
 

 

 

International Journal of Computational and Theoretical Statistics 
ISSN (2210-1519)  

Int. J. Comp. Theo.  Stat. 5, No. 1 (May-2018) 
 

 

E-mail address: sg_parekh@yahool.com, dipa_parekh@yahoo.co.in 

http://journals.uob.edu.bh 

 

Some Univariate Continuous Frailty Models 
 

S. G. Parekh
 1

 and S. R. Patel
2 

 
1 Faculty of Business Administration, Dharmsinh Desai University, Nadiad, India 

2 Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, India 

 

Submitted Nov 5, 2017, Revised January 16, 2018,  Accepted Feb 9, 2018, Published May 1,  2018 

 
 

Abstract: In this paper we have considered some univariate distributions and their frailty models, such as Gamma frailty model, 

Weibull frailty model, generalized exponential frailty model, Exponential power distribution as frailty model, Log normal frailty 

model. In all these frailty distributions we have obtained maximum likelihood estimates of the parameters of the simulated data and 

used M. C. Method. 
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1. INTRODUCTION 

Parekh et.al. (2016) have considered discrete frailty models, we extended the frailty models for different continuous 

distributions such as Gamma, Weibull, Generalized exponential, Exponential power and Log normal frailty models. 

Section 2 deals with Gamma frailty model in which we have derived m.l.e. of the parameters of simulated data. In 

section 3 we considered Weibull frailty model. Section 4 discusses Generalized exponential frailty model. Section 5 

deals with Exponential power distribution as frailty model and in section 6 we considered Log normal frailty model. 
 

2.  GAMMA FRAILTY MODEL 

The gamma distribution has been widely applied as a mixture distribution (e.g. Vaupel et al., 1979; Congdon, 1995; 

Hougaard, 2000). From a computational and analytical point of view, it fits very well to failure data because it is easy to 

derive the closed form expressions of unconditional survival, cumulative density and hazard function. This is due to the 

simplicity of the Laplace transform and due to its uses in most applications. It is a flexible distribution that takes a 

variety of shapes as 𝑘varies such as when 𝑘= 1, it turns out to exponential distribution and when kis large, it takes a 

normal distribution. The use of gamma distributions for frailties in time-to-event data analysis is suggested by Abbring 

and van den Berg (2005). The gamma distribution under mild regularity assumptions, a large class of frailty model 

converges to it. 

As frailty cannot be negative and the gamma distribution and also the log-normal distribution is the most commonly 

used distributions to model variables that are necessarily positive. Furthermore, it turns out that the assumption that 

frailty at the beginning of the follow-up is gamma distributed yields some useful mathematical results. This includes the 

following 

(1) Frailty among the survivors at any time t is gamma distributed with the same value of the shape parameter 𝑘 as 

at birth or at beginning of follow-up. The value of the second parameter, however, is now given by  𝜆 + 𝐻0(𝑡), where 

𝐻0(𝑡) denotes the cumulative baseline hazard function. 

(2) Frailty among those who die at any age t is also gamma distributed, with the same parameter 𝜆 + 𝐻0(𝑡)as 

among those surviving to t but with shape parameter (k+1). In particular, it follows that the mean frailty among the 

deaths at age t is 
𝜆+1

𝜆+𝐻(𝑡)
 compared to 

𝜆

𝜆+𝐻(𝑡)
among the survivors at the same age. This demonstrates the selection by 

death of the high risk individuals, e.g. the individuals with high values of frailty  𝑍. When k = 𝜆  in the gamma 

distribution 𝐸𝑍 = 1 and   
1

𝜆
= 𝜎2,  the variance of the frailty variable.  

Considering 𝑋 has frailty distribution as 𝐺(𝜆, 𝑘) where the p.d.f. of  𝐺(𝜆, 𝑘) is 
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𝐺(𝑡; 𝜆, 𝑘) =
𝜆𝑘

Γ𝑘
𝑡𝑘−1𝑒−𝜆𝑡, 𝑡 > 0, 𝜆 > 0, 𝑘 > 0 

and Laplace transform is  

        𝐿(𝑠) = 𝐸𝑒−𝑆𝑇 

   =
𝜆𝑘

Γ𝑘
∫ 𝑒−𝑠𝑡∞

0
𝑡𝑘−1𝑒−𝜆𝑡𝑑𝑡 

   =
𝜆𝑘

Γ𝑘
∫ 𝑒−(𝑠+𝜆)𝑡∞

0
𝑡𝑘−1𝑑𝑡 

   =
𝜆𝑘

Γ𝑘
.

