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Abstract: A probability distribution can be characterized through various methods. In this paper, by using truncated moment, we 

present some characterizations of a new class of generalized Pearson distribution introduced by Shakil and Singh [12]. 
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1. INTRODUCTION  
 

A probability distribution can be characterized through various methods, see, for example, Ahsanullah et al. [1], 

among others. Since the characterizations of probability distributions play an important part in the determination of 

distributions by using certain properties in the given data, there has been a great interest, in recent years, in the 

characterizations of probability distributions by truncated moments. For example, the development of the general theory 

of the characterizations of probability distributions by truncated moment began with the work of Galambos and Kotz 

[5]. Further development continued with the contributions of many authors and researchers, among them Kotz and 

Shanbhag [11], Glänzel et al. [7], and Glänzel [6] are notable. Most of these characterizations are based on a simple 

relationship between two different moments truncated from the left at the same point. As pointed out by Glänzel [6], 

these characterizations may serve as a basis for parameter estimation. The characterizations by truncated moments may 

also be useful in developing some goodness-of-fit tests of distributions by using data whether they satisfy certain 

properties given in the characterizations of distributions. For example, as pointed out by Kim and Jeon [10], in actuarial 

science, the credibility theory proposed by Buhlmann [4] allows actuaries to estimate the conditional mean loss for a 

given risk to establish an adequate premium to cover the insured’s loss. In their paper, Kim and Jeon [10] have 

proposed a credibility theory based on the truncation of the loss data, or the trimmed mean, which also contains the 

classical credibility theory of Buhlmann [4] as a special case. It appears from the literature that not much attention has 

been paid to the characterization of the said new class of generalized Pearson distribution distribution introduced by 

Shakil and Singh [12], except the papers of Bondesson [2] and Hamedani [9], in which they have provided the 

characterizations of certain families of generalized gamma convolution (GGC) distributions, known as class  of 

distributions in honor of Professor O. Thorin, cf. Bondesson [3]. We would like to point out that the class of 

distributions introduced by Shakil and Singh [12] is quite different from the class of distributions introduced and 

characterized by Bondesson [2] and later by Hamedani [9]. To see the difference, we refer the interested reader to the 

respective papers of Bondesson [2], Hamedani [9], and Shakil and Singh [12]. In this paper, we have established a 

characterization by truncated first moment of a new class of generalized Pearson distribution introduced by Shakil and 

Singh [12].  

The paper is organized as follows. Shakil-Singh distribution [12] and some of its properties are discussed in 

Section 2. We present our characterization results in Section 3. Concluding remarks are presented in Section 4.  
 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
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2. THE NEW CLASS OF GENERALIZED PEARSON DISTRIBUTION 
 

For a positive continuous random variable X, Shakil and Singh [12] define a new class of univariate continuous 

distributions, which we shall call hereafter as Shakil-Singh distribution, based on the following generalized Pearson 

differential equation 
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density function (pdf) of Shakil-Singh distribution is given by  
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   is known as Kummer’s (or degenerate hypergeometric) function 

of the second kind. We will call (2) hereafter as Shakil-Singh distribution. The cumulative distribution function (cdf ) of 

Shakil-Singh distribution is given as follows 
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1,  denotes the incomplete gamma  function, and C  denotes the normalizing constant given 

by (2). The nth  moment is given by   
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As pointed out by Shakil and Singh [12], by a simple transformation of the variable X  or by taking special values of 

the parameters 0,,;0,,   , number distributions are special cases of their distribution as stated 

below. 

i) Pearson III Distribution (when 0 ).  

 

ii) Pearson VIII Distribution (when 0,0   ). 

 

iii) Pearson IX Distribution (when 0,0   ). 

 

iv) Pearson X Distribution (when 0,0   ).  

