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Abstract: This is a review for the book “Generalizations and applications of L-moments”. The L-moments are linear functions 

of order statistics. In this book a generalization of L-moment is presented by giving zero weights to extreme observations, this 

method called trimmed L-moments (TL-moments). TL-moments have certain advantages over L-moments and method of moments. 

They exist whether or not the mean exists (for example the Cauchy distribution) and they are more robust to the presence of outliers. 

 

Keywords: L-moment, order statistic, TL-moment.  

1. INTRODUCTION  

The subject of order statistics deals with properties 

and applications of ordered random variables and of 

functions of these variables. If the random variables     , 
          are arranged in ascending order of 

magnitude and then written as 

                 

then      is said to be the  th -order statistics in a sample 

of size   . In the usual random sampling theory, the 

unordered    are assumed to be statistically independent 

and identically distributed. Because of the inequality 

relations among them, the order statistics     are 

necessarily dependent. Some frequently encountered 

functions of order statistics are the extremes     and      

, the range            , the extreme deviate from the 

sample mean,       ̅ , and for a random sample from a 

normal distribution       ,  the studentized range,  

     

where    is a root mean square estimator of   based on   

degrees of freedom; see, for example, David (1981). All 

of these statistics have important applications. The 

extremes arise in the statistical study of floods and 

droughts, as well as in breaking strength and fatigue 

failure studies, the range is widely used in the field of 

quality control as a quick estimator of process standard 

deviation  , the extreme deviate is a basic tool in 

procedures for detecting outliers and large values of 

       ̅    

suggest the presence of outliers, and when outliers are not 

confined to one direction, the studentized range is also 

useful in the detection process; see, for example, Barnett 

and Lewis (1994). 

Sarhan and Greenberg (1962) used linear functions 

of order statistics in conjunction with the Gauss-Markov 

theorem to systematically estimate location and scale 

parameters in both complete and censored samples. They 

provided tables of the coefficients necessary for the 

calculations of these estimates from samples varying in 

size from 2 to 20 . Other applications of order statistics 

arise in the study of reliability systems. A system of   

components is called a  -out-of-  system if it remains 

operational only if at least k components continue to 

function. For components with independent lifetime 

distributions, the time to failure of the system is thus the 

(     ) th -order statistic. The special cases     

and     correspond respectively to parallel and series 

systems. 

A major impetus for the study of order statistics has 

been provided by the development of modern computers. 

Through their use it is feasible to make repeated 

examinations of the same data in many different ways. 

Tukey (1970) and Mosteller and Tukey (1977) have 

employed various informal techniques in the analysis of 

data. It is possible to determine quickly if the data are in 

accord with an assumed distribution and with an assumed 

model. 

A plot of the ordered observations against some 

simple functions of their ranks, preferably on probability 

paper appropriate for the assumed distribution, will often 

prove helpful in making such determinations. The term 

robust statistics has many meanings, they use it in a 

relatively narrow sense: ...robustness signifies 

insensitivity to small deviations from the assumption of 

normality....see Huber (1981). 
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Tukey (1960) points out that for a sample from 

       the mean deviation has asymptotic efficiency 

0:88 relative to the standard deviation in estimating  . 

The situation is changed drastically if some 

contamination by a wider normal, for example          

is present: as little as 0:008 of the wider population will 

render the mean deviation asymptotically superior. 

Nevertheless there are flaws: the efficiency of the mean 

is very small for a uniform parent, and for any parent a 

single wild observation may render   useless. 

It has long been known that the midpoint, 

              

is optimal in the former case but much worse than   in 

the latter, and that the median is preferable in the latter 

case but worse in the former. Obviously, they must not 

expect an estimator to be good under too wide a set of 

circumstances. 