Γ𝑘

(𝑠+𝜆)𝑘 

   = (
𝜆

𝑠+𝜆
)

𝑘

 

   = (
𝑠+𝜆

𝜆
)

−𝑘

 

   = (1 +
𝑠

𝜆
)

−𝑘

 

Now,  

       𝑆(𝑡) = 𝑒−𝐻(𝑡) 

                             = 𝐿(𝐻(𝑡)) 

        ∴ 𝐿(𝐻0(𝑡)) = (1 +
𝐻0(𝑡)

𝜆
)

−𝑘

 

Since, 𝑘 = 𝜆 =
1

𝜎2 

Therefore the unconditional survival function and hazard function are 

𝑆(𝑡)  =  𝐿(𝐻0(𝑡)) = (1 + 𝜎2𝐻0(𝑡))
− 

1

𝜎2 and ℎ(𝑡) =
ℎ0(𝑡)

1+𝜎2𝐻0(𝑡)
                                                 (2.1) 

 There are many applications of the gamma frailty model. In a very early paper Lancaster (1979) suggested this 

model for the duration of unemployment spells and Vaupel et al. (1979) used it to correct life tables of heterogeneous 

populations. Aalen (1987) studied the expulsion of intra-uterine contraceptive devices. Manton et al. (1981) used it for 

comparing the mortality experience of heterogeneous populations, Manton and Stallard (1981) to explain the 

black/white mortality crossover in the US, Manton et al. (1986) compared the inverse normal and the gamma models, 

together with Gompertz and Weibull baseline hazards, in a study of survival at advanced ages, based on Medicare data. 

Jeong et al. (2003) used a gamma frailty to model long-term follow-up survival data from breast cancer clinical trials 

when the treatment effect diminishes over time as an alternative to the proportional hazards model. Jones (1998) used a 

gamma-Gompertz model for analyzing the impact of selective lapsation on mortality in life insurance. 

 

2.1 SIMULATION STUDY OF FRAILTY GAMMA DISTRIBUTION 

To evaluate the frailty model of gamma distribution we carried out a simulation study of 5000 observations 

simulated from gamma distribution with p.d.f. 

𝑓(𝑡) =
1

Γ𝛼
𝑡𝛼−1𝑒−𝑡 ,   𝑡 > 0, 𝛼 > 0                                                                          (2.2) 

Taking initial value 𝛼 = 6 

 

2.2 MAXIMUM LIKELIHOOD ESTIMATOR OF PARAMETER 𝜶 OF GAMMA DISTRIBUTION 

Likelihood function of simulated values 𝑡1, 𝑡2, … , 𝑡5000 of gamma distribution is  

          𝐿 = (
1

Γ𝛼
)

𝑛
∏ (𝑡𝑖

𝛼−1)𝑛
𝑖=1 𝑒− ∑ 𝑡𝑖  

              =
𝑡𝑛(𝛼−1)𝑒−𝑛�̅�

(Γ𝛼)𝑛 , where 𝑡̅ =
∑ 𝑡𝑖

𝑛
 , �̃� = (∏ 𝑡𝑖

𝑛
𝑖=1 )

1

𝑛 

 ∴ 𝑙𝑜𝑔𝐿 = −𝑛𝑙𝑜𝑔Γ𝛼 + 𝑛(𝛼 − 1)𝑙𝑜𝑔�̃� − 𝑛𝑡̅ 

   
𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=

−𝑛
𝜕Γ𝛼

𝜕𝛼

Γ𝛼
+ 𝑛𝑙𝑜𝑔�̃� = 0 gives 

   𝑙𝑜𝑔�̃� −
𝜕𝑙𝑜𝑔Γ𝛼

𝜕𝛼
= 0                                                                        (2.3) 

We have to solve (2.3) for 𝛼 

  Taking 
𝜕𝑙𝑜𝑔Γ𝛼

𝜕𝛼
 = 𝜓(𝛼), (2.3) will be 

   𝑔(𝛼) = 𝑙𝑜𝑔�̃� − 𝜓(𝛼)                                                                           (2.4) 

We have evaluated (2.4) at different values of 𝛼 as under 

i  
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The following table 2.1 shows the estimates of parameter 𝛼 and its standard error. 
 

