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Abstract: Many statistical techniques are based on the use of linear combinations of order statistics that called linear moments.       

L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of 

order statistics analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, 

skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively. In this paper an overview for recent works in L-

moments is presented.  
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1. INTRODUCTION  

Many statistical techniques are based on the use of 

linear combinations of order statistics (or quantile 

function), but there has not been developed a unified 

theory of estimation covering the characterization of 

probability distribution, until Hosking (1990) introduced 

L-moments, as an alternative to the classical moments. 

So, L-moments are summary statistics for probability 

distributions and data samples. They provide measures of 

location, dispersion, skewness, kurtosis, and other aspects 

of the shape of probability distributions or data samples. 

However, The L in L-moments emphasizes the 

construction of L-moments from linear combinations of 

order statistics. 

       Sillitto (1969) has derived an approximation to the 

inverse distribution function (the quantile function) in 

terms of population L-moments without referring to L-

moments. Also, he gave the sample version of the 

quantile function in terms of sample L-moments without 

studying its properties. A formal and comprehensive 

treatment of L-moments was developed by Hosking 

(1990), who established foundational results supporting a 

new methodology in data analysis and inference based on 

L-moments. 

       Hosking (1990) concluded that the L-moments, as a 

function of the quantile function, have various theoretical 

advantages over the classical moments. For example, for 

L-moments of a probability distribution to be meaningful, 

we require only that the distribution has a finite mean; no 

higher-order moments need be finite. Similarly, in order 

to the standard errors of L-moments to be finite, only the 

distribution is required to have finite variance and no 

higher-order moments need be finite. Also, though 

moment ratios can be arbitrarily large, sample moment 

ratios have algebraic bounds but sample L-moment ratios 

can take any values that the corresponding population 

quantities can. 

       In addition, L-moments have properties that hold in a 

wide range of practical situations. L-moments also give 

asymptotic approximations to sampling distributions 

better than classical moments and provide better 

identification of the parent distribution which generated a 

particular data sample (see Hosking (1990)). 

Furthermore, L-moments are less sensitive to outlying 

data values and yield, sometimes, more efficient 

parameter estimates than the maximum likelihood 

estimates (Vogel and Fennessey (1993)). 

But, the main shortage in L-moments is that they do 

not exist for the distribution which has infinite mean and 

less efficient for heavy tail distributions. 

       Mudholkar and Hutson (1998), introduced, as a 

result of the previous shortage, the LQ-moments, as a 

robust version of L-moments in which expectation of the 

conceptual order statistics (in the definition of population 

L-moments) is replaced by a class of robust location 

measures defined in terms of simple linear combinations 

of symmetric quantiles of the distributions of the order 

statistics, such as median and trimean. 

Elamir and Seheult (2003) introduced Trimmed L-

moments (TL-moments) as an alternative to LQ-moments 

and natural generalization of L-moments that do not 
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require the mean of underlying distribution to exist. TL-

moments depend on giving zero weight to extreme 

observations. Therefore, they are defined for heavy tailed 

distributions where they do not involve some values at 

the extreme ends of the distribution. 

       As interested in statistical modeling using heavy-

tailed distributions is increasing, so is the important of 

the potential by the L-moment and TL-moment 

approaches. The need of linear moments has been 

developed in support of regional frequency analysis in 

environmental science, which treats the quantile of 

distributions of variables such as annual maximum 

precipitation, stream flow, wind speed observed at each 

site in a given network. Hosking and Wallis (1997) 

provide an excellent exposition. Also linear moments 

approach has special utility in applications where 

descriptive estimates (location, spread, skewness, and 

kurtosis) more stable than the usual central moments are 

critically needed. Such concern arise, for example, in 

volatility estimation in financial risk management 

involving market variables such as stock indices, interest 

rates; see, Serfling (1980) , Embrechts et al. (1997), 

Leonowicz et al. (2005) and Willinger et al. (1998). 

          TL-moments have various theoretical advantages. 

For example, TL-moments give more robust estimators 

than L-moments in the presence of outliers. Moreover, 

population TL-moments may be well defined where the 

corresponding population L-moments (or central 

moments ) do not exist , for example, the first population 

TL-moment is well defined for a Cauchy distribution, but 

the first population L-moment, the population mean, does 

not exist (see, Elamir and Seheult (2003)). 

