offered by the histogram and box-plot. By using these measures two tests for middle-sides equality and normality are 

proposed. The simulation results from several distributions show that the proposed tests have a very good power in 

comparisons with well-known powerful tests that depend on moments. 
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1. INTRODUCTION 

The shape of a distribution may be considered either 

descriptively, using terms such as "U-shaped", or 

numerically, using quantitative measures such as 

skewness and kurtosis. Considerations of the shape of a 

distribution arise in statistical data analysis where simple 

quantitative descriptive statistics and plotting techniques 

such as histogram can lead to the selection of a particular 

family of distributions for modeling purposes. The shape 

of a distribution is sometimes characterized by the 

behavior of the tails as in a long or short tail; see, 

Balanda and MacGillivray (1988), DeCarlo (1997) and 

Thode (2002) and Tukey (1977). Pearson (1905) referred 

to leptokurtic distributions as being more peaked and 

platykurtic distributions as being less peaked than normal 

distribution. According to van Zwet (1964) only 

symmetric distributions should be compared in terms of 

kurtosis. The interest in assessing shape of the 

distributions may be due to the increasing use of normal 

theory covariance structure methods which are known to 

perform poorly in asymmetric and leptokurtic 

distributions (Hu et al., 1990 and Micceri, 1989),  

nonparametric tests of location such as the Mann–

Whitney test can be far more powerful than the t-test in 

certain leptokurtic distributions (Hodges and 

Lehmann,1956) and  many variables show platykurtic 

such as the time between eruptions of certain geysers, the 

color of galaxies and the size of worker weaver ant. 

Mean absolute deviation about median (MADmed) is 

divided to two parts in terms of median to obtain a 

measure of skewness that is zero for symmetric 

distributions and to four parts in terms of 12
th

, 50
th

 and 

88
th

 percentiles to obtain a measure of middle-sides 

equality that is zero for normal distribution. Based on 

these partitions an informative graph called H-graph is 

presented that can provide more insight into the nature of 

the data and make an assessment for a data set to a 

theoretical distribution to find out if the assumption of a 

common distribution is justified. Based on these 

measures two tests for middle-sides equality and 

normality are proposed. The simulation study is 

conducted to obtain and compare the empirical Type I 

error and the power of the proposed tests with 

Anscombe-Glynn, Bonett-Seier and Jarque-Bera tests 

from several distributions.   

In Section 2 the MADmed is divided to two and four 

parts based on percentiles. In Section 3 the measure of 

skewness, peak-tail equality and H-graph are introduced. 

The estimation of skewness and middle-sides equality 

measures is presented in Section 4. The middle-sides 
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equality and omnibus normality tests are studied in 

section 5. Section 6 is devoted to the conclusion. 

2. PARTITIONS OF MADMED 

Let ὢȟὢȟȣȟὢbe a random sample from a continuous 

distribution with density function Ὢὼ, quantile function 

ὼὊ Ὂ ὼ ὗὊ, π Ὂ ρ, cumulative 

distribution function Ὂὼ Ὂ, mean ‘ Ὁὢ  and 

median ’ ὓὩὨὢ . The population MADmed is defined 

as 

 

 Ὀ Ὁȿὢ ’ȿ (1) 

The MADmed can be partitions to two parts above and 

below the median (’ ὼυπϷ), see Seier and Bonett 

(2011), as  

 

 

Ὀ Ὁȿὢ ’ȿ Ὁὢ ’
Ὁ’ ὢ
Ὀ Ὀ  

(2) 

Also for ὺ ’ ὺ, the MADmed can be partitions to 

four parts below ὺ, between ὺ and ’, between ’ and ὺ 

and above ὺ as  

 

 

Ὀ Ὁȿὢ ’ȿ Ὁ’ ὢ Ὁ’ ὢ

Ὁὢ ’ Ὁὢ ’ Ὀ Ὀ ȟ

Ὀ ȟ Ὀ           (3) 

 

The integral form representations of equations (2) and (3) 

could be written as     

Ὀ ὢ ’Ὅὢ ’ὨὊὼȟ 

Ὀ ’ ὢὍὢ ’ὨὊὼȟ 

Ὀ ’ ὢὍὢ ὺ ὨὊὼȟ 

Ὀ ȟ ’ ὢὍὺ ὢ ’ὨὊὼȟ 

Ὀ ȟ ὢ ’Ὅ’ ὢ ὺ ὨὊὼȟ 

Ὀ ὢ ’Ὅὢ ὺ ὨὊὼȟ 

and 

Ὀ ȟ ȿὢ ὺȿὍὺ ὢ ὺ ὨὊὼȟ 

The main advantage of the MAD it is uniquely 
characterize the probability distribution where Perez and 
Gomez (1990) said that “the dispersion function defined 
as Ὀό Ὁȿὢ όȿȟόᶰὙ characterizes the distribution 
function and gives a dispersive ordering of probability 
distributions…”. 