 TABLE 1. MLE FOR SIMULATION STUDY OF GAMMA DISTRIBUTION 

Initial value 

of 𝜶 
�̂� Var(�̂�) S.E.(�̂�) converge llvalue 

no. of 

iterations 

5.90000 5.855540 0.001074192 0.03277487 0 11230.00 14 

6.00000 5.972765 0.001097572 0.03312962 0 11322.26 16 

6.02510 6.090334 0.001121023 0.03348169 0 11346.89 15 

6.03515 6.036795 0.001110344 0.03332182 0 11288.42 14 

6.03525 5.971532 0.001097326 0.03312591 0 11253.46 14 

6.04000 6.100373 0.001123026 0.03351158 0 11280.21 16 

6.05000 6.032300 0.001109447 0.03330836 0 11357.72 16 

 

llvalue = value of the loglikelihood. 

From the table (2.1) it is observed that value of alpha.est. decreases at 𝛼 = 6.02510,  therefore m.l.e. �̂� = 6.02510 

with s.e.(�̂� ) = 0.03348169  

 

3. WEIBULL FRAILTY MODEL 

The p.d.f.ofweibull distribution is 

𝑓(𝑡; 𝛼, 𝜆) = 𝛼𝜆𝑡𝛼−1𝑒−𝜆𝑡𝛼
, 𝑡 > 0, 𝛼 > 0, 𝜆 > 0 

We generated  5000 observations 𝑡1, 𝑡2, … , 𝑡5000 using “R” from above distribution with initial values of  𝛼 = 2.0 

and 𝜆 = 4.2 . The log likelihood of the observations is 

 𝑙𝑜𝑔𝐿= 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝜆 + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑡𝑖 − 𝜆 ∑ 𝑡𝑖
𝛼  

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑜𝑔𝑡𝑖 − 𝜆 ∑ 𝑡𝑖

𝛼𝑙𝑜𝑔𝑡𝑖 = 0 

Taking 𝑙𝑜𝑔𝑡𝑖 = 𝑦𝑖 ,     𝑡𝑖 = 𝑒𝑦𝑖 , we have likelihood equation as 
1

𝛼
+

∑ 𝑦𝑖

𝑛
−

𝜆

𝑛
∑ 𝑦𝑖𝑒𝛼𝑦𝑖 = 0                                                                                                              (3.1) 

 and 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
=

𝑛

𝜆
− ∑ 𝑡𝑖

𝛼 = 0 

⇒ �̂� =
𝑛

∑ 𝑡𝑖
�̂� =

𝑛

∑ 𝑒�̂�𝑦𝑖
                                                                                                                                   (3.2) 

(3.1) and (3.2) are normal equations. 

Substituting (3.2) in (3.1) and letting 

𝑔(𝛼) =
1

𝛼
+

∑ 𝑦𝑖

𝑛
−

∑ 𝑦𝑖𝑒𝛼𝑦𝑖

∑ 𝑒𝛼𝑦𝑖
,                                                                                   (3.3) 

Is evaluated 𝑔(𝛼) at different values of 𝛼 = 1.9, 2.0, 2.025, 2.03515, 2.03525, 2.04, 2.05 and observing the change 

of value which will be MLE of 𝛼 where 𝑔(𝛼) = 0 and then substituting �̂� in (3.2), we get  �̂�. 

Also  

  − 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2 |
𝛼,̂�̂�

= 
𝑛

�̂�2 + �̂� ∑ 𝑦𝑖
2𝑒�̂�𝑦𝑖  

  − 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝜆
|

𝛼,̂�̂�
=  − ∑ 𝑦𝑖𝑒�̂�𝑦𝑖 

  − 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝜆2 |
𝛼,̂�̂�

=
𝑛

�̂�2 

and so the estimate of variance-covariance matrix is 

  [
− 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2 |
𝛼,̂�̂�

− 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝜆
|

𝛼,̂�̂�

− 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝜆
|

𝛼,̂�̂�
− 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝜆2 |
𝛼,̂�̂�

]= [
𝜎11 𝜎12

𝜎21 𝜎22
], say 

So that 

  Var(�̂�) = 𝜎11 and 𝑉𝑎�̂�(�̂�) = 
𝜎11

𝑛
, 𝑠. �̂�(�̂�) = √𝑉𝑎�̂�(�̂�). 

