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Abstract: Mean absolute deviation about median is partitioned into two parts in terms of median to obtain a measure of
skewness that is zero for symmetric distributions and into four parts in terms of percentiles to obtain a measure of
equality between the middle and the sides of a distribution that is zero for the normal distribution. Based on these
partitions a powerful and informative graph called H-graph is produced that can provide more insight into the nature of
the data and assess goodness of fit for a data set to a theoretical model. This graph enriches the visual information
offered by the histogram and box-plot. By using these measures two tests for middle-sides equality and normality are
proposed. The simulation results from several distributions show that the proposed tests have a very good power in
comparisons with well-known powerful tests that depend on moments.

Keywords: box-plot, kurtosis, normality test, MAD, skewness.

1. INTRODUCTION

The shape of a distribution may be considered either
descriptively, using terms such as "U-shaped", or
numerically, using quantitative measures such as
skewness and kurtosis. Considerations of the shape of a
distribution arise in statistical data analysis where simple
quantitative descriptive statistics and plotting techniques
such as histogram can lead to the selection of a particular
family of distributions for modeling purposes. The shape
of a distribution is sometimes characterized by the
behavior of the tails as in a long or short tail; see,
Balanda and MacGillivray (1988), DeCarlo (1997) and
Thode (2002) and Tukey (1977). Pearson (1905) referred
to leptokurtic distributions as being more peaked and
platykurtic distributions as being less peaked than normal
distribution. According to van Zwet (1964) only
symmetric distributions should be compared in terms of
kurtosis. The interest in assessing shape of the
distributions may be due to the increasing use of normal
theory covariance structure methods which are known to
perform poorly in asymmetric and leptokurtic
distributions (Hu et al.,, 1990 and Micceri, 1989),
nonparametric tests of location such as the Mann—
Whitney test can be far more powerful than the t-test in
certain  leptokurtic  distributions  (Hodges and

Lehmann,1956) and many variables show platykurtic
such as the time between eruptions of certain geysers, the
color of galaxies and the size of worker weaver ant.

Mean absolute deviation about median (MAD;q) is
divided to two parts in terms of median to obtain a
measure of skewness that is zero for symmetric
distributions and to four parts in terms of 12" 50" and
88" percentiles to obtain a measure of middle-sides
equality that is zero for normal distribution. Based on
these partitions an informative graph called H-graph is
presented that can provide more insight into the nature of
the data and make an assessment for a data set to a
theoretical distribution to find out if the assumption of a
common distribution is justified. Based on these
measures two tests for middle-sides equality and
normality are proposed. The simulation study is
conducted to obtain and compare the empirical Type |
error and the power of the proposed tests with
Anscombe-Glynn, Bonett-Seier and Jarque-Bera tests
from several distributions.

In Section 2 the MAD,q is divided to two and four
parts based on percentiles. In Section 3 the measure of
skewness, peak-tail equality and H-graph are introduced.
The estimation of skewness and middle-sides equality
measures is presented in Section 4. The middle-sides
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equality and omnibus normality tests are studied in
section 5. Section 6 is devoted to the conclusion.

2. PARTITIONS OF MADyeo

Let X, X,, ..., X,be a random sample from a continuous
distribution with density function f(x), quantile function
x(F) = F1(x) = Q(F), 0<F<1, cumulative
distribution function F(x) = F, mean u=E(X) and
median v = Med (X). The population MADq is defined
as

D =E|X —v| (1)
The MAD Can be partitions to two parts above and
below the median (v = x(50%)), see Seier and Bonett
(2011), as

D=EIX—v|=EX —V)x>y
+EW - X)x<v )
=D*+ D~
Also for v; > v > v,, the MAD,,¢ Ccan be partitions to
four parts below v,, between v; and v, between v and v,
and above v; as

D=E|IX-V|=EW —X)xcp, t EQ = X)p,cxar +
E(X - V)V<X<v3 + E(X - V)X>v3 = DV1 + DW1V) 4
D(V,V3) + DV3 (3)

The integral form representations of equations (2) and (3)
could be written as

D* = fol(x —WIX > v)dF (%),

D™= fol(v — X)I(X <v)dF(x),

D = fol(v - X)I(X < v,)dF (x),
DY) = fol(v - X)I(vy; < X <V)dF(x),
DWwvs) = fol(x —WI < X < v3)dF (x),

DVs = fl(X —V)I(X > v3)dF (x),
0
and

1
D@v3) = f |X —v|I(vy < X < v3)dF(x),
0

The main advantage of the MAD it is uniquely
characterize the probability distribution where Perez and
Gomez (1990) said that “the dispersion function defined
as D(u) = E|X — ul|,u € R characterizes the distribution
function and gives a dispersive ordering of probability
distributions...”.