3. SHAPE MEASURES USING MADMED 

A. Skewness measure and H-graph 

The skewness measure based on partitions of MADmed is 

 

 Ὓ
Ὀ Ὀ

Ὀ
Ὄ Ὄ  (4) 

This measure is zero for any symmetric distribution and 

is bounded by ρ and ρ. This measure is equivalent  to 

‘ ὗ ȾὉȿὣ ὗȿ which derived by Groeneveld and 

Meeden (1984) who have put forward the following four 

properties that any reasonable coefficient of skewness 

Ὓώ should satisfy: (1) for any ὥ π and real ὦ, 

Ὓώ Ὓὥώ ὦ; (2) if ώ is symmetrically distributed, 

then Ὓώ π; (3) ɀὛώ Ὓ ώ; (4) if Ὂ and Ὃ are 

cumulative distribution functions of ώ and ὼ, and 

Ὂ Ὃ, then Ὓώ Ὓὼ where  is a skewness-

ordering among distributions; see van Zwet (1964). The 

measure Ὓ satisfies the four properties as pointed out by 

Groeneveld and Meeden (1984). The measure Ὓ can be 

shown graphically on the H-graph that shows the index 

of the order data on x-axis and ὣȡ ὢȡ ’ȾὈ on y-

axis. Note that ὢȡ can be theoretically represented by 

ὓὩὨὢȡ ὼὓὩὨ Ὂ ὼ
Ȣ

Ȣ
; see, Filliben 

(1975). Therefore, Ὄ represents the standardized 

expected value of the heights between the line at ὣ π 

and the curve for the values less than the median and 

Ὄ represents the standardized expected value of the 

heights between the line at ὣ π and the curve for the 

values more than median. 

Figure 1 shows the Ὄ-graph for the normal, uniform, 

exponential and beta distributions. The graph shows 

symmetric Ὄ’s areas with medium tails for the normal 

distribution and short and fat tails for the uniform 

distribution (zero skewness) while  much more Ὄ  than 

Ὄ  with long and slim right tail for the exponential 

distribution  (positive skewness) and much more Ὄ  

than Ὄ  with medium and fat left tail for the 

beta(0.5,0.2) distribution (negative skewness).   
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Figure 1. Ὄ  and Ὄ  on Ὄ-graph for normal Ὓ π, uniform Ὓ π, exponential Ὓ πȢττ and beta(0.5,0.2) Ὓ πȢχς distributions. 

 

 

 
Figure 2. Ὄ, Ὄ , Ὄ  and Ὄ  on Ὄ-graph for normal ὑ π, uniform ὑ πȢρυυ, Laplace ὑ πȢρφυ and  t(2) ὑ πȢςψ distributions. 
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B. Middle-side equality measure and H-graph   

The shape proposed middle-sides equality measure based 

on partitions of MADmed is defined as 

 

 
ὑ

Ὀ Ὀ ȟ Ὀ ȟ Ὀ

Ὀ
Ὄ Ὄ Ὄ Ὄ
Ὄ Ὄ Ὄ Ὄ  

 

 

 

                                                                               (5) 

or equivalently 

 

ὑ
ȟ

Ὄ Ὄ Ὄ                                                
    

                                                                                                

                                                                               (5) 

This measure is bounded by -1 and 1 for all distributions 

and the choice of ὺ ὼρρȢωυςϷ and ὺ
ὼψψȢπτψϷ to obtain middle-sides equality measure 

equal to approximately zero for the normal distribution. 

Table 1 below gives the results for the values of K for 

different percentile from standard normal distribution 

using quantile 
Ȣ

Ȣ
 and ὲ υπππππ. 

 

Table 1. Values of  ὑ from standard normal distribution for different 
percentile 

Percentile K 

p=0.08, 1-p=0.92 -0.25470 

p=0.10, 1-p=0.90 -0.12018 

p=0.11, 1-p=0.89 -0.05733 

p=0.115, 1-p=0.885 -0.02691 

p=0.119, 1-p=0.881 -0.00305 

P=0.1194, 1-p=0.8806 -0.00069 

p=0.1195, 1-p=0.8805 -0.00009 

p=0.11951, 1-p=0.88049 -0.00004 

p=0.11952, 1-8=0.88048 0.00002 

p=0.1196, 1-p=0.8804 0.00049 

p=0.12, 1-p=0.88 0.00285 

p=0.125, 1-p=0.875 0.03199 

p=0.13, 1-p=0.87 0.06052 

p=0.15, 1-p=0.85 0.16888 

 

Therefore, Ὄ  represents the standardized expected value 

of the MADmed for the values less than ὺ or the heights 

between the line at ὣ ὺ and the curve for the values 

less than ὺ, Ὄ  represents the standardized expected 

value of the MADmed for the values more than ὺ and less 

than ’, or the heights between the lines at ὣ ὺ, 

median  and the curve, Ὄ  represents the standardized 

expected value of the MADmed for the values more than ’ 
and less than ὺ, or the heights between the lines at 

ὣ ὺ, median and the curve, Ὄ  represents the 

standardized expected value of the MADmed for the 

values more than ὺ or the heights between the line at 

ὣ ὺ and the curve for the values more than ὺ. 

