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Abstract: This paper focuses on the performance analysis of a linear system solving based on Cholesky decomposition and QR factorization, 

implemented on 16bits fixed-point DSP-chip (TMS320C6474). The classical method of Cholesky decomposition has the advantage of low 

execution time. However, the modified Gram-Schmidt QR factorization performs better in term of robustness against the round-off error 

propagation. In this study, we have proposed a third method called Modified Gram-Schmidt Cholesky Decomposition. We have shown that it 

provides a compromise of the two performance criterias cited above. A joint theoretical and experimental analysis of global performance of the 

three methods has been presented and discussed. 

Keywords: fixed-point; cholesky; qr; system solving; dsp; signal processing. 

 

I. INTRODUCTION 

This paper presents the implementation results on the 16bit-
fixed-point DSP chip (TMS 320C6474 which is optimized for 
16bits arithmetic operations), [1] of a linear system solving 
performed by Cholesky decomposition and modified Gram-
Schmidt process.  

The algorithms that contain a matrix inversion or a least-
squares problem are nowadays frequently used in a vast range 
of domains. But wireless telecommunications is the main user 
of linear system solving, as attest the several works published 
in the IEEE. For the field of wireless telecommunications, 
linear system solving are found mainly in the algorithmic part 
of the propagation channel equalization and interference 
cancellation for MIMO (Multi Input Multi Output) systems 
where the least square problem is often encountered [2, 3] as 
result of solving MMSE (Minimum Mean Square Estimation ) 
or LSE (Least Square Estimation) algorithms. 

In the case of least square problem, the most popular 
techniques are the classical Cholesky decomposition and QR 
factorization as will be detailed in section 2. We can show that 
the lower triangular matrix in the classical Cholesky 
decomposition can be obtained by the QR factorization and 
vice versa. This property can be used for performing a solving 
system using only the upper triangular matrix issued from QR 
factorization without using the orthogonal matrix Q as in the 
classical Cholesky method. We call this method Gram-

Schmidt-Cholesky (GS-Cholesky). In this work, we try to 
evaluate the efficiency versus the round-off error of this 
method compared to the classical method of Cholesky.  

Essentially it is shown that the QR factorization using the 
modified Gram-Schmidt process (MGS) is less sensitive to the 
round-off error than the classical Gram-Schmidt process (GS) 
when using the fixed-point calculation format [4, 5]. Therefore, 
the study will focus on evaluating the robustness of methods 
versus their round-off errors in intermediate calculations. 

In the second section, we give an overview of the classical 
Cholesky decomposition and MGS-QR factorization 
algorithms that are implemented along with the analytical 
aspects. In the third section, the 16-bits implementation of 
solving systems based on Cholesky decomposition, QR 
factorization and GS-Cholesky are detailed. In the fourth 
section, a theoretical study followed by an experimental 
evaluation is performed. The performance in sense of time 
execution and robustness against the round-off error in 
intermediate calculations due to 16-bit resolution are discussed. 

II. LINEAR SYSTEM SOLVING BASED ON CHOLESKY 

DECOMPOSITION AND QR FACTORIZATION 

The Cholesky decomposition is among the well-known 

methods and most popular for the linear system solving. This 

method is applied only if the matrix is Hermitian positive 

definite which is often encountered when dealing with least 
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square problems. The classic Cholesky decomposition can be 

achieved in two ways as we shall develop below. 

 

A. Least square problem 

The least square problem results often from an over-

determined linear system [6]. It means that the number of 

equations 𝑀, is greater than the number 𝑁 of unknowns. This 

situation occurs in the case of pilot-aided propagation channel 

estimation with assumption of low rank channel [2, 7]. The 

following mathematical expressions can summarize the 

situation. 

 

We assume a linear system given by, 

 

𝐴𝑥 − 𝑏 = 𝜀                       (1.) 