3. SHAPE MEASURES USING MADep

A Skewness measure and H-graph
The skewness measure based on partitions of MAD e iS

+ _
S = % =H*-H"- (4)
This measure is zero for any symmetric distribution and
is bounded by —1 and 1. This measure is equivalent to
(u—Q,)/E|Y — Q,| which derived by Groeneveld and
Meeden (1984) who have put forward the following four
properties that any reasonable coefficient of skewness
S(y) should satisfy: (1) for any a >0 and real b,
S(y) = S(ay + b); (2) if y is symmetrically distributed,
then S(y) =0; (3) -S(¥) =S(—y); (4) if F and G are
cumulative distribution functions of y and x, and
F <. G, then S(y) <S(x) where <. is a skewness-
ordering among distributions; see van Zwet (1964). The
measure S satisfies the four properties as pointed out by
Groeneveld and Meeden (1984). The measure S can be
shown graphically on the H-graph that shows the index
of the order data on x-axis and Y;.,, = (X;., —v)/D ony-
axis. Note that X;., can be theoretically represented by
Med(X;,,) = x(Med F) = x (’7:)03;:) see, Filliben
(1975). Therefore, H~represents the standardized
expected value of the heights between the lineat Y =0
and the curve for the values less than the median and
Htrepresents the standardized expected value of the
heights between the line at Y = 0 and the curve for the
values more than median.
Figure 1 shows the H-graph for the normal, uniform,
exponential and beta distributions. The graph shows
symmetric H’s areas with medium tails for the normal
distribution and short and fat tails for the uniform
distribution (zero skewness) while much more H + than
H — with long and slim right tail for the exponential
distribution  (positive skewness) and much more H —
than H + with medium and fat left tail for the
beta(0.5,0.2) distribution (negative skewness).
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Figure 1. H — and H + on H-graph for normal (S = 0), uniform (S = 0), exponential (S = 0.44) and beta(0.5,0.2) (S = —0.72) distributions.
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Figure 2. H,, H,, H; and H, on H-graph for normal (K = 0), uniform (K = —0.155), Laplace (K = 0.165) and t(2) (K = 0.28) distributions.
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B. Middle-side equality measure and H-graph

The shape proposed middle-sides equality measure based
on partitions of MAD ¢ is defined as

DV1 — (D(Vlﬂ/) + D(Vﬂ?3)) + DV3
K =

D
=H,—(H,+H;)+H,
= (H; — Hy) + (Hy, — H3)
%)

or equivalently

pv1-pW1.v3) 4 pv3
K=" = H, — Hyy + H,

®)
This measure is bounded by -1 and 1 for all distributions
and the choice of wv; =x(11.952%) and v; =
x(88.048%) to obtain middle-sides equality measure
equal to approximately zero for the normal distribution.
Table 1 below gives the results for the values of K for
different percentile from standard normal distribution

using quantile 203175 and n = 500000.
n+0.365

Table 1. Values of K from standard normal distribution for different

percentile

Percentile K

p=0.08, 1-p=0.92 -0.25470
p=0.10, 1-p=0.90 -0.12018
p=0.11, 1-p=0.89 -0.05733
p=0.115, 1-p=0.885 -0.02691
p=0.119, 1-p=0.881 -0.00305
P=0.1194, 1-p=0.8806 -0.00069
p=0.1195, 1-p=0.8805 -0.00009
p=0.11951, 1-p=0.88049 -0.00004
p=0.11952, 1-8=0.88048 0.00002
p=0.1196, 1-p=0.8804 0.00049
p=0.12, 1-p=0.88 0.00285
p=0.125, 1-p=0.875 0.03199
p=0.13, 1-p=0.87 0.06052
p=0.15, 1-p=0.85 0.16888