          Also, their sample variance and covariance can be 

obtained in closed form (see, Elamir and Seheult (2003)). 

In addition, TL-moments ratios are bounded for any 

trimmed value (see, Hosking (2007 and Elamir et al 

(2010)).  

       Hosking (2007) has derived of approximation to the 

quantile function in terms of population TL-moments. 

Elamir (2009) introduced properties of this approximate 

function by minimizing the weighted mean square error 

between the population quantile function and its TL-

moments representation. Also, he studied properties of 

the corresponding sample estimator. He concluded that 

the estimators have a good approximation to population 

quantile for a broad class of probability distribution 

functions.  

         Also, Elamir (2010) derived an optimal choice for 

the amount of trimming from known distributions, based 

on the minimum sum of the absolute value of the errors 

between the quantile probability function and its TL-

moments representation. Nair and Vineshkumar (2010) 

study the properties of L-moments of residual life in the 

context of modeling lifetime data. They introduced 

characterizing life distributions and other applications. 

The role of certain quantile functions and quantile-based 

concepts in reliability analysis are also investigated. 

Several studies had been done using and applying the 

method of TL-moments as natural generalization of L-

moments: 

(a)      Some of these studies concerned to introduce 

theoretical results for TL-moments method are as 

follows: 

Karvanen (2006) proposed parametric families from 

quantile functions of distributions. This class of 

parametric families is called quantile mixtures, which 

contain a wide range of different distributions that have 

practical importance. He introduced two parametric 

families: the normal-polynomial quantile mixture and the 

Cauchy-polynomial quantile mixture. And he used the 

methods of L-moments and TL-moments to estimate the 

parameters of the two quantile mixtures respectively. The 

proposed quantile mixtures are applied to model monthly, 

weekly and daily returns of some major stock indexes. 

      Abdul-Moniem (2007) applied the method of L-

moment and TL-moment estimators to estimate the 

parameters of exponential distribution. 

      Asquith (2007) derived analytical solutions for the 

first five L-moments and TL-moments (in case of 

symmetrical trimming (1,1) in terms of a four-parameters 

generalized Lambda distribution (GLD) in asymmetric 

case. And, because that asymmetric GLD needs 

numerical methods to compute the parameters from the 

L-moments or TL-moments, algorithms are suggested for 

parameter estimation. Application of the GLD using both 

L-moments and TL-moment parameter estimates from 

example data is demonstrated, a small simulation study 

of the 98th percentile (far-right tail) is conducted for a 

heavy-tail GLD with high-outlier contamination. The 

simulations showed, with respect to estimation of the 

98th-percent quantile, that TL-moments are less biased 

(more robust) in the presence of high-outlier 

contamination. 

         Hosking (2007) derived some further theoretical 

results for TL-moments. He defined the TL-moments in 

terms of shifted jacobi polynomials, and he introduced a 

representation for the quantile function as a weighted 

function of orthogonal polynomials in which the 

coefficients are related to TL-moments.  

       Abdul-Moniem and Selim (2009) derived the TL-

moments and L-moments of the generalized Pareto 

distribution (GPD),   and they used it to obtain the first 

four TL-moments and L-moments. They introduced the 

TL-skewness, L-skewness, TL-kurtosis and L-kurtosis 

for the GPD. They used the TL-moments and L-moments 

to estimate the parameters for the GPD. Also, they 

introduced a numerical illustrate for the new results.  
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       Elamir (2009) introduced properties of a new class of 

approximations to population quantile and sparsity 

functions based on TL-moments by minimizing the 

weighted mean square error between the population 

quantile function and its TL-moments representation. 

Also, he studied properties of the corresponding sample 

estimator of population quantile in terms of sample L-

moments and Jacobi polynomials from uniform 

distribution, t distribution and generalized Pareto 

distribution (GPD). He concluded that the estimators 

have a good approximation to population quantile for a 

broad class of probability distribution functions. An 

example is given that illustrates the benefits of the 

proposed method. 

        Elamir et al. (2009) introduced Fractional Linear 

moments (FL-moments) as a natural generalization of 

TL-moments. FL-moments take account of the data at the 

tail of the distribution where the sample FL-moments 

captures all the information in the sample about the 

population counterparts by assigning less weight for 

extreme values and provide simple and effective ways of 

estimating the parameters and making inferences for 

distributions with heavy tails in which the mean does not 

exist. The quantile function in terms of FL-moments as a 

weighted sum of Jacobi polynomials is obtained. 