 

With,  𝐴 ∈ 𝐶𝑀×𝑁 , 𝑏 ∈ 𝐶𝑀×1 and 𝜀 ∈ 𝐶𝑀×1 

The two most popular methods to resolve the equation (1.) for 

𝑚𝑖𝑛 𝜀 2 are given by the following sections 1 and 2. 

 

1) Normal equation method 

The normal equation method is based on the search of the 

minimum modulus of the residual error 𝜀 as expressed in the 

following equation, 

𝑚𝑖𝑛 𝜀 2  ⇒
𝑑 𝐴𝑥 − 𝑏 𝐻 𝐴𝑥 − 𝑏 

𝑑𝑥
= 0 

Therefore, 𝐴𝐻𝐴𝑥 = 𝐴𝐻𝑏           (2.) 

 

If we set, Γ = 𝐴𝐻𝐴  and  𝛽 = 𝐴𝐻𝑏 then, 

 

  Γ𝑥 = 𝛽  𝑎𝑛𝑑  𝑥 = Γ−1𝛽                          (3.) 

With, 

Γ ∈ 𝐶𝑁×𝑁  being Hermitian positive definite matrix and  

𝛽 ∈ 𝐶𝑁×1 .  

 

Γ  can be decomposed by the Cholesky method, and the 

equation (3.) becomes, 

 

𝑥 =  𝐿𝐿𝐻 −1𝛽           (4.) 

 

With, ∈ 𝐶𝑁×𝑁  , a lower triangular matrix 

 

2) QR factorization 

 

It consists in a QR decomposition of 𝐴. Then equation (1.) 

becomes, 

𝑄𝑅𝑥 = 𝑏 + 𝜀 ⇒ 𝑥 = 𝑅−1𝑄𝐻𝑏 , 𝜀 = 0                    (5.) 

With, 

   𝐴 = 𝑄𝑅 

   

   𝑅 ∈ 𝐶𝑁×𝑁  , an upper triangular matrix  

   𝑄 ∈ 𝐶𝑀×𝑁   , an orthogonal matrix 

 

From section A and section B we have, 

 

Γ = 𝐴𝐻𝐴 = 𝐿𝐻𝐿 = 𝑅𝑅𝐻 ⇒ 𝐿 = 𝑅𝐻  
 
Then, 𝑄 can be obtained from the Cholesky decomposition by 

the following system solving, 

 
𝐴 = 𝑄𝐿𝐻 ⇒ 𝑄 = 𝐴𝐿−𝐻            (6.) 

 
The operation in equation (6.) is commonly called Cholesky 

orthogonalization of matrix  𝐴.  

We conclude in this case that Cholesky decomposition is a 

way to obtain QR decomposition and vice versa. This 

observation confirms that the QR factorization requires more 

execution time than the Cholesky decomposition since QR can 

be considered as a Cholesky decomposition, plus construction 

of matrix Q. 

In the rest of the paper, we focus on the experimental 

comparison of robustness versus round-off errors introduced 

by the intermediate calculations in 16-bit fixed-point of the 

Cholesky decomposition. For this purpose, we evaluated the 

classical method and the Gram-Schmidt process, by taking 

Gram-Schmidt QR decomposition as reference. 

 

B. Classical Cholesky decomposition  

This method needs to compute initially the Hermitian matrix 

Γ = 𝐴𝐻𝐴  before performing the classical Cholesky 

decomposition process as given below. 

Let’s denote 𝛾𝑖𝑗  the elements of matrix Γ, and 𝑙𝑖𝑗  the elements 

of matrix 𝐿  which is the Cholesky decomposition of Γ  with 

 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . Then the elements 𝑙𝑗𝑖  are obtained by the 

following algorithm. 

 

 

 

 

 

 

 

 

 

 

 

C. Modified Gram-Schmidt process 

This second method does not require to pre-compute the 

Hermitian matrix Γ, but uses the matrix 𝐴 directly as input. 

Matrix Γ is implicitly obtained in a sequential manner in the 

process of QR decomposition. This decomposition uses the 

Gram-Schmidt process as given by the following algorithm. 