Therefore, Ὄ Ὄ  can be interpreted as the probability 

mass that concentrated in the sides of the distribution 

(sides mass) in terms of MADmed while Ὄ Ὄ Ὄ  

can be interpreted as the probability mass that 

concentrated in the middle of the distribution (middle 

mass) in terms of MADmed, i.e. the ὑ measure compares 

the sides mass with middle mass in terms of MADmed and 

with respect to the normal distribution, therefore, if 

ὑ π, the sides mass equal to peak mass (middle-sides 

equality), ὑ π then sides mass is more than middle 

mass or heavier sides mass and lighter middle mass than 

normal (sides mass) and ὑ π then the sides mass is less 

than middle mass or lighter sides mass and heavier 

middle mass than normal (middle mass).    

 
Table 2. Values of Ὓ and ὑ for some symmetric distributions 

Set A Ὓ ὑ Set B Ὓ ὑ 
Beta(0.25,0.25) 0 -

0.371 

gl
*
(0,1,-0.85,-

0.85) 

0 0.653 

Beta(0.5,0.5) 0 -

0.264 

gl(0,1,-0.75,-

0.75) 

0 0.568 

Uniform 0 -

0.155 

gl(0,1,-0.5,-

0.5) 

0 0.360 

Beta(1.5,1.5) 0 -

0.107 

gl(0,1,-0.25,-

0.25) 

0 0.190 

Normal 0 0 gl(0,1,-0.15,-

0.15) 

0 0.130 

Logistic 0 0.056 gl(0,1,-0.10,-

0.10) 

0 0.105 

Laplace 0 0.165 gl(0,1,-0.05,-

0.05) 

0 0.081 

 *gl stands for generalized lambda distribution with four 

parameters;see, Ramberg et al. (1979) 
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Figure 3. The histogram and H-graph for bi-modal data and H-graph shows zigzag curve with one height (bimodal distribution) 

 

Figure 4.The histogram and H-graph for data with three modes and H-graph shows zigzag curve with two heights (tri-modal distribution) 

 

Figure 2 shows the Ὄ-graph for the normal, uniform, 

Laplace and t(2) distributions. The graph shows equal 

Ὄ’s areas (0.25) for the normal distribution and in this 

case ὑ πȢυ πȢυ π (middle-sides equality), for the 

uniform distribution the middle mass (0.58) is more than 

the sides mass (0.42) and in this case ὑ πȢτς πȢυψ
πȢρφ (middle mass). For Laplace distribution the 

middle mass (0.42) is less than the sides mass (0.58) and 

in this case ὑ πȢυψ πȢτς πȢρφ (sides mass) while 

for the ὸς distribution the middle mass (0.36) is much 

less than the sides mass (0.64) and in this case ὑ
πȢφτ πȢσφ πȢςψ ( sides mass) with respect to normal 

distribution.   

 

DeCarlo (1997) and others have pointed out that the 

Laplace distribution is clearly more peaked than the ὸ 

distribution but the classical shape measure 

(Pearsons’kurtosis measure) ‍ φ for the Laplace and 

‍ ω for the ὸ. In contrast, ὑ πȢρφυ for the Laplace 

and ὑ πȢπψψ for the ὸ and thus ὑ correctly classifies 

these distributions according to middle mass.  

Note that ὑ is a location and scale invariant and rank the 

distributions in Set A from smallest to largest and exists 

in distributions where ὼυπϷ, ὼρρȢωυςϷ and 

ὼψψȢπτψϷ exist while ‍ exists in distributions where 

fourth moment exists. Therefore it may be considered ὑ 

as a measure of kurtosis where it is according to Oja 
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(1981), a valid measure of kurtosis must be location and 

scale invariant and also must obey van Zwet ordering 

which rank orders the distributions in Set A of Table 2 

from smallest to largest.  

C. H-graph and multimodality  

The zigzag terms of original data. Figure 6 shows 

the H-graph for 100 observations from normal 

distribution with mean 80 and standard deviation It 

is not necessarily the H-graph will be plotted in 

standardized data but also it could be plotted in 

terms of original data. Figure 6 shows the H-graph 

for 100 observations from normal distribution with 

Figure 5 shows that the blue distribution is 

asymmetric to the right and has long and heavy 

right tail.  Moreover the two distributions are almost 

Figure 5 shows that the blue distribution is 

asymmetric to the right and has long and heavy 

right tail.  Moreover the two distributions are almost 

the same in middle mass (Ὄ Ὄ ) but they are 

very different in sides mass (Ὄ Ὄ ) and both are 

unimodal distributions where the curves are smooth. 