  Var(�̂�) = 𝜎22 and 𝑉𝑎�̂�(�̂�) = 
𝜎22

𝑛
, 𝑠. �̂�(�̂�) = √𝑉𝑎�̂�(�̂�). 
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          𝜌(�̂�, �̂�) =
𝜎12

√𝜎11𝜎22
 

With the above simulated values from weibull distribution, we get following estimates ofparameter a and 𝝀 a n d  

their standard errors in Table 3.1 
TABLE 2. MLE FOR SIMULATION STUDY OF WEIBULL DISTRIBUTION 

Initial value 

of 
�̂� �̂� Var(�̂�) Var(�̂�) S.E.(�̂�) S.E.(�̂�) 

C
on

ve
rg

e 

-l
l 

v
a

lu
e 

n
o

. 
o

f 

it
er

a
ti

o
n

s 

𝜶 𝝀 

1.90000 4.2 1.928085 4.244186 0.0004558805 0.005924449 0.02135136 0.07697044 0 636.1577 40 

2.00000 4.2 2.001498 4.258776 0.0004891948 0.005970435 0.02211775 0.07726859 0 639.2733 41 

2.02500 4.2 2.036173 4.261128 0.0005065795 0.005985999 0.02250732 0.07736924 0 637.3663 47 

2.03515 4.2 2.076779 4.271012 0.0005287263 0.006030680 0.02299405 0.07765745 0 645.1097 38 

2.03525 4.2 2.024185 4.138213 0.0005004243 0.005513361 0.02237017 0.07425201 0 569.3066 39 

2.04000 4.2 2.018238 4.224875 0.0004952322 0.005817862 0.02225381 0.07627491 0 626.0774 40 

2.05000 4.2 2.049999 4.264648 0.0005109614 0.005969990 0.02260445 0.07726571 0 649.7723 37 

 

From table 3.1, we observe that the value of �̂� and �̂� are decreasing from �̂�= 2.03525 and �̂�= 4.138213 with their 

standard error as 0.02237017 and 0.07425201 respectively. Thus the simulation of Weibull distribution for 5000 values 

have given the above maximum likelihood estimates. 

 

3.1 MLE OF COX MODEL WITH BASE LINE WEIBULL DISTRIBUTION AND GAMMA FRAILTY 

Let survival time follows weibull distribution with parameters (𝛾, 𝜆) with p.d.f. as 

 

  𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1𝑒−𝜆𝑡𝛾
𝑡 > 0, 𝛾 > 0 

          = 𝛾𝑡𝛾−1𝑒−𝑡𝛾
, taking 𝜆=1. 

and  𝛾~𝐺(𝛼, 1)distribution as frailty distribution with p.d.f. 

  𝑓(𝛾) =
𝛾𝛼−1𝑒−𝛾

Γ𝛼
 ,  𝛼 > 0, 𝛾 > 0 

Let  𝑦𝑖 = log 𝑡𝑖. Then the cox model reduces to  

      𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛾 

so that                 𝛾 = 𝑦𝑖 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2 

and likelihood will be 

 

  𝐿 = ∏ (𝑦𝑖 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2)𝛼−1𝑒− ∑(𝑦𝑖−𝛽1𝑥𝑖1−𝛽2𝑥𝑖2)𝑛
𝑖=1  

          𝑙𝑜𝑔𝐿 = −𝑛𝑙𝑜𝑔Γ𝛼 + (𝛼 − 1) ∑ 𝑙𝑜𝑔(𝑦𝑖 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2) − ∑(𝑦𝑖 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2) 

 

The normal equations are 

 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=

−𝑛𝜕𝑙𝑜𝑔Γ𝛼

𝜕𝛼
+ ∑ 𝑙𝑜𝑔(𝑦𝑖 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2) = 0                                                 (3.4) 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= (𝛼 − 1) ∑ (

