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Abstract: In this paper, the characterization of Burr -Type X distribution by conditional expectation of function of dual generalized 

order statistics based on non-adjacent dual generalized order statistics are obtained. Further, the  results of  reversed order statistic, 

order statistic and  lower record values are discussed. 
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1. INTRODUCTION  

 Kamps [12] introduced the concept of the generalized order statistics )(gos as a general framework models of 

ordered random variables. Sequential order statistic, upper record statistic, progressively Type-II censored order 

statistics and some other ordered random variables can be considered as a special cases of the gos . These models can 

be effectively applied, e.g., in reliability theory. Although the gos  contains many useful models of ordered random 

variables, the random variables that are decreasingly  ordered cannot be integrated into this frame. Consequently, this 

model is inappropriate to study. Using the concept of gos ., Burkschat et al. [7] introduced the concept of dual 

generalized order statistics )(dgos  as a systematic approach to some models of decreasingly ordered random 

variables. 

Dual generalized order statistics represents a unification of models of decreasingly ordered random variables e.g., 

reversed order statistic, lower records, lower k- records and lower Pfeifer records. 

Let  )(xF  be an absolutely continuous distribution function  )(df  with the probability density function )( pdf )(xf

Further, let Nn , 2n , 0k , ,),,,(~ 1

121



  n

nmmmm  





1n

rj

jr mM , such that 

0 rr Mrnk ,   }1,,2,1{  nr  . Then, ),~,,( kmnrX  , nr ,,2,1   are called )(dgos  if 

their joint pdf  is given by 

 )()]([)()]([ 1
1

1

1

1

n

k

n

n

i

i

m

i

n

j

j xfxFxfxFk i 




























                                    (1.1) 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684


 

 

38          M. I. Khan & M. A. R. Khan:  Characterization of  Burr-Type X Distribution Based on …  

 

 

http://journals.uob.edu.bh 

for )0()1( 1
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1   FxxxF n . 

Throughout the paper, we assume mmm ji  ,  1,,2,1,  nji  . 

The  pdf of the  
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The joint  pdf of the 
thr  and 

ths dgos  is given by, 
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 An absolutely continuous random variable )(rv X  has a Burr -Type X distribution if its cumulative distribution 

function )(cdf  )(xF  is as follows, 

          
 ]1[)(

2xexF   ,    0x , )0,0(   ,                                                                                (1.4) 

where   ,    are shape and scale parameters respectively. 

The corresponding pdf )(xf  is given by, 
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22    xx exexf  ,    0x , )0,0(   .                                        (1.5) 

 The above  distribution is member of  the family of Burr distribution which  appeared  in 1942, Burr [4]. 

 The pdf  of Burr -Type X distribution can take different shapes. It is a right skewed unimodal  function for 
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 It is found that this distribution fits many practical  data due its flexibility, in several areas of applications such as 

lifetime tests, health, agriculture, biology and social sciences. For more details, see (Ahmad et al.[1], Raqab and Kundu 

[11] and Surles and Padgett [5]). 

Characterization of probability distributions play an important role in probability and statistics. Different methods are 

used for the characterization of continuous distributions . Characterization based on conditional expectations is one of 

them. see, for example, Khan et al.[2] among others.  

 Conditional expectations of dual generalized order statistics are extensively used in, characterizing of distributions. 

For detailed survey and discussion of characterization results through dgos one may refer to Ahsanullah [6], Mbah and 

Ahasanullah [3], Faizan and Khan [8], Tavanagar [10] and Khan and Faizan [9].  

 It appears from literature that no attention has been paid on the characterization of Burr –Type X distribution 

through conditional expectations of  dual generalized order statistic. 

 In this paper, we present a characterization of Burr-Type X distribution through conditional expectations of 

function of dual generalized order statistics conditioned on non-adjacent dgos . 

2. CHARACTERIZATION OF DISTRIBUTION 

Let ),,,( kmnrX  , nr ,,2,1   be 
thr dgos , then the conditional pdf  of ),,,( kmnsX    given 

nsrxkmnrX  1,),,,( , in view of (1.2) and (1.3) is, 
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Theorem 2.1.  Let ),,,( kmnrX  , nr ,,2,1   be the 
thr dgos  from a  continuous   population with the 

)(xFdf  and the )(xfpdf . Then for nsr 1 ,  
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if and only if  
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Remark 2.1. Putting 1,0  km , in  the Theorem 2.1, it reduces to reversed  order statistic as follows, 

            rs

x

rsnr

X
beaxXeE

ns

||:

2
2
:

]|[   
,  

where  
 




s

rj

rs
jn

jn
a

1

|
1)1(

)1(




  and  ]1[ || rsrs ab  . 

And for order statistic, it will reduce to 

           rs

x

rsnrn

X
beaxXeE

nsn

||:1

2
2

:1

]|[  



  
, 

 as nrnnr XX :1

'

:  ,  where nrX :  is the 
thr  order statistic.  

Remark 2.2. As 1m , in  the Theorem 2.1, it reduces to lower record statistic as follows,         
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Remark 2.3. At rs   Theorem 2.2 reduces to Theorem 2.1. 
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