Therefore, H, represents the standardized expected value
of the MAD ¢4 for the values less than v, or the heights
between the line at Y = v; and the curve for the values

less than v,, H, represents the standardized expected
value of the MAD,¢q for the values more than v, and less
than v, or the heights between the lines at Y = vy,
median and the curve, H; represents the standardized
expected value of the MADq for the values more than v
and less than v;, or the heights between the lines at
Y =v;, median and the curve, H, represents the
standardized expected value of the MAD, for the
values more than v or the heights between the line at
Y =v; and the curve for the values more than vs.
Therefore, H, + H, can be interpreted as the probability
mass that concentrated in the sides of the distribution
(sides mass) in terms of MADq While H, + H; = H,4
can be interpreted as the probability mass that
concentrated in the middle of the distribution (middle
mass) in terms of MAD,q, i.. the K measure compares
the sides mass with middle mass in terms of MAD,¢q and
with respect to the normal distribution, therefore, if
K = 0, the sides mass equal to peak mass (middle-sides
equality), K > 0 then sides mass is more than middle
mass or heavier sides mass and lighter middle mass than
normal (sides mass) and K < 0 then the sides mass is less
than middle mass or lighter sides mass and heavier
middle mass than normal (middle mass).

Table 2. Values of S and K for some symmetric distributions

Set A S K SetB S K
Beta(0.25,0.25) 0 - gl"(0,1,-0.85,- 0 0.653
0.371 0.85)
Beta(0.5,0.5) 0 - gl(0,1,-0.75,- 0 0.568
0.264 0.75)
Uniform 0 - 01(0,1,-0.5,- 0 0.360
0.155 0.5)
Beta(1.5,1.5) 0 - gl(0,1,-0.25,- 0 0.190
0.107 0.25)
Normal 0 0 gl(0,1,-0.15,- 0 0.130
0.15)

Logistic 0 0.056 ¢l(0,1,-0.10,- 0 0.105
0.10)

Laplace 0 0.165 ¢l(0,1,-0.05,- 0 0.081

0.05)

*gl stands for generalized lambda distribution with four
parameters;see, Ramberg et al. (1979)
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Figure 3. The histogram and H-graph for bi-modal data and H-graph shows zigzag curve with one height (bimodal distribution)
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Figure 4.The histogram and H-graph for data with three modes and H-graph shows zigzag curve with two heights (tri-modal distribution)

Figure 2 shows the H-graph for the normal, uniform,
Laplace and t(2) distributions. The graph shows equal
H’s areas (0.25) for the normal distribution and in this
case K = 0.5—0.5 =0 (middle-sides equality), for the
uniform distribution the middle mass (0.58) is more than
the sides mass (0.42) and in this case K = 0.42 — 0.58 =
—0.16 (middle mass). For Laplace distribution the
middle mass (0.42) is less than the sides mass (0.58) and
in this case K = 0.58 — 0.42 = 0.16 (sides mass) while
for the t(2) distribution the middle mass (0.36) is much
less than the sides mass (0.64) and in this case K =
0.64 — 0.36 = 0.28 ( sides mass) with respect to normal
distribution.

DeCarlo (1997) and others have pointed out that the
Laplace distribution is clearly more peaked than the tg
distribution  but the classical shape measure
(Pearsons’kurtosis measure) 8, = 6 for the Laplace and
B, =9 for the t. In contrast, K = 0.165 for the Laplace
and K = 0.088 for the t5 and thus K correctly classifies
these distributions according to middle mass.

Note that K is a location and scale invariant and rank the
distributions in Set A from smallest to largest and exists
in distributions where x(50%) , x(11.952%) and
x(88.048%) exist while 8, exists in distributions where
fourth moment exists. Therefore it may be considered K
as a measure of kurtosis where it is according to Oja
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(1981), a valid measure of kurtosis must be location and
scale invariant and also must obey van Zwet ordering
which rank orders the distributions in Set A of Table 2
from smallest to largest.

