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Abstract: In this paper k th upper record values from modified Weibull distribution has been studied and some new recurrence 

relations satisfied by single and product moments are derived. The results obtained are the generalization of those obtained by Sultan 

[9] and Balakrishnan and Chan [2]. Further, conditional expectation and recurrence relation for single moments are used to 

characterize the said distribution and some particular cases are also discussed. 

 

Keywords: Order statistics, k th upper record values, Single moments, Product moments, Recurrence relations, Modified Weibull 

distribution and characterization.

1. INTRODUCTION 

 Let }1,{ nX n  be a sequence of independent and identically distributed )(iid  random variables with distribution 

function )(df )(xF  and probability density function )( pdf )(xf . The j th order statistic of a sample nXXX ,,, 21   

is denoted by njX : . For a fixed 1k  we define the sequence }1,{ )( nU k
n  of k th upper record times of 

}1,{ nXn  as follows: 
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For 1k  and ,2,1n , we write nn UU )1(
. Then }1,{ nUn  is the sequence of record times of }1,{ nXn . The 

sequence }1,{ )( nY k
n , where )(

)(
k

nU

k
n XY   is called the sequence of k th upper record values of }1,{ nXn . For 

convenience, we shall also take 0
)(

0 
k

Y . Note that for 1k  we have 1,)1(  nXY
nUn , which are the record values 

of }1,{ nXn  (Ahsanullah [1]). 

Then the pdf  of 
)(k

nY  and the joint pdf  of 
)(k

mY  and 
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nY  are as follows: 
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where,   )(1)( xFxF  . 

(Dziubdziela and Kopociński [3], Grudzień [4]). 

 In this paper, we have established some simple recurrence relations for single and product moments of k th upper 

record values from modified Weibull distribution. Further, various deductions and particular cases are discussed and 
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two theorems for characterizing this distribution based on recurrence relation for single moments and conditional 

expectation of k th upper record values are given. 

 A random variable X  is said to have modified Weibull distribution (Lai et al. [7]) if its pdf  is of the form 

 )exp()()( 1 xx exexxxf    
,   0x , 0 , 0  and 0                (1.3) 

with the corresponding df  

 )exp(1)( xexxF  ,   0x , 0 , 0  and 0 .                  (1.4) 

It is easily observe that 

 )()](ln[)()( xFxFxxfx   .                     (1.5) 

 Type I extreme value or log gamma or log Weibull and Weibull distributions are considered as special cases of this 

distribution when 0  and 0 , respectively.  The Rayleigh distribution arises when 2  and 0 .  The 

exponential distribution is obtained when 1  and 0 . 

 The relation in (1.5) will be exploited to derive some simple recurrence relations for the moments of k th upper 

record values from the modified Weibull distribution and then used to characterize this distribution. 

 
2. RELATIONS  FOR  SINGLE MOMENTS 

 

Theorem 2.1. Fix a positive integer 1k , for 1n , kn   and ,1,0j , 
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Proof. For 1n  and ,1,0j , we have from (1.1) and (1.5) 
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Upon integrating by parts, we obtain 
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Substituting for jI  and 1jI  in (2.2) and simplifying the resulting expression, we derive the relation given in (2.1). 

 

Remark 2.1. 

i) Setting 0  in (2.1), we get the result for single moments of k th upper record values obtained by Selim and 

Salem [8] for type I extreme value distribution or log gamma or log Weibull distribution. 

ii) Putting 0  in (2.1), we deduce the recurrence relation for single moments of k th upper record values for 

Weibull distribution in the form 

 
jk

n
jk

n YE
n

nj
YE )()( )()(

1 






 





. 

iii)  Putting 0  and 1  in (2.1), the recurrence relation for single moments of k th upper record values from 

exponential distribution can be obtained as 
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iv) Setting 0  and 2  in (2.1), we obtain a recurrence relation for single moments of k th upper record values 

for Rayleigh distribution in the form 
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Corollary 2.1. The recurrence relation for single moments of upper record values from the modified Weibull 

distribution has the form 
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The above relation was also shown by Sultan [9]. 

Remark 2.2. 

i)  Setting 0  in (2.3), we get the recurrence relation for single moments of upper record values from type I extreme 

value distribution as obtained by Selim and Salem [8]. 

ii)  If 0  in (2.3), the result for single moments of upper record values obtained by Balakrishnan and Chan [2] for 

Weibull distribution is deduced. 

iii) If 0  and 1  in (2.3), the result for single moments of upper record values is deduced for exponential 

distribution, which verify the result obtained by Balakrishnan and Chan [2]. 

iv) If 0 and 2  in (2.3), the result for single moments of upper record values is deduced for Rayleigh 

distribution as obtained by Balakrishnan and Chan [2]. 
 