 

 

 

for 𝑖 = 1 𝑡𝑜 𝑁 

 𝑙𝑖𝑖 =  𝛾𝑖𝑖 −  𝑙𝑖𝑘
2𝑖−1

𝑘=1  
1

2 

for 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁 

  𝑙𝑗𝑖 =
1

𝑙𝑖𝑖
 𝛾𝑖𝑗 −  𝑙𝑖𝑘 𝑙𝑗𝑘

𝑖−1
𝑘=1   

end for 

end for 
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We denote, 𝑟𝑖𝑗  the elements of matrix 𝑅 and 𝑞𝑖𝑗  the elements 

of matrix  𝑄. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
The number of mathematical operations required in floating 

point, for  Cholesky and QR decompositions, associated to the 

solving systems proposed in (4.) and (5.), is given in the 

following tables.  

The number of square roots is not included in the tables 

because it is the same for different methods, and equal to 𝑁. It 

should be noted that, multiplication and addition are complex 

operations. All the division operations used in the different 

algorithms are divisions of a complex number by a real 

number. 

 
Table 1. Cost in number of multiplication and addition operation 

 

Multiplications 
and additions 

Cholesky QR GS-
Cholesky 

𝐴𝐻𝐴 𝑀𝑁 𝑁 + 1 

2
 

- - 

𝐴𝐻𝑏 𝑀𝑁 - 𝑀𝑁 

Classical 
Cholesky 

factorization. 

𝑁 𝑁 − 1 2

2
 

- - 

Modified Gram 
Schmidt process 

- 𝑀𝑁2 𝑀𝑁2 

𝑥 =  𝐿𝐿𝐻 −1𝐴𝐻𝑏 𝑁 𝑁 − 1  - 𝑁 𝑁 − 1  

𝑥 = 𝑅−1𝑄𝐻𝑏 - 𝑁 2𝑀 + 𝑁 − 1 

2
 

- 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Cost in number of division operation 

 

Divisions Cholesky QR GS-
Cholesky 

𝐴𝐻𝐴 - - - 

𝐴𝐻𝑏 - - - 

Classical 
Cholesky 

factorization. 

𝑁 𝑁 − 1 

2
 

- - 

Modified Gram 
Schmidt process 

- 
𝑁  𝑀 +

𝑁 − 1

2
  

𝑁 𝑁 − 1  

𝑥 =  𝐿𝐿𝐻 −1𝐴𝐻𝑏 2𝑁 - 2𝑁 

𝑥 = 𝑅−1𝑄𝐻𝑏 - 𝑁 - 
 

 

III. DSP IMPLÉMENTATION 

This section is dedicated to the practical 16bit fixed-point 
implementation of the system solving algorithms described in 
the last section. In order to compare results of robustness of 
these various algorithms, we give the exact code embedded in 
the DSP by flowcharts 1 to 3 shown below.  

The main functions are given first, followed by the final DSP 
implementation of each algorithm. 

The Qx/y  notation of fixed point format is widely used in 

fixed-point arithmetic [8] and briefly explained in [9]. 

We note that Qx/y  do not mean the classical representation 

Qa∙b  (where a is the number of integer bits and b the number of 
fractional bits). The Qx/y representation means here that x is the 

number of fractional bits and y the number of total available 
bits including signed bit. 

These two representations are related by this expression, 

𝑦 = 1 + 𝑎 + 𝑏  and  𝑥 = 𝑏 

The initial and final vectors and matrices are expressed on 
Q15/16  format. Intermediate vectors and matrices are in QZ/16  

format in order to prevent over flow in multiplication process.  

In the following flowcharts, the real positive number Z  is 
calculated by the following equation: 

𝑍 = 15 − 𝑟𝑜𝑢𝑛𝑑 𝑙𝑜𝑔2 𝑀 + 0.5             (7.) 