C. H-graph and multimodality

The zigzag terms of original data. Figure 6 shows
the H-graph for 100 observations from normal
distribution with mean 80 and standard deviation It
is not necessarily the H-graph will be plotted in
standardized data but also it could be plotted in
terms of original data. Figure 6 shows the H-graph
for 100 observations from normal distribution with
Figure 5 shows that the blue distribution is
asymmetric to the right and has long and heavy
right tail. Moreover the two distributions are almost
Figure 5 shows that the blue distribution is
asymmetric to the right and has long and heavy
right tail. Moreover the two distributions are almost
the same in middle mass (H, + H3) but they are
very different in sides mass (H, + H,) and both are
unimodal distributions where the curves are smooth.

Figure 3 shows 2 bends with one height that
indicates bimodal distribution while Figure 4 shows
3 bends with two heights that indicates tri-modal
distribution.

Moreover, when there are two data samples or to
compare a data set to a theoretical model to know if
the assumption of a common distribution is
justified. The H-graph can provide more insight into
the nature of the difference and an assessment of
goodness of fit that is a graphical method rather
than reducing to a numerical summary in terms of
skweness, kurtosis, middle mass, sides mass and
modality.

It is not necessarily the H-graph will be plotted in
standardized data but also it could be plotted in
terms of original data. Figure 6 shows the H-graph
for 100 observations from normal distribution with
mean 80 and standard deviation 10. The graph
reflects a lot of information such as min, max, third,
second, first quartiles and shapes.

4, ESTIMATION

We now consider estimators of population MAD 4 Using
a random sample of size n, x4, x5, ..., X, Where ¥; =
%(11.952%), ¥ = X(50%) and ¥; = £(88.048%), then
the estimates are

H-graph for normal and chisq(4)

0 20 40 60 80 100
index
Figure 5. H-graph for chi-square (blue) and normal distributions and the

normal has H; = 0.25, H, = 0.25, H; = 0.25 and H, = 0.25 while the
chi-square has H; = 0.15, H, = 0.20, H; = 0.29 and H, = 0.36.

n
~ 1
D== -,
n .
i=1
n
~ 1
== (= D0 > D),
ni=1
n
1
"= —Z(z —x)1(x; < B,

(xl - x)I(xl. > 'U3)

. 1
D™ = (& = x)1(x; < Dy),
i=1
n
D@D = Z(x x)I(D; < x; < %)
D&Ps) Z(xl—x)l(x<xl < D3)
and
D¢ F—x|I(0y <x; <D
De Z| 1) < x < 5)

Also it is assumed that xl *0,0;,0zandi =12,..,n.
Hence,

()

I)
I)

and
5171_(5(1’1'1/)4.5(1/.173))4_5”3 ~




1t
5,

Int. J. Bus. Stat. Ana. 1, No. 1, 31-43 (July-2014) ey 37

(ﬁz + H3)+ﬁ4 = (1::1\1 - H:g) + (H4 - H3) = ﬁl -
Hy3 + H,(8)

The empirical mean and variances of these estimates
from normal distribution are given in Table 3 using
10000 randomly generated normal samples for each
sample size.

006
20 00 00 00 00 02 00 02 00
0 005 044 004 010 50 003 50 005
50 - 00 00 00 02 00 02 00
0 00 018 002 004 50 001 50 002
002
10 00 00 00 00 02 .00 02 00
00 006 009 002 002 50 006 50 o001

From Table 3 the empirical variances of H; = hy,
PN ﬁz=h2,ﬁ3=h3,ﬁ4=h4,sandkare
Table 3. The mean and variances of H;, H,, s and k from
normal with replications of 10000 . 0.90
s k a, i, var(s) ~ ——, 9)
n mea Var Me var me var me Var
n an an an . 0.20
10 00 00 03 00 03 00 01 00 var (k) ~ ——, (10)
02 700 87 204 46 103 53 04 _ . 0.06
20 - 00 01 00 02 00 02 00 var(hy) = var(hy) ~ == (1)
0.0 410 53 103 81 038 10 033 and 010
01 _ — .
30 00 00 00 00 02 00 02 00 var(hy) = var(hs) ~ — (12)
01 276 67 069 66 022 33 027 These empirical variances are very good until for small
40 - 00 00 00 02 00 02 00 sample sizes. Note that the mean and variances of h; and
0.0 209 22 050 56 016 44 023 h, is omitted because they have the same results as h,
01 and hy, respectively.
50 00 00 - 00 02 00 02 00
007 169 0.0 041 49 012 51 019 Figures 7 and 8 show the histogram and H-graph for
052 simulated s and k using normal data and it is clear that
75 00 00 - 00 02 00 0.2 00 the normal distribution gives a very good approximation
017 117 00 026 50 008 50 013 to s and k until for small sample sizes such as 15 and 25.
025
10 00 00 - 00 02 00 02 00
0 011 087 00 020 50 006 50 010
H-graph
oc’oO D4
Q3 D3
60 80 100