 

3. RELATIONS  FOR  PRODUCT MOMENTS 

Theorem 3.1.  For 1m , km   and ,1,0, ji , 
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and for 21  nm ,  ,1,0, ji , 
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Proof. From (1.2), for 11  nm  and ,1,0, ji , we have 
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Integrating )(yI  by parts and using (1.5), we obtain 

 dx
xF

xf
yFxFxFx

ì

mn
yI mnm

y
i

)(

)(
)](ln)([ln)](ln[

)1(
)( 2

0




 


 

   dx
xF

xf
yFxFxFx

i

m mnm
y

i

)(

)(
)](ln)([ln)](ln[ 11

0

  


 

   dx
xF

xf
yFxFxFx

ì

mn mnm
y

i

)(

)(
)](ln)([ln)](ln[

1

)1( 2

0

1  



 


 

   dx
xF

xf
yFxFxFx

ì

m mnm
y

i

)(

)(
)](ln)([ln)](ln[

1

11

0

1  


 


. 

 



 

 

78  M.A. Khan & R.U. Khan :  K-th Upper Record Values from Modified Weibull Distribution … 

 

 

http://journals.uob.edu.bh 

 Substituting this expression into (3.3) and simplifying, it leads to (3.2). Proceeding in a similar manner for the case 

1 mn , the recurrence relation given in (3.1) can easily be established. 

For 0j , the result for product moments in (3.2) reduces to the relation for single moments as given in (2.1). 

Remark 3.1. 

i) Setting 0  in (3.2), the relation for the product moments in Selim and Salem [8] for k th upper record values 

from the type I extreme value distribution is deduced. 

ii)  Putting 0  in (3.2), we obtain the recurrence relation for the product moments of k th upper record values for 

Weibull distribution in the form 
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iii)  Setting 0  and 1  in (3.2), we get the recurrence relation for the product moments of k th upper record 

values from exponential distribution has the form 
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iv) Setting 0  and 2  in (3.2), the result for product moments of k th upper record values is deduced for 

Rayleigh distribution as 
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Corollary 3.1. The recurrence relation for the product moments of upper record values from the modified Weibull 

distribution has the form 
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A similar result was obtained by Sultan [9]. 
 

Remark 3.2. 

i)  Setting 0  in (3.4), the result for the product moments of upper record values is deduced for type I extreme value 

distribution, established by Selim and Salem [8]. 

ii)  If 0  in (3.4), the result for the product moments of upper record values as obtained by Balakrishnan and Chan 

[2] for Weibull distribution is deduced. 

iii)  If 0  and 1   in (3.4), the result for the product moments of upper record values is deduced for exponential 

distribution, which verify the result obtained by Balakrishnan and Chan [2]. 

iv)  If 0  and 2  in (3.4), the result for the product moments of upper record values is deduced for Rayleigh 

distribution as obtained by Balakrishnan and Chan [2]. 

4. CHARACTERIZATIONS 

Theorem 4.1. For a positive integer 1k  and j  be a non-negative integer, a necessary and sufficient condition for a 

random variable X  to be distributed with pdf  given by (1.3) is that 
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for ,2,1n  , kn  . 



 

 

                                                                            Int. J. Comp. Theo.  Stat. 3, No. 2, 75-80 (Nov-2016) 79  

 

 

http://journals.uob.edu.bh 

Proof. The necessary part follows from (2.1). On the other hand if the recurrence relation in (4.1) is satisfied, then on 

rearranging the terms in (4.1) and using (1.1), we have 
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Differentiating both the sides of (4.3), we get 
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Integrating right hand side  in (4.4) by parts and using the value of )(xh  from (4.3), we find that 
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Applying now a generalization of the Müntz-Szász Theorem (see for example Hwang and Lin [6]) to (4.5), we have 
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which proves that 

 )exp(1)( xexxF  ,    0x , 0 , 0  and 0 . 

 

Theorem 4.2. Let X  be a non-negative random variable having an absolutely continuous df )(xF  with 0)0( F  and 

1)(0  xF  for all 0x , then 
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We have Gradshteyn and Ryzhik [5] pp. 551 
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On using (4.9) in (4.8), we can obtain the result given in (4.6). 
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To prove sufficient part, we have 
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Differentiating (4.10) both the sides with respect to x , we get 
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Integrating both sides of (4.11) with respect to x  between ),0( y , the sufficiency part is proved. 

Remark 4.1. Theorems 4.1, 4.2 can be used to characterize the type I extreme value, Weibull, exponential and Rayleigh 

distributions by setting parameters. 
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