 

 
Figure 5. H-graph for chi-square (blue) and normal distributions and the 

normal has Ὄ πȢςυ, Ὄ πȢςυ, Ὄ πȢςυ and Ὄ πȢςυ while the 

chi-square has Ὄ πȢρυ, Ὄ πȢςπ, Ὄ πȢςω and Ὄ πȢσφ.

Figure 3 shows 2 bends with one height that 

indicates bimodal distribution while Figure 4 shows 

3 bends with two heights that indicates tri-modal 

distribution.  

 

Moreover, when there are two data samples or to 

compare a data set to a theoretical model to know if 

the assumption of a common distribution is 

justified. The H-graph can provide more insight into 

the nature of the difference and an assessment of 

goodness of fit that is a graphical method rather 

than reducing to a numerical summary in terms of 

skweness, kurtosis, middle mass, sides mass and 

modality.  

It is not necessarily the H-graph will be plotted in 

standardized data but also it could be plotted in 

terms of original data. Figure 6 shows the H-graph 

for 100 observations from normal distribution with 

mean 80 and standard deviation 10. The graph 

reflects a lot of information such as min, max, third, 

second, first quartiles and shapes.  

 

4. ESTIMATION 

We now consider estimators of population MADmed using 

a random sample of size ὲ, ὼȟὼȟȣȟὼ where ὺ
ὼρρȢωυςϷ, ὼ ὼυπϷ and ὺ ὼψψȢπτψϷ, then 

the estimates are 

Ὀ
ρ

ὲ
ȿὼ ὼȿȟ 

Ὀ
ρ

ὲ
ὼ ὼὍὼ ὼȟ 

Ὀ
ρ

ὲ
ὼ ὼὍὼ ὼȟ 

Ὀ
ρ

ὲ
ὼ ὼὍὼ ὺ ȟ 

Ὀ
ρ

ὲ
ὼ ὼὍὼ ὺ ȟ 

Ὀ ȟ
ρ

ὲ
ὼ ὼὍὺ ὼ ὼ 

Ὀ ȟ
ρ

ὲ
ὼ ὼὍὼ ὼ ὺ  

and 

Ὀ ȟ
ρ

ὲ
ȿὼ ὼȿὍὺ ὼ ὺ  

Also it is assumed that ὼ ὺȟὺȟὺ and Ὥ ρȟςȟȢȢȟὲ. 

Hence, 

 Ὓ ί
Ὀ Ὀ

Ὀ
Ὄ Ὄ  (7) 

and 

 ὑ Ὧ
ȟ ȟ

Ὄ
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Ὄ Ὄ Ὄ Ὄ Ὄ Ὄ Ὄ Ὄ

Ὄ Ὄ (8) 

 

 

 

                           

The empirical mean and variances of these estimates 

from normal distribution are given in Table 3 using 

ρππππ randomly generated normal samples for each 

sample size. 

 

 

 

Table 3. The mean and variances of Ὄ , Ὄ , ί and Ὧ from 

normal with replications of ρππππ    

 ί  Ὧ  Ὄ   Ὄ   

ὲ mea

n 

Var Me

an 

var me

an 

var me

an 

Var 

10 0.0

02 

0.0

700 

0.3

87 

0.0

204 

0.3

46 

0.0

103 

0.1

53 

0.0

04 

20 -

0.0

01 

0.0

410 

0.1

53 

0.0

103 

0.2

81 

0.0

038 

0.2

10 

0.0

033 

30 0.0

01 

0.0

276 

0.0

67 

0.0

069 

0.2

66 

0.0

022 

0.2

33 

0.0

027 

40 -

0.0

01 

0.0

209 

0.0

22 

0.0

050 

0.2

56 

0.0

016 

0.2

44 

0.0

023 

50 0.0

007 

0.0

169 

-

0.0

052 

0.0

041 

0.2

49 

0.0

012 

0.2

51 

0.0

019 

75 0.0

017 

0.0

117 

-

0.0

025 

0.0

026 

0.2

50 

0.0

008 

0.2

50 

0.0

013 

10

0 

0.0

011 

0.0

087 

-

0.0

0.0

020 

0.2

50 

0.0

006 

0.2

50 

0.0

010 

006 

20

0 

0.0

005 

0.0

044 

0.0

004 

0.0

010 

0.2

50 

0.0

003 

0.2

50 

0.0

005 

50

0 

-

0.0

002 

0.0

018 

0.0

002 

0.0

004 

0.2

50 

0.0

001 

0.2

50 

0.0

002 

10

00 

0.0

006 

0.0

009 

0.0

002 

0.0

002 

0.2

50 

.00

006 

0.2

50 

0.0

001 

 

From Table 3 the empirical variances  of Ὄ Ὤ, 

Ὄ Ὤ, Ὄ Ὤ, Ὄ Ὤ, ί and Ὧ are 

 

 ὺὥὶί
πȢωπ

ὲ
ȟ (9) 

 

 ὺὥὶὯ
πȢςπ

ὲ
ȟ (10) 

 ὺὥὶὬ ὺὥὶὬ
πȢπφ

ὲ
ȟ (11) 

and 

 ὺὥὶὬ ὺὥὶὬ
πȢρπ

ὲ
 (12) 

These empirical variances are very good until for small 

sample sizes. Note that the mean and variances of Ὤ and 

Ὤ is omitted because they have the same results as Ὤ 

and Ὤ, respectively.  