index

Figure 6. H-graph for the original data N(80,10) and n = 100
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Figure 7. histogram and H-graph for s statistic using 10000 simulated standard normal data for different sample sizes where H; = 0.248, H, =
0.252, Hy = 0.256, H, = 0.244 for n = 15 and H, = 0.249, H, = 0.252, H, = 0.253, H, = 0.246 for n = 25.
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Figure 8. Histogram and H-graph for k statistic using 10000 simulated standard normal data for different sample sizes where H; = 0.219, H, =
0.238, H; = 0.265, H, = 0.278 forn = 15 and H; = 0.228, H, = 0.245, H; = 0.253, H, = 0.274 for n = 25.
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5.
TESTS

MIDDLE-SIDES EQUALITY AND NORMALITY

A Middle-sides equality or kurtosis test

In some applications it is important to test for kurtosis is
zero (middle-side equality), leptokurtic (sides mass) and
platykurtic (middle mass) with respect to the normal
distribution. The null and alternative hypothesizes can be
written as

Hy:K =0, Hi:K # 0, Hy:K <0,
Hi:K >0 and Hy:K =0,
H:K <0

By applying the standard results, it can be shown that the
statistic
k

Zy = ——

J/0.20/n
has an approximate standard normal distribution under
the null hypothesis of normality. Reject K =0 if
|zi| > z1_q/>- A one-sided test of tail inequality rejected
if z,>2z,_, and a one-sided test of peak inequality
rejected if z, < z,.

(13)

1) Power study

A good test satisfies a nominal Type | error (reject the
null hypothesis when it is true) and large power (reject
the null hypothesis when it is false). The statistic z; is
compared with Anscombe and Glynn (1983) test

Zp

= [1 —-2/9¢
(14)

1

13
~{a-2/e0/a + 2/ - vy

|

where
¢ =6+ (8/c){2/c; + (1 +4/c3)"%,
¢, ={6(n*>—-5n+2)/(n+7)(n+3)}H6(n+3)(n
+5)/n(n — 2)(n — 3)}'/?,
g =1{b,—3(n—-1)/(n
+ 1)}
/{24n(n —2)(n —3)/(n + 1)%(n
+3)(n + 5)}'/2
and Bonett and Seier (2002) test

Zy =+ 2)%(w —3)/3.54 (15)
where w = 13.29(In§ —Ind), 6 = /2. (x — %¥)?/n and
d=Y|x—x|/n.

For the empirical study the three tests are included and
the following parameters are to be wused n=
[25,50,100] based on repetitions 10000 and nominal
type | error « = 0.05 for one and two tailed test. All
simulations were done in the software R, the source code
of the programs is not listed here and it can be obtained
from the author by request. The normal samples were
generated in R with the function rnorm() and all
random samples were generated independently from each
other. For the calculation of the test statistic of z; and z,
tests the already implemented functions
anscomb.test () and bonett.test()
(package moments) are used.