It is standard statistical practice to summarize a 

probability distribution or an observed data set by some 

of its moments. It is also common, when fitting a 

parametric distribution to a data set, to estimate the 

parameters by equating the sample moments to those of 

the fitted distribution. The method of moments is not 

always satisfactory: sometimes it is difficult to assess 

exactly what information about the shape of a distribution 

is conveyed by its moments of third and higher order, the 

numerical values of sample moments, particularly when 

the sample is small, can be very different from those of 

the probability distribution from which the sample was 

drawn, and the estimated parameters of distributions 

fitted by the method of moments are often markedly less 

accurate than those obtainable by other estimation 

procedures such as the method of maximum likelihood; 

see, for example, Vogel and Fennessey (1993) and Kirby 

(1974). 

Many statistical techniques are based on the use of 

linear combinations of order statistics but there has not 

been developed a unified theory covering the 

characterisation of probability distributions, the 

summarisation of observed data samples, the fitting of 

probability distributions to data and the testing of 

hypotheses about fitted distributions, until Hosking 

introduced L-moments in 1990, the L in L-moments 

emphasises the construction of L-moments from linear 

combinations of order statistics. 

Greenwood et al. (1979) have introduced probability 

weighted moments, and they used them as a basis for 

estimating the parameters of some known distributions, 

for example, the Gumbel distribution. Hosking (1990) has 

studied an alternative approach based on quantities, which 

he called L-moments, which are analogous to the 

conventional moments but can be estimated by linear 

combinations of order statistics (L-statistics). L-moments 

have the theoretical advantages over conventional 

moments of being able to characterize a wider range of 

distributions and of being more robust to the presence of 

outliers of the data. 

2. CHAPTER 2: L-MOMENTS 

Hosking (1990) introduced population L-moments 

        as robust alternatives to classical measures of 

location, dispersion, skewness and kurtosis based on 

central moments and has studied properties of their 

corresponding sample L-moments            for samples 

of size n from any continuous distribution. Sample L-

moments which can be expressed as linear combinations 

of the sample order statistics, are unbiased for the 

corresponding population quantities           , and 

Hosking (1990) has given expressions for their 

asymptotic variances and covariances. An example of a 

sample L-moment is Gini’s mean difference scale 

estimate   which is twice the sample L-moment    and 

therefore has expectation    . Nair (1936) derived the 

standard error of g for any continuous distributions and 

Lomoniki (1951) obtained in a different way a general 

expression for the standard error of g when sampling is 

from any continuous distribution. 

In this chapter they derive expressions for the exact 

variances and covariances of sample L-moments in terms 

of first and second-moments of order statistics from small 

samples. For example, the variance of Gini’s mean 

difference g depends only on the mean and covariance 

structure of the order statistics for conceptual samples of 

sizes 1, 2 and 3. They give examples of the use of these 

formulae for various distributions. 

In section 2.2 they review classical moments. In 

sections 2.3 and 2.4 definitions and equivalent 

expressions for population and sample L-moments are 

given. In section 2.5 they derive exact results for the 

mean and variance-covariance structure of sample L-

moments for any univariate continuous distribution. In 

section 2.6 they show how to derive distribution-free 

unbiased estimators of the variances and covariances of 

sample L-moments and give two examples. In section 2.7 

they establish a theorem which characterises the normal 

distribution in terms of sample L-moments. In section 2.8 

they apply these results to obtain exact variances and 

covariances for sample probability weighted moments. 

3. CHAPTER 3: GENERALISATIONS OF L-MOMENTS 

Consider the problem of estimating the parameters 

of a distribution  . Classical estimation methods (e.g, the 

method of moments, least squares, and maximum 

likelihood) work well, for example, in cases where the 

distribution belongs to the exponential family. However, 

it is recognised that outliers, which arise from heavy-

tailed distributions or gross errors of measurement, have 

undue influence on such methods; for example,  ̅ which 

is an unbiased estimator of the mean   of the normal 

distribution based on the method of moments, least 
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squares and maximum likelihood, is a non-robust 

estimator; see, for example, Ali and Luceno (1997). 