      Also, Elamir (2010) derived an optimal choice for the 

amount of trimming from known distributions, based on 

the minimum sum of the absolute value of the errors 

between the quantile probability function and its TL-

moments representation. Moreover, he introduced a 

simulation-based approach to choose an optimal amount 

of trimming, by computing the estimator variance for 

range of trimming and choose the one which has less 

variance. Several examples are given to show the benefits 

of the methods.  

        Maillet and Medecin (2010) introduced the relation 

between the     TL-moments and the first TL-moments 

with generalized trimming, symmetric ),( tt  and 

asymmetric )2,1( tt trimming. Indeed, it is sufficient to 

compute TL-moments of order one to obtain all TL-

moments. They decided the importance of this relation 

which helps to enable easier calculations for the rth TL-

moments with any trimming and L-moments as particular 

cases of the rth TL-moments with zeros trimming. They 

underlined that the TL-moments approach is a general 

frame-work that encompasses the L-moments, LH-

moments (TL-moments with 01 t ) and the LL-

moments (TL-moments with 02 t ). 

       Abu El-Magd (2010) introduced the TL-moments 

and LQ-moments of the exponentiated generalized 

extreme value distribution (EGEV). She introduced The 

TL-moment estimators, L-moments estimators, LQ-

moment estimators and the method of moment estimators 

(classical estimators) for the EGEV distribution. A 

numerical simulation compares these methods of 

estimation mainly with respect to their biases and root 

mean squared errors (RMSEs) will be obtained. Also, she 

derived the true formulae for the rth classical moments 

and the probability weighted moments (PWMs) for the 

EGEV distribution to correct the Adeyemi and Adebanji 

(2006) formulae for the EGEV. (b)  On the other hand, 

TL-moments approach has been used and applied in an 

analysis to determine the best-fitting distributions, as 

analogous of L-moments which has many applications in 

this field (see Enayat (2009)).  

        Ariff (2009) used the TL-moments, in case 

symmetrically trimmed by one and two conceptual 

sample values respectively and L-moments for an 

analysis to determine the best fitting distribution to the 

data of   maximum daily rainfalls measured over stations 

in Selangor and Kuala Lumpur. He used, for this propose, 

the normal (NO), logistic (LOG), extreme value (GEV) 

and generalized Pareto (GP) distributions.  He 

generalized logistic (GLO), extreme value type I (EV), 

generalized estimated the parameters of the previous 

distributions by using the TL-moments and L-moments 

methods. He determined the most suitable distribution a 

cording to the mean absolute deviation index (MADI), 

mean square deviation index (MSDI) and correlation, r. 

The L-moments method showed that the generalized 

logistic (GLO) distribution is the best distribution whilst 

TL-moments method concluded that the extreme value 

typeI (EV) and generalized extreme value (GEV) 

distributions are the most suitable distributions. That 

results to fit the data of maximum daily rainfalls for 

stations in Selangor and Kuala Lumpur. 

       Shabri et al (2011a) derived the TL-moments with 

one smallest value were trimmed from the conceptual 

sample (TL-moments (1,0)) for the generalized logistic 

(GLO) distribution. They estimated the parameters of the 

generalized logistic (GLO) distribution by using the TL-

moments with one smallest value were trimmed. They 

compared the performance of TL-moments with one 

smallest value were trimmed with L-moments and TL-

moments through Monte Carlo simulation and stream 

flows data over station in Terengganu, Malaysia. The 

result showed that in certain cases, TL-moments with one 

smallest value were trimmed is a better option as 

compared to L-moments and TL-moments in modelling 

those series. 

       Deka and Borah (2012) used TL-moments method in 

an analysis to determine the best fitting distribution to ten 

stream flow gauging sites of the North Brahmaputra 

region of India.  Three parameters extreme value 

distributions: generalized extreme value (GEV) 
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distribution, generalized logistic (GLO) distribution and 

generalized Pareto (GP) distribution are fitted for this 

purpose. They valuated the performances of the three 

distributions using three goodness of fit tests. namely 

relative root mean square error, relative mean absolute 

error and probability plot correlation coefficient. Further, 

TL-moments ratios diagram is also used to confirm the 

goodness of fit for the above three distributions. Finally, 

they compared goodness of fit test results and concluded 

that GEV distribution is the best fitting distribution for 

describing the annual flood peak series for the majority 

of the stations in North Brahmaputra region of India 

when the parameters are estimated by using TL-moments 

method.  