 

Figures 7 and 8 show the histogram and H-graph for 

simulated ί and Ὧ using normal data and it is clear that 

the normal distribution gives a very good approximation 

to ί and Ὧ until for small sample sizes such as ρυ and ςυ. 
 

 

 

Figure 6. H-graph for the original data ὔψπȟρπ and ὲ ρππ
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Figure 7. histogram and H-graph for ί statistic using 10000 simulated standard normal data for different sample sizes where Ὄ πȢςτψ, Ὄ

πȢςυς, Ὄ πȢςυφ, Ὄ πȢςττ for ὲ ρυ and Ὄ πȢςτω, Ὄ πȢςυς, Ὄ πȢςυσ, Ὄ πȢςτφ for  ὲ ςυ.   

  

 
Figure 8. Histogram and H-graph for Ὧ statistic using 10000 simulated standard normal data for different sample sizes where Ὄ πȢςρω, Ὄ

πȢςσψ, Ὄ πȢςφυ, Ὄ πȢςχψ for ὲ ρυ and Ὄ πȢςςψ, Ὄ πȢςτυ, Ὄ πȢςυσ, Ὄ πȢςχτ for  ὲ ςυ. 
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5. MIDDLE-SIDES EQUALITY AND  NORMALITY 

TESTS 

A. Middle-sides equality or kurtosis test 

In some applications it is important to test for kurtosis is 

zero (middle-side equality), leptokurtic (sides mass) and 

platykurtic (middle mass) with respect to the normal 

distribution. The null and alternative hypothesizes can be 

written as   

Ὄȡὑ πȟ Ὄȡὑ πȟ Ὄȡὑ πȟ
Ὄȡὑ π   ÁÎÄ   Ὄȡὑ πȟ
Ὄȡὑ π 

By applying the standard results, it can be shown that the 

statistic  

 ᾀ
Ὧ

πȢςπȾὲ
 (13) 

 has an approximate standard normal distribution under 

the null hypothesis of normality. Reject ὑ π if 

ȿᾀȿ ᾀ Ⱦ . A one-sided test of tail inequality rejected 

if  ᾀ ᾀ  and a one-sided test of peak inequality 

rejected if  ᾀ ᾀ. 

1) Power study 

A good test satisfies a nominal Type I error (reject the 

null hypothesis when it is true) and large power (reject 

the null hypothesis when it is false). The statistic ᾀ is 

compared with Anscombe and Glynn (1983) test 

 

 

ᾀ

ρ ςȾωὧ

ρ ςȾὧ ρ ὧςȾὧ τϳ

ȾςȾωὧ Ⱦ  

(14) 

 where 

ὧ φ ψȾὧ ςȾὧ ρ τȾὧ Ⱦ ȟ 
ὧ φὲ υὲ ςȾὲ χ ὲ σ φὲ σ ὲ

υȾὲὲ ς ὲ σ Ⱦȟ 
ὧ ὦ σὲ ρȾὲ

ρ
Ⱦςτὲὲ ς ὲ σȾὲ ρ ὲ
σ ὲ υ Ⱦ  

and Bonett and Seier (2002) test 

 

 ᾀ ὲ ς ύ σȾσȢυτ (15) 

where ύ ρσȢςωÌÎ„ ÌÎὨ, „ Вὼ ὼӶȾὲ and 

Ὠ Вȿὼ ὼӶȿȾὲ. 

For the empirical study the three tests are included and 

the following parameters are to be used ὲ
ςυȟυπȟρππ based on repetitions 10000 and nominal 

type I error ‌ πȢπυ  for one and two tailed test. All 

simulations were done in the software R, the source code 

of the programs is not listed here and it can be obtained 

from the author by request. The normal samples were 

generated in R with the function rnorm()  and all 

random samples were generated independently from each 

other. For the calculation of the test statistic of  ᾀ and ᾀ  

tests the already implemented functions  

anscomb.test()  and bonett.test()  in R 

(package moments) are used. 

The ᾀ test and ᾀ  are known to be a powerful tests; see, 

Bonett (2002). Tables 4 and 5 compare the empirical 

nominal type I error and the empirical power of the two-

sided and one-sided  ᾀ, ᾀ  and ᾀ tests at ‌ πȢπυ for 

all distributions in set A and set B.         