The zg test and z,, are known to be a powerful tests; see,
Bonett (2002). Tables 4 and 5 compare the empirical
nominal type | error and the empirical power of the two-
sided and one-sided zg, z,, and z, tests at a = 0.05 for
all distributions in set A and set B.

in R

Table 4. Empirical type | error and power for two-tailed kurtosis tests and @ = 0.05

/2/9¢)'?
n=25
ZB Zyy Zy

Normal 0.052 0.049 0.049
Set A

Beta(0.25,0.25) 93.1 905 97.2
Beta(0.5,0.5) 815 66.0 827
Uniform 441 28.7 40.1
Beta(1.5,1.5) 223 149 185
Logistic 130 122 102
Laplace 288 346 321
Set B

gl(0,1,-85,-85) 88.1 913 911
gl(0,1,-.75,-75) 84.8 885 87.1
gl(0,1,-.5,-.5) 69.4 736 69.7
gl(0,1,-.25,-25) 44.0 455 40.0
gl(0,1,-.15,-15) 304 308 25.1
gl(0,1,-.10,-10) 241 236 19.0
gl(0,1,-.05,-05) 18.1 174 142

2B
0.05

*

99.3
88.5
60.4
19.6
49.5

100
98
921
70.1
51.7
411
30.5

n=>50 n =100
Zy Zy ZB Zy Zy
4 0.050 0.050 0.052 0.050 0.050
999 100 * 100 100
959 994 * 100 100
624 713 999 935 96.1
343 400 953 688 70.1
189 147 328 321 246
638 59.0 772 905 876
100 100 100 100 100
99.3 99.0 99.0 100 100
95,1 932 996 999 9938
739 673 91.8 944 910
540 443 76,7 803 70.1
430 332 659 676 559
302 228 506 51.0 40.0

*the program fails to give the results
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Table 5. Empirical type | error and power for one-tailed kurtosis tests and & = 0.05

n=25

ZB Zy, Zy
Normal 0.049 0.044 0.047
Set A
Beta(0.25,0.25) 94.6 95.3 98.3
Beta(0.5,0.5) 87.7 79.0 89.6
Uniform 579 452 538
Beta(1.5,1.5) 345 282 319
Logistic 178 153 133
Laplace 386 422 401
Set B
gl(0,1,-.85-85 920 937 937
gl(0,1,-.75,-75) 88.4 90.4 90.0
gl(0,1,-05,-05) 765 782 76.1
gl(0,1,-.25,-25) 525 51.0 455
gl(0,1,-15-.15) 382 360 318
gl(0,1,-.10,-10) 322 301 26.0
gl(0,1,-05,-05) 239 219 19.0

2B
0.05

99.8
99.7
93.6
729
275
61.7

99.6
89.7
94.9
77.1
61.4
50.0
39.2

n=>50 n =100
Zy Zy Z'B Zyy Zy
1 0.049 0.050 0.048 0.049 0.051
100 100 100 100 100
98.3 99.7 100 100 100
76.1 82.8 100 97.3 98.1
51.3 541 98.1 825 820
252 200 422 40.8 347
725 69.0 843 941 931
99.8 99.9 100 100 100
995 994 100 100 100
966 955 999 999 999
785 720 950 964 941
60.6 53.0 844 858 78.7
495 41.2 74.1 74.7 66.0
373 30.2 59.1 58.1 49.2

Tables 4 and 5 show the empirical one-tail and two-tailed
type | error rate and power for tests. For type | error, the
zp test is slightly liberal for all sample sizes in two-tailed
test and very close to nominal value for all samples sizes
in one-tail test, z,, test is very close to nominal value for
all sample size, one-tail test and two-tailed test except for
n = 25 in one-tail test it is less than nominal value while
z), test is very close to nominal value for all sample sizes,
one-tail test and two-tailed test except for n = 25 in one-
tail test it is conservative.

For the power, Tables 4 and 5 show that the z; has the
most power in the distributions that have K in the range
(—0.16,0.16) and competitive to z, in the range
[—0.16,—1] while it is the weakest in the range [0.16,1],
the z,, has the most power in the distributions which have
K in the range [0.16,1] and competitive to zg in the range
[-0.16,0.16] while it is the weakest in the range
[-0.16,—1] and the z, shows the most power in the
distributions which have K in the range [-0.16,—1] and
very competitive to z,, in the range [0.16,1] while it is
the weakest in the range (—0.16,0.16). Therefore it can
conclude that the good test for kurtosis can be applied as

z, if K <-0.16

zg if —0.16 <K <0.16

z,, if K >0.16
B. Omnibus normality test
One of the most used distributions in statistical analysis
is the normal distribution. Consequently, the
development of tests for departures from normality
became an important subject of statistical research. There
are many approaches for normality test and the most
famous approach consists of testing for normality using
the third (B;) and fourth (8,) moments of observations