 

In the following, Figures 1 and 3 show respectively the 
classical Cholesky decomposition and Modified Gram-Schmidt 
factorization processes as implemented on the DSP. Once these 
processes are performed the triangular matrices resulted are 
carried to the final step of the system solving where the 
solution is obtained as depicted by figure 2.   

 

 

 

 

 

𝑄 = 𝐴 

 

for 𝑖 = 1 𝑡𝑜 𝑁 

 𝑟𝑖𝑖 =   𝑞𝑚𝑖
𝐻𝑞𝑚𝑖

𝑀
𝑚=1  

1

2  
 for 𝑗 = 𝑖 + 1 𝑡𝑜 𝑁 

 𝑟𝑖𝑗 =
1

𝑟𝑖𝑖
  𝑞𝑚𝑗

𝐻𝑞𝑚𝑖
𝑀
𝑚=1  

𝐻
 

for 𝑚 = 1 𝑡𝑜 𝑀 

  𝑞𝑚𝑗 = 𝑞𝑚𝑗 −
1

𝑟𝑖𝑖
 𝑞𝑚𝑖 𝑟𝑖𝑗   

end for 

end for 

end for 
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Figure 1. Flowchart (1) of Classical Cholesky decomposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Flowchart (2) of triangular system solving 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Flowchart (3) of modified Gram-Schmidt QR factorization 

 
  

Finally, the three system solving implemented in the DSP are 
given as follows, 

 

A. System solving using classical Cholesky method, as 

depicted in fig. (4-a) 

B. System solving using GS-Cholesky method, as depicted in 

fig. (4-b) 

C. System solving using QR method, as depicted in fig. (4-c) 

 

 

 

𝐿 𝑖, 𝑖 

=   𝐿 𝑖, 𝑖  

𝑗 = 𝑖 + 1 

 
 

 

𝛤 = 𝐴𝐻𝐴 

𝑖 = 1 

 

𝐴 

𝐿 𝑖, 𝑖 
=  2𝑍 ∙ 𝛤 𝑖, 𝑖   

𝑗 = 1 

 

 
 

𝑖 ≤ 𝑁 

𝐿 𝑖, 𝑖 
=  𝐿 𝑖, 𝑖 
−  𝐿 𝑖, 𝑗 𝐿𝐻 𝑖, 𝑗  

 

 
 

 

𝑗 < 𝑖 

𝐿 𝑗, 𝑖 =  
𝐿 𝑗, 𝑖 

𝐿 𝑖, 𝑖 
 

 

 
 

𝐿 𝑗, 𝑖 
=  𝐿 𝑗, 𝑖 
− 𝐿 𝑖, 𝑘 𝐿𝐻 𝑗, 𝑘  

 

 

 

𝐿 𝑗, 𝑖 
=  2𝑍 ∙ 𝛤 𝑖, 𝑗  

𝑘 = 1 

 

 

 

𝑘 < 𝑖 

𝑗 ≤ 𝑁 

𝑄15/16  

 

𝑄15+𝑧/32  

 

𝑄30/32  

 

𝑄15/16  

 

𝑄15+𝑧/32  

 

𝑄30/32  

 

𝑄15/16  

 

𝑥 𝑖 =
𝑥 𝑖 

2𝑍
 

 

 

 

 

 

𝛽 

𝑖 = 1 

 

𝑥 = 2𝑍 ∙ 𝛽  
𝑗 =  𝑖 − 1 

 
 

 

𝑖 ≤ 𝑁 

𝑥 𝑖 
=  𝑥 𝑖 
− 𝐿 𝑖, 𝑗 𝑥 𝑗  

 

 
 

 

𝑗 ≥ 1 

𝑄15/16  

 

𝑄30/32  

 

𝑄15/16  

 

𝑄15+𝑍/32  

 

𝑘 = 1 

 
 

 

𝑅 𝑖, 𝑖 =  𝑅 𝑖, 𝑖  
𝑗 = 𝑖 + 1 

 

 

 

 

𝑄 = 𝐴 

𝑖 = 1 

 

𝑗 =  1  

 

 
 