−𝑥𝑖1

𝑦𝑖−𝛽1𝑥𝑖1−𝛽2𝑥𝑖2
) + ∑ 𝑥𝑖1 = 0                                          (3.5) 
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𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= (𝛼 − 1) ∑ (

−𝑥𝑖2

𝑦𝑖−𝛽1𝑥𝑖1−𝛽2𝑥𝑖2
) + ∑ 𝑥𝑖2 = 0                                          (3.6) 

Solving above (3.4), (3.5) and (3.6) simultaneously with the kidney infection data given by McGilchrist and Aisbett 

(1991) of 38 kidney Patients with 𝑌 = 𝑙𝑛𝑇, the estimates of 𝛽1(Age), 𝛽2(Sex) and  𝛼 with their standard errors are as 

under. 
TABLE 3. THE ESTIMATES OF 𝜷𝟏(AGE), 𝜷𝟐(SEX) AND 𝜶 WITH THEIR STANDARD ERROR 

Parameter Age Sex 𝜶 

M.L.E -0.0104088 1.4562985 3.3949261 

S.E.  0.0117882 0.5256521 0.5129501 

 

The estimate of 𝜎2 is 0.29455722, which is inverse of shape parameter of frailty distribution. 

 

4. GENERALIZED EXPONENTIAL DISTRIBUTION AS FRAILTY MODEL 

 

The Generalized exponential distribution is used in place of exponential distribution as frailty model. We give 

below the p.d.f., 𝑓(𝑡); survival function, 𝑆(𝑡); hazard function, ℎ(𝑡) and cumulative hazard function, 𝐻(𝑡).  

 𝑓(𝑡) = 𝛼𝜆(1 − 𝑒−𝜆𝑡)𝛼−1𝑒−𝜆𝑡,      t > 0, 𝛼 > 0, 𝜆 > 0                                       (4.1) 

 𝑆0(𝑡) = {1 − (1 − 𝑒−𝜆𝑡)𝛼   ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0
  1                            ∶                            𝑜. 𝑤.

                                (4.2) 

 ℎ0(𝑡) = {
𝛼𝜆(1−𝑒−𝜆𝑡)𝛼−1𝑒−𝜆𝑡

1−(1−𝑒−𝜆𝑡)𝛼   ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0

0                              ∶                            𝑜. 𝑤.
                                           (4.3) 

 𝐻0(𝑡) = {−𝑙𝑛 [1 − (1 − 𝑒−𝜆𝑡)
𝛼

]      ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0

  0                                  ∶                    𝑜. 𝑤.
                                  (4.4) 

 

4.1 SIMULATION AND ESTIMATION OF THE DISTRIBUTION 

Let  𝑟 (0 < 𝑟 < 1) be assumed. Since survival time 𝑆(𝑡) will be also in (0, 1) then equating 𝑆(𝑡) = 𝑟 and since 𝑆(𝑡) 

for generalized exponential distribution is 

 𝑆(𝑡)  =  1 − (1 − 𝑒−𝜆𝑡)𝛼 

 ⇒ 1 − (1 − 𝑒−𝜆𝑡)𝛼 = 𝑟 

 ⇒ (1 − 𝑒−𝜆𝑡)𝛼 =1 −  𝑟 

 ⇒ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑡) = 𝑙𝑜𝑔(1 −  𝑟)
1

𝛼 

 ⇒ (1 − 𝑒−𝜆𝑡) = (1 −  𝑟)
1

𝛼 

 ⇒ 𝑒−𝜆𝑡 =1 - (1 −  𝑟)
1

𝛼 

 ⇒ −𝜆𝑡 = 𝑙𝑜𝑔 [1 −  (1 −  𝑟)
1

𝛼] 

 ⇒ 𝑡 = −
1

𝜆
𝑙𝑜𝑔 [1 −  (1 −  𝑟)

1

𝛼] 

 ⇒ 𝑡 = 𝑙𝑜𝑔 [1 −  (1 −  𝑟)
1

𝛼]
−

1

𝜆
 

         =
−𝑙𝑜𝑔[1 − (1− 𝑟)

1
𝛼]

𝜆
 

 

Simulating the values of t by giving values of  𝛼 = 2,  𝜆 = 0.1 

 𝑆(𝑡)  =  𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) 

  𝑓(𝑡) = 𝐹′(𝑡) 