X4, .., X, known as sample skewness /b, and sample
kurtosis b,. Tests that can only detect deviations in either

the skewness or the kurtosis are called shape tests. The
test that are able to cover both alternatives are called
omnibus test. The probably most popular omnibus test is
the Jarque-Bera test (1980) that is defined as

n 2 b, — 3)?
]B=g<(\/b_1) + & 2 ) )
This is called JB statistic and has asymptotically y2
distributed; see, Jarque and Bera (1980, 1987),
Thadewald and Buning (2007) and Gel and Gastwirt
(2008).

The proposed omnibus normality test based on MAD eq
is defined as

(16)

52 k? ns? nk?

N = =
L7 var(s) + var(k) ~ 0.90 * 020

Nsk = (17)

Under the null hypothesis and assuming that the two
summands are independent then N;would be chi-squared
(x?) distributed with two degrees of freedom. Figure 9
makes an attempt to show the correlation of s and k from
several sample sizes. For all sample sizes there is no
structure to recognize in the graph. Also, the convergence
of the N, statistic to its asymptotic distribution is tried to
be visualized in Figure 10. For each histogram in this
figure, the N, statistic was calculated for m = 10000
realizations of standard normally generated random
samples of the corresponding sample size n.
Additionally, the theoretical probability distribution
function of chi-squared distribution with 2 degrees of
freedom is plotted in each histogram so that one is able to
compare the goodness-of-fit of the empirical distribution
with the theoretical distribution. For all sample sizes it is
clear that the chi-squared with 2 degree of freedom gives
a very good fit to statistic Ny,. This supports the
assumption of independence between s and k.
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Figure 9. Scatter plot of s and k for 1000 randomly generated normal samples for each sample size.
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Figure 10. Histogram of the N, statistic for several sample sizes together with the pdf of the 2
distribution. For each sample size, 10000 standard normal samples were generated.
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Table 6. Empirical type I error and power for normal tests using « = 0.05
n=25
Alternative k Ny JB Alternative s k N, B

Normal 0 0.049 0.031 Beta (1,0.5) -0.333 -0.155 60.6 6.2
Beta(0.25,0.25) -0.371 98.8 0.2 Beta (2,1) -0.207 -0.092 247 35
Beta(0.5,0.5) -0.264 78.0 0.1 Beta (3,2) -0.086 -0.063 9.6 1.9
Uniform -0.155 311 0 Chi-square (1) 0.645 0.141 869 84.2
Beta(1.5,1.5) -0.107 154 0 Chi-square (2) 0.442 0.058 555 612
Logistic 0.056 9.1 12.0 Chi-square (4) 0.306 0.026 30.0 385
Laplace 0.165 271 271 lognormal (0,1) 0575 0.215 81.0 83.8
gl(0,1,-.85,-.85) 0.653 905 87.6 lognormal (0,0.5) 0.306 0.059 314 436
gl(0,1,-.75,-.75) 0568 859 834 Weibull (.5,1) 0.814 0.379 98.1 96.4
0l(0,1,-0.50,-0.50) 0.360 67.1 675 Weibull (1,1) 0.442 0.058 57.2 605
0l(0,1,-0.10,-0.10) 0.105 16.8 233 Weibull (2,1) 0.030 -0.020 51 19

n =150
Normal 0 0.049 0.040 Beta (1,0.5) -0.333 -0.155 90.1 27.1
Beta(0.25,0.25) -0.371 100 64.1 Beta (2,1) -0.207 -0.092 474 109
Beta(0.5,0.5) -0.264 98.6 2.6 Beta (3,2) -0.086 -0.063 159 1.0
Uniform -0.155 614 0 Chi-square (1) 0.645 0.141 99.0 99.0
Beta(1.5,1.5) -0.107 30.8 0 Chi-square (2) 0.442 0.058 858 95.1
Logistic 0.056 128 228 Chi-square (4) 0.306 0.026 526 77.1
Laplace 0.165 515 50.2 lognormal (0,1) 0575 0.215 98.3 99.6
gl(0,1,-.85,-.85) 0.653 996 99.1 lognormal (0,0.5) 0.306 0.059 56.1 80.1
0l(0,1,-.75,-.75) 0568 989 985 Weibull (.5,1) 0.814 0.379 100 100
0l(0,1,-0.5,-0.5) 0360 920 924 Weibull (1,1) 0.442 0.058 85.0 953
0l(0,1,-0.10,-0.10) 0.105 28.3 434 Weibull (2,1) 0.030 -0.020 15.7 20.2