𝑖 ≤ 𝑁 

𝑅 𝑖, 𝑖 
=  𝑅 𝑖, 𝑖 
+ 𝑄 𝑗, 𝑖 𝑄𝐻 𝑗, 𝑖  

 

 

 
 

𝑗 ≤ 𝑀 

𝑄15/16  

 

𝑄30/32  

 

𝑄15/16  

 

𝑄15/16  

 

𝑗 ≤ 𝑁 

𝑘 = 1 

 

 

 
𝑘 ≤ 𝑀 

𝑅 𝑖, 𝑗 
=  𝑅 𝑖, 𝑗 
+ 𝑄 𝑘, 𝑗 𝑄𝐻 𝑘, 𝑖  

 

 

 
 

𝑅 𝑖, 𝑗 =  
𝑅 𝑖, 𝑗 

𝑅 𝑖, 𝑖 
 

𝜌 =
215 ∙ 𝑅 𝑖, 𝑗 

𝑅 𝑖, 𝑖 
 

 

 

 

 
 

𝑄 𝑘, 𝑗 
=  𝑄 𝑘, 𝑗 

−
𝑄 𝑘, 𝑖 ∙ 𝜌

215
 

𝑄 𝑘, 𝑖 

=  
215 ∙ 𝑄 𝑘, 𝑖 

𝑅 𝑖, 𝑖 
 

 

 

 
 

 

 

𝑘 ≤ 𝑀 

𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 
 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 

𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 
 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 

𝑒𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 
𝑠𝑜𝑙𝑣𝑖𝑛𝑔  
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a. Classical Cholesky  

 
 
 

b. GS-Cholesky  

 

 

 
c. QR 

Figure 4. System solving algorithms 

 

IV. NUMERICAL RESULTS 

A. Theoretical analysis of round-off errors 

In this section, we assume that the absolute value of all real 
and imaginary parts are less than 1. All calculations are 
performed without overflow. The additions and subtractions 
are made with t + Z  bits (t = 15). It means that the following 
error model for the arithmetic operations used to process the 
various algorithms given in last section is accurate [10]. Let’s 
denote  x ,  y , and w  to be complex variables with absolute 
values of their real and imaginary components inferior to 1. In 
addition  εx , εy , εw  are the corresponding complex errors. 

1) Addition and subtraction 

 

𝑤 + 𝜀𝑤 =  𝑥 + 𝜀𝑥 +  𝑦 + 𝜀𝑦 ,

 𝜀𝑥  ≤ 2−𝑡−1,  𝜀𝑦  ≤ 2−𝑡−1 

Then, 

 𝜀𝑤 ≤ 2−𝑡−1 

2) Multiplication 

 

𝑤 + 𝜀𝑤 =  𝑥 + 𝜀𝑥 ×  𝑦 + 𝜀𝑦    

Then, 

 𝜀𝑤 ≤ 2−𝑡−1 

In the case of scalar product of two vectors the model is, 

𝑤 + 𝜀𝑤 =   𝑥𝑘 + 𝜀𝑥𝑘  ×  𝑦𝑘 + 𝜀𝑦𝑘  

𝐾

𝑘=1

 

Then, 

 𝜀𝑤 ≤ 2−𝑡−1 

3) Division 

 

𝑤 + 𝜀𝑤 =
 𝑥 + 𝜀𝑥 

 𝑦 + 𝜀𝑦 
=  𝑥 + 𝜀𝑥 ×

1

 𝑦 + 𝜀𝑦 
  

By Taylor development of 
1

 𝑦+𝜀𝑦  
  around y, we have 

 
1

 𝑦 + 𝜀𝑦 
≈

1

𝑦
−

𝜀𝑦

𝑦
⇒ 𝜀𝑤 ≈

1

𝑦
 𝜀𝑥 + 𝑥𝜀𝑦  

Then, 

 𝜀𝑤  ≤
1

 𝑦 
2−𝑡  

 
4) Square root 

𝑤 + 𝜀𝑤 =   𝑥 + 𝜀𝑥  
 

By Taylor development of  x + εx 
1

2  around x, 

 

  𝑥 + 𝜀𝑥 ≈  𝑥 −
𝜀𝑥

 𝑥
⇒ 𝜀𝑤 ≈

𝜀𝑥

 𝑥
 

Then, 

 𝜀𝑤  ≤
1

  𝑥 
2−𝑡−1 

 
Now we apply this error model to the Cholesky decomposition 
and QR factorization. 