  𝐿 = ∏ 𝑓(𝑡𝑖) 

  𝑙𝑜𝑔𝐿 = ∑ 𝑙𝑜𝑔𝑓(𝑡𝑖) 

           = ∑ 𝑙𝑜𝑔𝐹′(𝑡𝑖) 

               𝑙𝑜𝑔𝐿 = − ∑ 𝑙𝑜𝑔𝑆′(𝑡𝑖)                                        (4.5) 

Since,  

  𝑆(𝑡) = 1- (1 − 𝑒−𝜆𝑡)𝛼 
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Now,  

  
𝜕𝑆(𝑡)

𝜕𝑡
= −𝛼(1 − 𝑒−𝜆𝑡)𝛼−1(𝜆𝑒−𝜆𝑡) 

Using (4.5), we have 

  𝑙𝑜𝑔𝐿 = ∑ 𝑙𝑜𝑔[𝛼(1 − 𝑒−𝜆𝑡𝑖)𝛼−1(𝜆𝑒−𝜆𝑡𝑖)] 

           = ∑ 𝑙𝑜𝑔𝛼 + (𝛼 − 1) ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑡𝑖) + ∑ 𝑙𝑜𝑔 𝜆 + ∑ 𝑙𝑜𝑔𝑒−𝜆𝑡𝑖 

           = 𝑛𝑙𝑜𝑔𝛼 + (𝛼 − 1) ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑡𝑖) + 𝑛𝑙𝑜𝑔𝜆 + ∑ 𝑙𝑜𝑔𝑒−𝜆𝑡𝑖 

           = 𝑛𝑙𝑜𝑔𝛼𝜆 + (𝛼 − 1) ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜆𝑡𝑖) − 𝜆 ∑ 𝑡𝑖 

 
TABLE 4. MLE FOR SIMULATION STUDY OF GENERALIZED EXPONENTIAL DISTRIBUTION 

Sample size = 50; 𝛼 𝜆 𝜎2 

Estimates 1.5173151 0.0702266 0.659058 

Standard error 0.3083377 0.0118815  

Sample size = 500; 𝛼 𝜆 𝜎2 

Estimates 2.0404756 0.104021 0.490081 

Standard error 0.1375155 0.0051668  

Sample size = 5000; 𝛼 𝜆 𝜎2 

Estimates 1.9508322 0.0993446 0.512601 

Standard error 0.0410658 0.0015708  

 

We observed that the estimates of  𝛼 and 𝜆 are more stabilise when sample size increases. Thus �̂�= 1.9508322 and 

�̂�= 0.0993446 with their standard error as 0.0410658 and 0.0015708 respectively and 𝜎2= 0.512601. 

 

5. EXPONENTIAL POWER DISTRIBUTION AS FRAITY 

We consider exponential power distribution as more general form of exponential distribution and give below the 

p.d.f., 𝑓(𝑡); survival function, 𝑆(𝑡); hazard function, ℎ(𝑡) and cumulative hazard function, 𝐻(𝑡). 

 𝑓(𝑡) = 𝛼𝜆𝑡𝛼−1𝑒𝑥𝑝(𝜆𝑡𝛼 + 1 − 𝑒𝜆𝑡𝛼
)                                            (5.1) 

 𝑆0(𝑡) = {𝑒[1−𝑒𝜆𝑡𝛼
]                ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0

  1                           ∶                            𝑜. 𝑤.
                                           (5.2) 

 ℎ0(𝑡) = { 𝛼𝜆𝑡𝛼−1𝑒𝜆𝑡𝛼
             ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0

0                                  ∶                            𝑜. 𝑤.
                                           (5.3) 

 𝐻0(𝑡) = {𝑒𝜆𝑡𝛼
− 1                              ∶ 𝑡 > 0, 𝛼 > 0, 𝜆 > 0

  0                                          ∶                            𝑜. 𝑤.
                       (5.4) 

 

5.1 SIMULATION AND ESTIMATION OF THE DISTRIBUTION 

Let  𝑟 (0 < 𝑟 < 1) be assumed. Since survival time 𝑆(𝑡) will be also in (0, 1) and hence 𝑆(𝑡) for Exponential power 

distribution by equating 𝑆(𝑡) = 𝑟 is 

𝑆(𝑡) =  𝑒1−𝑒𝜆𝑡𝛼

 