n =100
Normal 0 0.051 0.044 Beta (1,0.5) -0.333 -0.155 99.8 99.7
Beta(0.25,0.25) -0.371 100 100 Beta (2,1) -0.207 -0.092 80.1 744
Beta(0.5,0.5) -0.264 100 100 Beta (3,2) -0.086 -0.063 30.0 5.6
Uniform -0.155 92.7 56.2 Chi-square (1) 0.645 0.141 100 100
Beta(1.5,1.5) -0.107 60.1 9.0 Chi-square (2) 0.442 0.058 99.1 100
Logistic 0.056 201 37.0 Chi-square (4) 0.306 0.026 84.2 99.1
Laplace 0.165 838 78.6 lognormal (0,1) 0.575 0.215 100 100
0l(0,1,-.85,-.85) 0.653 100 100 lognormal (0,0.5) 0.306 0.059 84.3 98.9
0l(0,1,-.75,-.75) 0.568 100 100 Weibull (.5,1) 0.814 0.379 100 100
0l(0,1,-0.5,-0.5) 0.360 99.6 99.6 Weibull (1,1) 0.442 0.058 99.0 100
0l(0,1,-0.10,-0.10) 0.105 50.0 68.8 Weibull (2,1) 0.030 -0.020 28.1 49.8

1) Power study

The statistic Ny, is compared with the most popular and
used moment test for normality the Jarque-Bera test
(1980) that defined in equation (15). For the empirical
study the two tests for normality are included and the
following parameters are to be used n = [25,50,100]
based on repetitions 10000 and nominal type | error
a = 0.05. All simulations were done in the software R
and the function of the test statistic /B is already
implemented in R (package moments) jarque. test().

Table 6 shows the results of simulation study for several
symmetric and asymmetric distributions. For type | error,
the empirical Type | error for JB test is quite less than
nominal value for small sample sizes and conservative
for large sample size while empirical Type | error for the

test N, is very close to nominal value for all used sample
sizes. For the power, Table 6 shows that /B has the most
power in the distributions that have kurtosis in the range
[—0.025,0.36) while the statistic N, is the most power
in the distributions that have k ranges [—1,—0.025) and
(0.36,1] regardless of the skewness value.

6. CONCLUSION

Two measures of shape were introduced with graphical
display based on mean absolute deviation about median.
The measure of skewness was based on the partitions of
MAD,,4 into two parts to obtain zero for any symmetric
distribution while the proposed measure of middle-sides
equality was based on the partitions of MAD,q into four
parts in terms of specific percentiles to get zero for
normal distribution. The middle-sides equality measure
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had clear meaning where the middle mass is compared
with sides mass with respect to normal distribution.
Making a decision about goodness of fit for a data
without looking at a graphic makes the investigation not
complete. A famous and often cited quote of J.W. Tukey
“there is no excuse for failing to plot and look”. Based on
four partitions of MAD an informative graph was
produced that could provide a more insight into the
nature of the data and assess goodness of fit for a data set
to a theoretical model to know if the assumption of a
common distribution is justified. The H-graph enriched
the visual information offered by the histogram and
boxplot.

The tests for kurtosis (z;) and normality (Ng,) were
simple, easy to compute, did not require special tables of
critical values where the chi-squared distribution with 2
degree of freedom is used and had a good power and
Type | error control in comparisons with Anscombe-
Glynn, Bonett-Seier and Jarque-Bera tests. With respect
to kurtosis test, the statistic z, was more powerful than
zg and z, in platykurtic distributions and very
competitive to z, in leptokurtic distributions. With
respect to normal test Ny, was more powerful than
Jarque-Bera’ test in all kurtosis ranges of distributions
except the
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