 

v) A Special Case of the pdf of the Shakil-Singh distribution (when 0 ) is given by 
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vi) It can easily be seen that, by a simple transformation of the variable X  or by taking special values of the 

parameters 0,,;0,,   , the pdf of the above special case (v) of our proposed distribution, 

when 0 , can be expressed as the pdf of the product of the pdf’s of the exponential and some members of the 

family of Burr distributions (such as Lomax, or Pareto Type I, or Pareto Type II distributions).  

 

For a detailed treatment of the above distribution, we refer the interested reader to Shakil and Singh [12].  

 

3. CHARACTERIZATIONS  

 

For proving our main results, we will need some assumptions and lemmas which are provided in Subsection 3.1 as 

Assumptions 3.1.1, and Lemmas 3.1.1 and 3.1.2. We provide in Subsection 3.2, the proposed characterizations by 

truncated moment of the Shakil and Singh distribution in Theorems 3.2.1 and 3.2.2. 

 

3.1. Assumption and Lemmas 

Assumptions 3.1.1: Suppose that X  be an absolutely continuous random variable with cumulative distribution 

function (cdf) )(xF and the probability density function (pdf)  xf . Let   0|inf  xFx , and 

  1|sup  xFx . We assume that  XE  exists and  xf  be a differentiable function for all x in  , . 
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the condition   1
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Note: Since cdf )(xF is absolutely continuous (with respect to Lebesgue measure), then by Radon-Nikodym Theorem 

the pdf  xf  exists and hence 
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exists. Also, note that in the above-stated Lemma 3.1.1, the left 

truncated conditional expectation of X  considers a product of reverse hazard rate and another function of the truncated 

point. 
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From the above equation, we obtain 
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dxxf . This completes the proof of Lemma 3.1.2. 

3.2. Main Characterization Results 

 

   In this sub-section, we provide in Theorems 3.2.1 and 3.2.2, the proposed characterizations by truncated moment of 

Shakil and Singh distribution, with the pdf (2) and the cdf (5). 

 

Theorem 3.2.1: If the random variable X  satisfies the Assumptions 3.1.1, with  0   and   , then 
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Integrating both sides of the above equation with respect to x , we obtain 
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where 0,,;0,,   .  This completes the proof of Theorem 3.2.1.    

 

Theorem 3.2.2: If the random variable X  satisfies the Assumptions 3.1.1, with  0   and   , then 
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the (upper) incomplete gamma function, if and only if X  has the distribution with the pdf (2). 
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Consequently,      xrxhxXXE  , where  
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Theorem 3.2.2 follows from Lemma 3.1.2. 
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where 0,,;0,,   . This completes the proof of Theorem 3.2.2. 

4. CONCLUDING REMARKS AND SOME RECOMMENDATIONS 

   In this paper, we have considered a new class of generalized Pearson distribution introduced by Shakil and Singh 

[12], and provided its characterization by truncated moment method.  We hope the findings of our paper may be useful 

in developing some goodness-of-fit tests of distributions by using data whether they satisfy certain properties given in 

the characterizations of distributions. As pointed out by Glänzel [6], these characterizations may serve as a basis for 

parameter estimation.  For example, in actuarial science, the credibility theory proposed by Buhlmann [4] allows 

actuaries to estimate the conditional mean loss for a given risk to establish an adequate premium to cover the insured’s 

loss. In their paper, Kim and Jeon [10] have proposed a credibility theory based on the truncation of the loss data, or the 

trimmed mean, which also contains the classical credibility theory of Buhlmann [4] as a special case. Since the 

characterizations of probability distributions by truncated moments play an important part in the determination of 

distributions by using certain properties in the given data, it is hoped that the findings of our paper, combined with the 

proposed credibility theory of Kim and Jeon [10] based on truncation of the loss data, or the trimmed mean, may be 

useful for researchers in the fields of probability, statistics, and other applied sciences. In view of these assertions, the 

interested readers are strongly recommended to the papers of Buhlmann [4] and Kim and Jeon [10] for some numerical 

illustration based on the truncation of the loss data, or the trimmed mean, and how  our proposed characterizations may 

be applied to these problems in credibility theory.  
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