  𝑒1−𝑒𝜆𝑡𝛼

= 𝑟 ⇒ 1 − 𝑒𝜆𝑡𝛼
= log 𝑟 

         ⇒ 1 − log 𝑟 = 𝑒𝜆𝑡𝛼
 

         ⇒ log (1 − log 𝑟) = 𝜆𝑡𝛼 

         ⇒ 𝑡 = [
log (1−log 𝑟)

𝜆
]

1

𝛼
 

We Generate 5000 values of t by using random numbers 𝑟1, 𝑟2, …, 𝑟5000(0 < 𝑟 < 1) 

For getting M.L.E., the likelihood will be derived as under 
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As   𝑆(𝑡) =  𝑒1−𝑒𝜆𝑡𝛼

 

  
𝜕𝑆(𝑡𝑖)

𝜕𝑡
= − (𝛼𝜆𝑡𝑖

𝛼−1𝑒𝜆𝑡𝑖
𝛼+1−𝑒𝜆𝑡𝑖

𝛼

) 

 𝑙𝑜𝑔 (−
𝜕𝑆(𝑡𝑖)

𝜕𝑡
) = log(𝛼𝜆) + (𝛼 − 1)𝑙𝑜𝑔𝑡𝑖 + 𝜆𝑡𝑖

𝛼 + 1 − 𝑒𝜆𝑡𝑖
𝛼
 

 ∑ log (−
𝜕𝑆(𝑡𝑖)

𝜕𝑡
) = ∑ log(𝛼𝜆) + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑡𝑖 + 𝜆 ∑ 𝑡𝑖

𝛼-∑ 𝑒𝜆𝑡𝑖
𝛼

+ 𝑛 

 𝑙𝑜𝑔𝐿 = ∑ log (−
𝜕𝑆(𝑡𝑖)

𝜕𝑡
) = 𝑛 + 𝑛 log(𝛼𝜆) + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑡𝑖 + 𝜆 ∑ 𝑡𝑖

𝛼-∑ 𝑒𝜆𝑡𝑖
𝛼

 

 𝑙𝑜𝑔𝐿 = ∑ log (−
𝜕𝑆(𝑡𝑖)

𝜕𝑡
) = 𝑛(1 + log 𝛼𝜆) + (𝛼 − 1) ∑ 𝑙𝑜𝑔𝑡𝑖 + 𝜆 ∑ 𝑡𝑖

𝛼-∑ 𝑒𝜆𝑡𝑖
𝛼
 

 
TABLE 5. MLE FOR SIMULATION STUDY OF EXPONENTIAL POWER DISTRIBUTION 

Sample size = 50; 𝛼 𝜆 𝜎2 

Estimates 1.8000427 0.0136814 0.555542 

Standard error 0.2079574 0.0071355  

Sample size = 500; 𝛼 𝜆 𝜎2 

Estimates 1.9544816 0.0113211 0.511644 

Standard error 0.0726638 0.0019738  

Sample size = 5000; 𝛼 𝜆 𝜎2 

Estimates 1.9655672 0.0108654 0.508758 

Standard error 0.0235542 6.1228649× 10−4  

 

We observed that the estimates of  𝛼 and 𝜆 are more stabilise when sample size increases. Thus,�̂�=1.9655672and 

�̂�=0.0108654with their standard error as 0.0235542and 6.1228649× 10−4  respectively and 𝜎2= 0.508758 

 

6. LOG-NORMAL FRAILTY MODELS 

Log-normal frailty models are mostly used in modelling dependence structures in multivariate frailty models, e.g., 

in McGilchrist and Aisbett (1991), McGilchrist (1993), Lillard (1993), Lillard et al. (1995), Xue and Brookmeyer 

(1996), Sastry (1997), Gustafson (1997), Ripatti and Palmgren (2000); Ripatti et al. (2002), Huang and Wolfe (2002). 

Flinn and Heckman (1982) have also applied the log-normal distribution in univariate cases. Two variants of the 

log-normal model exist. We assume that a normally distributed random variable W to generate frailty as Z = e
W

. The 

two variants of the model are given by the restrictions EW = 0 and EZ = 1, where the first one is much more popular in 

the literature. Unfortunately, no explicit form of the unconditional likelihood exists. Consequently, estimation strategies 

based on numerical integration in the maximum likelihood approach are required.  