5) Cholesky decomposition 

 
According to the flowchart 1, Γ is obtained by, 

 𝛤 + 𝐸 𝛤 =  𝐴 + 𝐸𝐴 𝐻 𝐴 + 𝐸𝐴  
With,   

  𝜀𝐴 𝑖 ,𝑗   ≤ 2−𝑡−1 
 

We denote by: E Γ , and EA  are the error matrices corresponding 
to Γ and A respectively. 

Therefore,  

 𝜀𝛤 𝑖 ,𝑗   ≤ 2−𝑡−1, 1 ≤  𝑖, 𝑗 ≤ 𝑁  
 

The diagonal elements of matrix are given by the following 
equation, 

lii + εlii
=  γii +εγ ii

−   lik +εlik
 

2
i−1

k=1

 

1
2

 

For  i = 1, the round-off error is   εlii
 ≤

1

 lii  
2−t−1 

For  i > 1,  εlii
 ≤

1

 lii  
 2−t−1 + 2  εlik

i−1
k=1  ,  

 

εlik
 is calculated iteratively as shown below. The non-diagonal 

element lji  of the matrix L is given by, 

Flowchart 3 

 
Flowchart 2 

 
Flowchart 2 

 

Flowchart 2 

 
Flowchart 2 

 
Flowchart 1 

 

𝑄𝐻𝑏 

 
Flowchart 2 

 
Flowchart 3 
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lji + εlji
=

1

lii + εlii

 γij +εγ ij
−   lik +εlik

  ljk +εljk
 

i−1

k=1

  

𝜀𝑙𝑗𝑖
≈

1

𝑙𝑖𝑖
 𝜀𝛾𝑖𝑗

+  𝛾𝑖𝑗 −  𝑙𝑖𝑘 𝑙𝑗𝑘

𝑖−1

𝑘=1

 𝜀𝑙𝑖𝑖
  

Then, 

 𝜀𝑙𝑗𝑖
 ≤

1

 𝑙𝑖𝑖  
 2−𝑡−1 +  

𝜀𝑙𝑖𝑖

𝑙𝑖𝑖
   

 
The upper limit of the round-off error of the components of the 
matrix L is too difficult. But if we assume the calculation with 
only two recursive iterations, we find the following result. 

 𝜀𝑙𝑖𝑖
 ≤

2−𝑡−1

 𝑙𝑖𝑖  
 1 + 2

1

 𝑙𝑖−1𝑖−1 
 1 +  

1

𝑙𝑖−1𝑖−1

    

And, 

 𝜀𝑙𝑗𝑖
 ≤

1

 𝑙𝑖𝑖  
 2−𝑡−1 +  

𝜀𝑙𝑖𝑖

𝑙𝑖𝑖
   

 
6) QR Factorization 

 
According to the flowchart 3, the diagonal elements of 

matrix R can be written as, 

rii + εrii
=    qmi + εqmi

 
H
 qmi + εqmi

 

M

m=1

 

1
2

 

 

Then the round-off error εrii
 can be bounded by, 

 εrii
 ≤

1

rii

2−t−1 

 

For the non-diagonal element of the matrix R, the round-off 
error is given as follows, 

rij + εrij
=

1

rii + εrii

   qmj + εqmj
 

H

 qmi + εqmi
 

M

m=1

 

H

 

εrij
≈

1

rii

   qmj
Hεqmj

+ qmi εmi  

M

m=1

+ εrii
 qmj

H qmi

M

m=1

  

Then, 

 𝜀𝑟𝑖𝑗
 ≈  

𝜀𝑟𝑖𝑖

𝑟𝑖𝑖

 ≤
1

 𝑟𝑖𝑖  
2

2−𝑡−1 

 

Finally we calculate the round-off error of matrix Q.  