Therefore, if there is concern about extreme observations 

which having undue influence, one should use a robust 

method of estimation which has been developed to 

reduce the influence of outliers on the final estimates. In 

recent years, a great deal of attention has been focused on 

robust estimation methods; methods produce estimates 

that are resistant to the presence of outliers; see, for 

example, Barnett and Lewis (1994), 

Hampel et al. (1986), Hawkins (1980) and Rousseuw 

and Leroy (1987). Hosking (1990) unified analysis and 

estimation of distributions using linear combinations of 

order statistics and used their ratios as new measures of 

skewness and kurtosis to relate L-moments to the method 

of moments. Royston (1992) and Vogel and Fennessey 

(1993) discuss the advantages of L-skewness and L-

kurtosis over their product-moment counterparts. 

Hosking and Wallis (1995), Sillito (1951) and Sillito 

(1969) consider various theoretical aspects and 

applications of L-moments. Mudholkar and Hutson 

(1998) introduced LQ-moments using a “quick” measure 

of the location of the sampling distribution of the order 

statistics such as the median, the tri-mean and Gastwirth 

measure (which they call Gastwirth) in place of the mean. 

There are wide applications for L-moments in 

engineering, meteorology, and hydrology; see, for 

example; Gingras and Adamowski (1994), Guttman et al. 

(1993), Pearson (1993), Pilon and Adamowski (1992) 

and Sankarasubramanian and Srinivasan (1999). 

In this chapter an alternative approach which they 

call trimmed L-moments (TL-moments) is introduced 

which gives zero weight to extreme observations. TL-

moments have advantages over L-moments and the 

method of moments: they exist whether or not the mean 

exists (for example, the Cauchy distribution) and they are 

more robust to the presence of outliers. Trimming refers 

to the removal of extreme values of a sample. For 

example, to symmetrically trim a univariate sample size, 

one removes the   smallest and k largest values for some 

specified      . For univariate samples the trimmed 

mean, the mean of the      un-trimmed sample values, 

is by far the most widely studied trimmed statistic. 

In section 3.2 they define LQ-moments and obtain 

their large sample variances. In section 3.3 they introduce 

both population trimmed L-moments and their sample 

counterparts for estimating parameters from any 

univariate continuous distribution and also obtain their 

exact variances and covariances. In section 3.4 they 

develop the trimmed probability weighted moment 

method (TPWM) and elucidate its relation to TL-

moments. In section 3.5 they study the TL-mean as a 

robust location estimator and apply the method of TL-

moments to some symmetric distributions. 

4. CHAPTER 4: SYMMETRIC LAMBDA ISTRIBUTION 

Tukey (1962) introduced and discussed subsequently 

the very useful family of distributions defined by the 

single parameter quantile function 

     
         

 
 

Where      . 

Random variables with this quantile function are said 

to be distributed according to a symmetric lambda 

distribution with parameter  . Filliben (1969) used this 

distribution to approximate symmetric distributions with 

a wide range of tail weights to study location estimators 

of symmetric distributions. Joiner and Rosenblatt (1971) 

have given results on the sample range. Chan and Rhodin 

(1980) used this distribution to study robust estimation of 

the location parameter based on selected order statistics. 

Ramberg and Schmeiser (1972) have shown how this 

distribution can be used to approximate many of the 

known symmetric distributions and explored its 

application to Monte Carlo simulation studies. Ramberg 

and Schmeiser (1974) generalised      to a four-

parameter distribution defined by the quantile function 

        
           

  

 

where    is a location parameter,    is a scale parameter 

and    and    are shape parameters. 

In section 4.2 they give the properties of the symmetric 

lambda distribution. In section 4.3 they discuss 

estimating the parameter l in (4.1) using the maximum 

likelihood method. 

Also, they discuss the use of L-moments and LQ-

moments for estimating the parameters. In section 4.4 

they obtain the asymptotic variances of sample L-

moments derived in Chapter 2. In Section 4.5 they use 

the symmetric lambda distribution to study the effect of 

the tail of the distribution on the choice of the plotting 

position for quantile plots. 