 

Table 4. Empirical type I error and power for two-tailed kurtosis tests and ‌ πȢπυ 
 ὲ ςυ ὲ υπ ὲ ρππ 
 ᾀ ᾀ  ᾀ ᾀ ᾀ  ᾀ ᾀ ᾀ  ᾀ 

Normal 0.052 0.049 0.049 0.054 0.050 0.050 0.052 0.050 0.050 

Set A          

Beta(0.25,0.25) 93.1 90.5 97.2 * 99.9 100 * 100 100 

Beta(0.5,0.5) 81.5 66.0 82.7 99.3 95.9 99.4 * 100 100 

Uniform 44.1 28.7 40.1 88.5 62.4 71.3 99.9 93.5 96.1 

Beta(1.5,1.5) 22.3 14.9 18.5 60.4 34.3 40.0 95.3 68.8 70.1 

Logistic 13.0 12.2 10.2 19.6 18.9 14.7 32.8 32.1 24.6 

Laplace 28.8 34.6 32.1 49.5 63.8 59.0 77.2 90.5 87.6 

Set B          

gl(0,1,-.85,-.85) 88.1 91.3 91.1 100 100 100 100 100 100 

gl(0,1,-.75,-.75) 84.8 88.5 87.1 98 99.3 99.0 99.0 100 100 

gl(0,1,-.5,-.5) 69.4 73.6 69.7 92.1 95.1 93.2 99.6 99.9 99.8 

gl(0,1,-.25,-.25) 44.0 45.5 40.0 70.1 73.9 67.3 91.8 94.4 91.0 

gl(0,1,-.15,-.15) 30.4 30.8 25.1 51.7 54.0 44.3 76.7 80.3 70.1 

gl(0,1,-.10,-.10) 24.1 23.6 19.0 41.1 43.0 33.2 65.9 67.6 55.9 

gl(0,1,-.05,-.05) 18.1 17.4 14.2 30.5 30.2 22.8 50.6 51.0 40.0 

*the program fails to give the results 
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Table 5. Empirical type I error and power for one-tailed kurtosis tests and ‌ πȢπυ 
 ὲ ςυ ὲ υπ ὲ ρππ 
 ᾀ ᾀ  ᾀ ᾀ ᾀ  ᾀ ᾀ ᾀ  ᾀ 

Normal 0.049 0.044 0.047 0.051 0.049 0.050 0.048 0.049 0.051 

Set A          

Beta(0.25,0.25) 94.6 95.3 98.3 99.8 100 100 100 100 100 

Beta(0.5,0.5) 87.7 79.0 89.6 99.7 98.3 99.7 100 100 100 

Uniform 57.9 45.2 53.8 93.6 76.1 82.8 100 97.3 98.1 

Beta(1.5,1.5) 34.5 28.2 31.9 72.9 51.3 54.1 98.1 82.5 82.0 

Logistic 17.8 15.3 13.3 27.5 25.2 20.0 42.2 40.8 34.7 

Laplace 38.6 42.2 40.1 61.7 72.5 69.0 84.3 94.1 93.1 

Set B          

gl(0,1,-.85,-.85) 92.0 93.7 93.7 99.6 99.8 99.9 100 100 100 

gl(0,1,-.75,-.75) 88.4 90.4 90.0 89.7 99.5 99.4 100 100 100 

gl(0,1,-0.5,-0.5) 76.5 78.2 76.1 94.9 96.6 95.5 99.9 99.9 99.9 

gl(0,1,-.25,-.25) 52.5 51.0 45.5 77.1 78.5 72.0 95.0 96.4 94.1 

gl(0,1,-.15,-.15) 38.2 36.0 31.8 61.4 60.6 53.0 84.4 85.8 78.7 

gl(0,1,-.10,-.10) 32.2 30.1 26.0 50.0 49.5 41.2 74.1 74.7 66.0 

gl(0,1,-.05,-.05) 23.9 21.9 19.0 39.2 37.3 30.2 59.1 58.1 49.2 

 

Tables 4 and 5 show the empirical one-tail and two-tailed 

type I error rate and power for tests. For type I error, the 

ᾀ test is slightly liberal for all sample sizes in two-tailed 

test and very close to nominal value for all samples sizes 

in one-tail test, ᾀ  test is very close to nominal value for 

all sample size, one-tail test and two-tailed test except for 

ὲ ςυ in one-tail test it is less than nominal value while  

ᾀ test is very close to nominal value for all sample sizes, 

one-tail test and two-tailed test except for ὲ ςυ in one-

tail test it is conservative. 