 

6.1 SIMULATION AND ESTIMATION OF LOG NORMAL DISTRIBUTION 

The p.d.f. of log normal distribution of t is 

   𝑓(𝑡;  𝜇, 𝜎2) =
1

√2𝜋 𝜎𝑡
𝑒

− 
1

2𝜎2(log 𝑡−𝜇)2

 

   𝐹(𝑡) = ∫
1

√2𝜋 𝜎𝑢

𝑡

−∞
𝑒

− 
1

2𝜎2(log 𝑢−𝜇)2

 

Let log 𝑢 = 𝑦 

            = ∫
1

√2𝜋 𝜎

𝑙𝑜𝑔𝑡

0
𝑒

− 
1

2𝜎2(𝑦−𝜇)2.𝑦
 

Let 𝑤 =
𝑦−𝜇

𝜎
 

   𝐹(𝑡) = ∫
1

√2𝜋

𝑙𝑜𝑔𝑡−𝜇

𝜎
−∞

𝑒− 
𝑤2

2 𝑑𝑤 

Let 0 < 𝑟 < 1, 

 

       𝑟 = ∫
1

√2𝜋

𝑙𝑜𝑔𝑡−𝜇

𝜎
−∞

𝑒− 
𝑤2

2 𝑑𝑤 
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6.2 ESTIMATION OF THE PARAMETERS OF LOGNORMAL DISTRIBUTION 

Let 𝑚1
′ = 𝑒𝜇+

𝜎2

2  

   𝑣𝑎𝑟(𝑡) = 𝑚2 = 𝑒2𝜇+𝜎2
(𝑒𝜎2

− 1) 

      𝑚2 = 𝑚1
′2

(𝑒𝜎2
− 1) 

     
𝑚2

𝑚1
′2 = (𝑒𝜎2

− 1) 

    𝑙𝑜𝑔 (
𝑚2

𝑚1
′2 + 1) = �̂�2 

    𝑙𝑜𝑔𝑚1
′ = 𝜇 +

𝜎2

2
 

    𝑙𝑜𝑔𝑚1
′ −

�̂�2

2
= �̂� 

Let 𝑡1, 𝑡2, … , 𝑡500 be generated values of log normal distribution and let 𝑡 =
∑ 𝑡𝑖

𝑛
,   

𝑚2 = 𝑣𝑎𝑟(𝑡) =
1

𝑛
∑(𝑡𝑖 − 𝑡)

2
then the moment estimators of 𝜇 and 𝜎2 are 

    �̂�2 = 𝑙𝑜𝑔 (
𝑚2

𝑡
2 ) 

    �̂� = 𝑙𝑜𝑔𝑡 −
�̂�2

2
 

6.3 ESTIMATION OF PARAMETERS OF LOG NORMAL DISTRIBUTION BY M.L.E. 

The m.l.e. of 𝜇 and 𝜎 can be easily available as  

    �̂� =
1

𝑛
∑ 𝑙𝑜𝑔𝑡𝑖 = 𝑦 

where 𝑦𝑖 = 𝑙𝑜𝑔𝑡𝑖, I = 1,2,…,500 

    �̂�2 =
1

𝑛
∑(𝑦𝑖 − 𝑦)2 

Now, we obtain the estimates of the parameters of  𝜇, 𝜎and their standard errors using simulation in the 

following table  

 

TABLE 6. ESTIMATES OF THE PARAMETERS OF  𝝁, 𝝈 AND THEIR STANDARD ERRORS  

Initial 

value of  
�̂� �̂� Var(�̂�) Var(�̂�) S.E.(�̂�) S.E.(�̂�) 

 C
on

ve
rg

e 

ll
 v

a
lu

e 

n
o

. 
o

f 

it
er

a
ti

o
n

s 

𝝁 𝝈 

3 0.6 2.955624 0.527598 0.002783 0.001391 0.052759 0.037306          0 −281.620241 19 
 

7. CONCLUSION 

By considering different univariate continuous frailty models and using Monte Carlo method for simulated 

data, we obtained m.l.e. of the parameters of frailty models with their standard errors. Further the estimate of the 

variance of the base line distribution has been obtained.  
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