The matrix Q is obtained by performing the following equation, 

𝑞𝑚𝑗 + 𝜀𝑞𝑚𝑗
= 𝑞𝑚𝑗 + 𝜀𝑞𝑚𝑗

−
1

𝑟𝑖𝑖 + 𝜀𝑟𝑖𝑖

  𝑞𝑚𝑖 + 𝜀𝑞𝑚𝑖
  𝑟𝑖𝑗 + 𝜀𝑟𝑖𝑗

   

 

𝜀𝑞𝑚𝑗
≈ 𝜀𝑞𝑚𝑗

+
1

𝑟𝑖𝑖

 𝑞𝑚𝑖 𝜀𝑟𝑖𝑗
+ 𝑟𝑖𝑗 𝜀𝑞𝑚𝑖

+ 𝑞𝑚𝑖 𝑟𝑖𝑗 𝜀𝑟𝑖𝑖
  

Then, 

 𝜀𝑞𝑚𝑗
 ≤  

3

𝑟𝑖𝑖
2

+ 1 2−𝑡−1 

7) Observation 

 
From the sections e and f, we observe that the round-off 

error is greater in the case of Cholseky decomposition than in 
the case of QR factorization. This round-off error depends on 
the values of  lii  or rii , but the Cholesky decomposition is more 
sensitive to lii  than QR factorization to rii . 

B. Simulation results 

The fixed point implementation is done according to flowcharts 

1, 2, and 3. The target is TMS 320C6474 with 1GHz clock rate. 

The experimental results depicted by figures 5, 6 and 7 are 

obtained using Monte Carlo statistical method of solving 

system Ax = b  with well-conditioned  AH A  matrices 

i.e.,( condition number  AHA ≈ 30 ). Simulations are 

performed for a fixed row number M = 16 and several values 

of column number N = 4, 6, 8, 10, 12, 14 . Figure 5 depicts the 

relative norm of rounding errors on the triangular matrix L, 
 L−L0 2

 L0 2
. The reference triangular matrix L0 is obtained with full 

precision floating-point (IEEE float-point) format. Figure 6 

depicts the square root of the mean square error  Ax − b 2 . 

These experimental results confirm the theoretical ones and 

show that the MGS-QR is less sensitive to the round off errors 

than Classical Cholesky and MGS-Cholesky. However MGS-

Cholesky is more robust than Classical Cholesky. This 

classification criteria based on round-off error immunity is 

inverted when applying the time execution criteria. Classical 

Cholesky requires twice less execution time than MGS-QR and 

around 1.5 less than MGS-Cholesky as depicted in figure 7. 

 
Figure 5. 2-norm of error triangular matrix 𝑳 , 

 𝑳−𝑳𝟎 𝟐

 𝑳𝟎 𝟐
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Figure 6. Mean square error,  𝑨𝒙 − 𝒃 𝟐 

 

 

 
 

Figure 7. Execution time (us) 

 

V. CONCLUSION 

In this paper, we have analyzed, theoretically and 
experimentally using Matlab simulations, the solving system 
using classical Cholesky , MGS-QR and MGS-Cholesky. Both 
analyses are concordant. As expected through the theoretical 
analysis, the experimental analysis has confirmed that the 
MGS-QR is more robust than the classical Cholesky and MGS-

Cholesky. However this robustness has a cost in terms of 
execution time. Classical Cholesky requires twice less 
execution time than MGS-QR and around 1.5 less than MGS-
Cholesky. With the introduction of the MGS-Cholesky, we 
give an alternative to MGS-QR if we search a good robustness 
of the system solving against additive round-off error in the 
final solution with a slight degradation in execution time 
performance. 
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