For the power, Tables 4 and 5 show that the ᾀ has the 

most power in the distributions that have ὑ in the range 

πȢρφȟπȢρφ and competitive to ᾀ  in the range 

πȢρφȟρ while it is the weakest in the range πȢρφȟρ, 

the ᾀ  has the most power in the distributions which have 

ὑ in the range πȢρφȟρ and competitive to ᾀ in the range 

πȢρφȟπȢρφ while it is the weakest in the range 

πȢρφȟρ and the ᾀ  shows the most power in the 

distributions which have ὑ in the range πȢρφȟρ and 

very competitive to ᾀ  in the range πȢρφȟρ while it is 

the weakest in the range πȢρφȟπȢρφ. Therefore it can 

conclude that the good test for kurtosis can be applied as  

 

 ᾀ    ÉÆ  ὑ πȢρφ 
                ᾀ   ÉÆ πȢρφ ὑ πȢρφ 

 ᾀ  ÉÆ  ὑ πȢρφ   
B. Omnibus normality test 

One of the most used distributions in statistical analysis 

is the normal distribution. Consequently, the 

development of tests for departures from normality 

became an important subject of statistical research. There 

are many approaches for normality test and the most 

famous approach consists of testing for normality using 

the third (‍) and fourth (‍) moments of observations 

ὼȟȣȟὼ known as sample skewness ὦ and sample 

kurtosis ὦ. Tests that can only detect deviations in either 

the skewness or the kurtosis are called shape tests. The 

test that are able to cover both alternatives are called 

omnibus test.  The probably most popular omnibus test is 

the Jarque-Bera test (1980) that is defined as 

  

 ὐὄ
ὲ

φ
ὦ

ὦ σ

τ
 (16) 

This is called JB statistic and has asymptotically … 

distributed; see, Jarque and Bera (1980, 1987), 

Thadewald and Buning (2007) and Gel and Gastwirt 

(2008).  

The proposed omnibus normality test based on MADmed 

is defined as  

 

 ὔ ὔ
ί

ὺὥὶί

Ὧ

ὺὥὶὯ

ὲ ί

πȢωπ

ὲ Ὧ

πȢςπ
 (17) 

   

Under the null hypothesis and assuming that the two 

summands are independent then ὔwould be chi-squared 

(…) distributed with two degrees of freedom. Figure 9 

makes an attempt to show the correlation of ί and Ὧ from 

several sample sizes. For all sample sizes there is no 

structure to recognize in the graph. Also, the convergence 

of the ὔ  statistic to its asymptotic distribution is tried to 

be visualized in Figure 10. For each histogram in this 

figure, the ὔ  statistic was calculated for ά ρππππ 

realizations of standard normally generated random 

samples of the corresponding sample size ὲ. 

Additionally, the theoretical probability distribution 

function of chi-squared distribution with 2 degrees of 

freedom is plotted in each histogram so that one is able to 

compare the goodness-of-fit of the empirical distribution 

with the theoretical distribution. For all sample sizes it is 

clear that the chi-squared with 2 degree of freedom gives 

a very good fit to statistic ὔ . This supports the 

assumption of independence between ί and Ὧ. 
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Figure 9. Scatter plot of ί and Ὧ for ρπππ randomly generated normal samples for each sample size.  

  

 
Figure 10. Histogram of the ὔ statistic for several sample sizes together with the pdf of the … 

distribution. For each sample size, 10000 standard  normal samples were generated. 
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Table 6. Empirical type I error and power for normal tests using ‌ πȢπυ 