 

5. CHAPTER 5: CONTROL CHARTS BASED ON SAMPLE 

L-MOMENTS 

The usual practice in using control charts to monitor 

a process is to take samples from the process at fixed-

length sampling intervals and plot some sample statistics 

on the chart. A point outside the control limits is taken as 

an indication that something, called “assignable cause”, 

has happened to change the process. Since Shewhart 

introduced control charts in 1924, they have found 

widespread application in improving the quality of 

manufacturing processes. Another popular control 

procedure is the cumulative sum (CUSUM) control chart 

which was introduced by Page (1954). There has also 

been a renewed interest in the exponentially weighted 

moving average (EWMA) control charts, introduced by 
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Roberts (1959) who called it a geometric moving average 

chart. It is known that Shewhart-type charts are relatively 

inefficient in detecting small changes in the process 

parameters; see, for example, Hunter (1986) and 

Montgomery (1996). On the other hand, EWMA charts 

have been shown to be more efficient than Shewhart-type 

charts in detecting small shifts in the process mean; see, 

for example, Ng and Case (1989), Crowder (1989), Lucas 

and Saccucci (1990), Amin and Searcy (1991) and 

Wetherill and Brown (1991). In fact, the EWMA control 

chart has become popular for monitoring the process 

mean; see Hunter (1986) for a good discussion. More 

recently, EWMA charts have been developed for 

monitoring process variability; see, for example, 

Macgregor and Harris (1993), Amin and Wollf (1995) 

and Gan (1995). 

Like the Shewhart control chart, an EWMA control 

chart is easy to implement and interpret. It is based on the 

statistics 

 

                  
where    is the current observation,    is a starting value, 

such as the overall sample mean, and       is a 

constant that determines the “depth of memory” of the 

EWMA: The value     gives the classical charts, such 

as the  ̅ chart. While the choice of   can be left to the 

judgement of the quality control analyst. Experience with 

econometric data suggests values between 0.1 and 0.3 

when it is desirable to detect small changes in whatever 

process characteristic is being monitored; see, for 

example, Hunter (1986). 

Both Lucas and Saccucci (1990) and Box and 

Luceno (1997) give the representation 

    ∑      

   

   

              

or an EWMA process. Thus, Zi can be regarded as a 

moving average of the current and 

past values of the control statistics, where the weights on 

past data fall off exponentially as in a geometric series; 

and the smaller the value of l , the greater is the influence 

of the past values. When the Xi are independent and 

identically distributed with common variance s2, the 

variance of the control statistics is given by 

        [         ]          

 

The effect of the starting point soon dissipates and 

the variance increases quickly to its asymptotic value  

          as   increases. Control limits are usually 

based on this asymptotic variance. 

The presence of outliers tends to reduce the sensitivity of 

control chart procedures because the control limits 

become stretched so that the detection of outliers 

themselves becomes more difficult; see, for example, 

Rocke (1989), Tatum (1997) and Langenberg and 

Iglewicz (1986). 

In this chapter, see also Elamir and Seheult (2001), 

they propose EWMA control charts to monitor the 

process mean and dispersion using the Gini’s mean 

difference and the sample mean, and also charts based on 

trimmed versions of the same statistics. The proposed 

control charts limits are less influenced by extreme 

observations than classical EWMA control charts, and 

lead to tighter limits in the presence of out-of-control 

observations. 

Specifically, these control charts and their acronyms are: 

 EWMAM: EWMA of the sample mean to 

monitor the process mean, using Gini’s mean 

difference to estimate the process standard 

deviation. 

 EWMAG:EWMAof the sample Gini’s mean 

difference to monitor process standard 

deviation. 

  EWMATM: EWMA of the sample mean to 

monitor the process mean, using a trimmed 

mean of the sample means to estimate the 

process mean and Gini’s mean difference to 

estimate the process standard deviation. 

 EWMATG: EWMA of the sample Gini’s mean 

difference to monitor the process standard 

deviation using a trimmed mean of the sample 

Gini’s mean differences to estimate the process 

standard deviation. 
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