        Shabri et al (2011b) they introduced a 

comprehensive evaluation of the L-moments and TL-

moments methods, by first revisiting regional frequency 

analysis based on the L-moments by Hosking and Wallis 

(1993; 1997). The analysis was based on daily annual 

maximum rainfall data from 40 stations in Selangor 

Malaysia. They derived TL-moments for the generalized 

extreme value (GEV) distributions and generalized 

logistic (GLO) distributions, and they used TL-moments 

for the generalized Pareto distributions (GP) from Elamir 

and Seheult (2003). And they used the TL-moments 

ratios diagram and Z-test to determine the best-fit 

distribution. They showed, by comparison between the 

two approaches, that the L-moments and TL-moments 

produced equivalent results. While, GLO and GEV 

distributions identified as the most suitable distributions 

for representing the statistical properties of extreme 

rainfall in Selangor. Finally, they concluded, by Mont e 

Carlo simulation, that the method of TL-moments more 

efficient for lower quantile estimations but the L-

moments method does outperform for higher quantile 

estimations.  

           Ahmad et al (2012) used TL- moments method in 

an analysis to determine the best-fitting distributions to 

represent the annual series of maximum streamflow data 

over 12 stations in Terengganu, Malaysia. They 

estimated the parameters of the generalized Pareto (GP), 

generalized logistic (GLO), and generalized extreme 

value (GEV) distributions by using the TL-moments 

method with different trimming value. They examined 

the influence of TL-moments on estimated probability 

distribution functions by evaluating the relative root 

mean square error and relative bias of quantile estimates 

through Monte Carlo simulations. They used the box-plot 

to show the location of the median and the dispersion of 

the data, which helps in reaching the decisive 

conclusions. For most of the cases, the results show that 

TL-moments with one smallest value were trimmed from 

the conceptual sample (TL-moments (1, 0)) of GP 

distribution was the most appropriate in majority of the 

stations. 

2. PROBABILITY WEIGHTED MOMENTS  

Let        be a sequence of independent random 

variables from a distribution with density function     , 
quantile function                  where 

     , cumulative distribution function      
    , the population mean          [    ], and 

denote the corresponding order statistics by            .  

The mean        and   is the standard deviation of 

the distribution.  

The probability weighted moments are a generalization 

of the usual moments of a probability distribution 

(Greenwood et al., 1979). The probability weighted 

moments are  

  

        [  {    } {      } ] 

Where           are real numbers. PWM are likely to be 

most useful when quantile function      can be written 

in closed form, so we can rewrite 

 

       ∫ [    ] 
 

 

            

The quantities        are the usual non-central 

moments. When   and   are integers,          may be 

expressed as a linear combination of either powers of   

or powers of (   ), so it is natural to summarize a 

distribution either by the moments                   , 

where 

 

           [ {    } ]                  

and,   
           [ {      } ]                 

where the expected value of order statistics is 
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Therefore the probability weighted moments can be 

written in terms of expected value of order statistics as   

 

   ∫          
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Note that    and    are used in many applications 

such as linear moments (see Hosking  et al (1990)), 

estimation of the generalized extreme value distribution. 
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3. L-MOMENTS 

Sillito (1969) and Hosking (1990) defined the 

population L-moments    as follows 

 

 
      ∑     (

   
 

)          

   

   

        

 

The L-moments in terms of quantile function can be 

written as 
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4. TRIMMED L-MOMENTS 

Elamir and Seheult (2003) defined the trimmed L-

moment (TL-moments) in terms of expected values as 
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where    and   are the amounts of trimming need to be 

chosen; see, Elamir (2010). Many studies have been done 

by researcher regarding TL-moments; see, for example, 

Asquith (2007), Hosking (2007), and Elamir (2010). Note 

that L-moments is a special case of TL-moments for 

       . 

 

5. LQ  MOMENTS 

This method due to Mudholkar and Hutson (1998) 

where the expected value is replaced by its median or 

some others population location measure as  
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where              is a quick measure of the location of 

the sampling distribution of the order       .  
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