    ὲ ςυ     

Alternative Ὧ ὔ JB Alternative ί Ὧ ὔ JB 

Normal 0 0.049 0.031 Beta (1,0.5) -0.333 -0.155 60.6 6.2 

Beta(0.25,0.25) -0.371 98.8 0.2 Beta (2,1) -0.207 -0.092 24.7 3.5 

Beta(0.5,0.5) -0.264 78.0 0.1 Beta (3,2) -0.086 -0.063 9.6 1.9 

Uniform -0.155 31.1 0 Chi-square (1) 0.645 0.141 86.9 84.2 

Beta(1.5,1.5) -0.107 15.4 0 Chi-square (2) 0.442 0.058 55.5 61.2 

Logistic 0.056 9.1 12.0 Chi-square (4) 0.306 0.026 30.0 38.5 

Laplace 0.165 27.1 27.1 lognormal (0,1) 0.575 0.215 81.0 83.8 

gl(0,1,-.85,-.85) 0.653 90.5 87.6 lognormal (0,0.5) 0.306 0.059 31.4 43.6 

gl(0,1,-.75,-.75) 0.568 85.9 83.4 Weibull (.5,1) 0.814 0.379 98.1 96.4 

gl(0,1,-0.50,-0.50) 0.360 67.1 67.5 Weibull (1,1) 0.442 0.058 57.2 60.5 

gl(0,1,-0.10,-0.10) 0.105 16.8 23.3 Weibull (2,1) 0.030 -0.020 5.1 1.9 

    ὲ υπ     

Normal 0 0.049 0.040 Beta (1,0.5) -0.333 -0.155 90.1 27.1 

Beta(0.25,0.25) -0.371 100 64.1 Beta (2,1) -0.207 -0.092 47.4 10.9 

Beta(0.5,0.5) -0.264 98.6 2.6 Beta (3,2) -0.086 -0.063 15.9 1.0 

Uniform -0.155 61.4 0 Chi-square (1) 0.645 0.141 99.0 99.0 

Beta(1.5,1.5) -0.107 30.8 0 Chi-square (2) 0.442 0.058 85.8 95.1 

Logistic 0.056 12.8 22.8 Chi-square (4) 0.306 0.026 52.6 77.1 

Laplace 0.165 51.5 50.2 lognormal (0,1) 0.575 0.215 98.3 99.6 

gl(0,1,-.85,-.85) 0.653 99.6 99.1 lognormal (0,0.5) 0.306 0.059 56.1 80.1 

gl(0,1,-.75,-.75) 0.568 98.9 98.5 Weibull (.5,1) 0.814 0.379 100 100 

gl(0,1,-0.5,-0.5) 0.360 92.0 92.4 Weibull (1,1) 0.442 0.058 85.0 95.3 

gl(0,1,-0.10,-0.10) 0.105 28.3 43.4 Weibull (2,1) 0.030 -0.020 15.7 20.2 

    ὲ ρππ     

Normal 0 0.051 0.044 Beta (1,0.5) -0.333 -0.155 99.8 99.7 

Beta(0.25,0.25) -0.371 100 100 Beta (2,1) -0.207 -0.092 80.1 74.4 

Beta(0.5,0.5) -0.264 100 100 Beta (3,2) -0.086 -0.063 30.0 5.6 

Uniform -0.155 92.7 56.2 Chi-square (1) 0.645 0.141 100 100 

Beta(1.5,1.5) -0.107 60.1 9.0 Chi-square (2) 0.442 0.058 99.1 100 

Logistic 0.056 20.1 37.0 Chi-square (4) 0.306 0.026 84.2 99.1 

Laplace 0.165 83.8 78.6 lognormal (0,1) 0.575 0.215 100 100 

gl(0,1,-.85,-.85) 0.653 100 100 lognormal (0,0.5) 0.306 0.059 84.3 98.9 

gl(0,1,-.75,-.75) 0.568 100 100 Weibull (.5,1) 0.814 0.379 100 100 

gl(0,1,-0.5,-0.5) 0.360 99.6 99.6 Weibull (1,1) 0.442 0.058 99.0 100 

gl(0,1,-0.10,-0.10) 0.105 50.0 68.8 Weibull (2,1) 0.030 -0.020 28.1 49.8 

1) Power study   

 

The statistic ὔ  is compared with the most popular and 

used moment test for normality the Jarque-Bera test 

(1980) that defined in equation (15). For the empirical 

study the two tests for normality are included and the 

following parameters are to be used ὲ ςυȟυπȟρππ 
based on repetitions 10000 and nominal type I error 

‌ πȢπυ.  All simulations were done in the software R 

and the function of the test statistic ὐὄ is already 

implemented in R (package moments) jarque.test ().  

 

Table 6 shows the results of simulation study for several 

symmetric and asymmetric distributions. For type I error, 

the empirical Type I error for ὐὄ test is quite less than 

nominal value for small sample sizes and conservative 

for large sample size while empirical Type I error for the 

test ὔ  is very close to nominal value for all used sample 

sizes. For the power, Table 6 shows that ὐὄ has the most 

power in the distributions that have kurtosis in the range 

πȢπςυȟπȢσφ while the statistic ὔ  is the most power 

in the distributions that have Ὧ ranges ρȟπȢπςυ and 

πȢσφȟρ regardless of the skewness value. 

 

6. CONCLUSION 

Two measures of shape were introduced with graphical 

display based on mean absolute deviation about median. 

The measure of skewness was based on the partitions of 

MADmed into two parts to obtain zero for any symmetric 

distribution while the proposed measure of middle-sides 

equality was based on the partitions of MADmed into four 

parts in terms of specific percentiles to get zero for 

normal distribution. The middle-sides equality measure 
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had clear meaning where the middle mass is compared 

with sides mass with respect to normal distribution.    

Making a decision about goodness of fit for a data 

without looking at a graphic makes the investigation not 

complete. A famous and often cited quote of J.W. Tukey 

“there is no excuse for failing to plot and look”. Based on 

four partitions of MADmed an informative graph was 

produced that could provide a more insight into the 

nature of the data and assess goodness of fit for a data set 

to a theoretical model to know if the assumption of a 

common distribution is justified. The H-graph enriched 

the visual information offered by the histogram and 

boxplot.  

The tests for kurtosis (ᾀ) and normality (ὔ ) were 

simple, easy to compute, did not require special tables of 

critical values where the chi-squared distribution with 2 

degree of freedom is used and had a good power and 

Type I error control in comparisons with Anscombe-

Glynn, Bonett-Seier and Jarque-Bera tests. With respect 

to kurtosis test, the statistic ᾀ was more powerful than 

ᾀ  and ᾀ  in platykurtic distributions and very 

competitive to ᾀ  in leptokurtic distributions. With 

respect to normal test ὔ  was more powerful than 

Jarque-Bera’ test in all kurtosis ranges of distributions 

except the  
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