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Abstract: Estimating the number of mispredictions is critically important for estimating the Worst-Case Execution Time for
real-time systems. This paper generalizes and improves over previous attempts to provide a safe and tight mispredication count
estimate for dynamic branch predictors. The paper gives closed formulas to compute mispredictions in case of simple and nested
loops applicable to all variations of two-level adaptive branch predictors in addition to the gshare and gselect predictors. The given
formulas are general enough to accommodate predictors with any counter size.
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1. INTRODUCTION

Embedded real-time software  guarantees the
commitment to system time restrictions [1], [2].
This is particularly critical for hard real-time systems, in
which the lack of commitment to time restriction is a
direct cause of system failure [3], [4].

The Worst Case Execution Time (WCET) estimation
definitely differs from real execution time. Thus, the
WCET is either an under or an over estimation [5], [6].
For hard real-time systems the WCET underestimation
might lead to system failure. However, the overestimation
of WCET significantly increases the software
development cost [3]. WCET estimation techniques
typically presents a trade-off process between accuracy
and complexity.

To make an accurate WCET estimation, the
architectural features such as; instruction/data caching,
out-of-order execution, pipelining, fine-grained chip
multi-threading, and dynamic branch prediction have
to be taken into account. In this paper, we focus on
dynamic branch predictors which are essentials in
modern processors with high clock frequencies and deep
pipelines. Li et al. [7] showed that if branch prediction
is not modeled, WCET can be overestimated by up to
70% for some benchmarks. One of the major factors that
influences the overestimation is how the analysis for the
estimation is carried on [8].

The first step in modeling branch prediction for WCET
estimation is to estimate the number of mispredictions of
the used predictor. This paper presents a novel approach
to limit the WCET overestimation by giving an upper
bound to the number of branch mispredictions of loop
structures. Moreover, the proposed approach generally
and accurately formulates the estimation of branch mis-
predictions for any two-level adaptive predictor. Finally,
the given formulation is applicable for [-bit saturating
counters.

The existing works on branch prediction for WCET
estimation are reviewed in Section 2. In Section 3, we
describe our approach and in Section 4, the results of ap-
plying it on benchmarks are presented. Finally, Section 5
concludes the paper.

2. REerLaTED WORK

Branch prediction is a technique that supports spec-
ulative execution to improve the pipeline performance.
Branch prediction schemes can be divided into static and
dynamic schemes. In static schemes, the branch is always
predicted to the same direction while dynamic schemes
predict a branch depending on its execution history [7].

Here, we examine all two-level adaptive branch pre-
diction schemes in addition to the popular gshare and
gselect predictors. There are nine variations of two-level
adaptive branch prediction schemes. Each variation is
distinguished by the way the branch history information
is maintained in the first level (G for global, P for per-

E-mail address: marwa.elmenyawi@bhit.bu.edu.eg, cherif.salama@eng.asu.edu.eg, mustafa.ibrahim@bhit.bu.edu.eg,

ismail _hafez@eng.asu.edu.eg


http://dx.doi.org/10.12785/ijcds/060302
http://journals.uob.edu.bh
waelelmedan
Sticky Note
Marked set by waelelmedan

waelelmedan
Sticky Note
Marked set by waelelmedan


Elmenyawi, et al.: Generalized Worst Case Estimation of Misprediction Counts for ...

address, or S for set) and also by the way of association
between the second level and the first level. The history
information can be maintained in a single global branch
history register (BHR), in separate per-address registers
where each address is a branch instruction, or in separate
per-set registers. Moreover, the global pattern history table
(PHT) may be a single table that contains the second-
level history information, or multiple tables where each
branch instruction identified by its address has its own
second-level pattern table [9]. The PHT contains [-bit
counters which represent the value according to which the
branch is predicted. Experiments showed that using more
than 2-bits gives a minimal improvement at the expense
of increased storage [10]. However, the storage cost has
significantly dropped due to technological advances. As
a result, predictors using counters of 3 or even more bits
are now affordable. A 3-bits saturating counter is used in
Alpha 21264 Microprocessor [11]. Fig. 1 illustrates the
state diagram of a 3-bits counter while Table I shows
the states of a 4-bits counter. The state names reflect the
direction of the prediction (N for Not taken, and T for
Taken) and the degree of confidence (S for Strong and W
for Weak). For example, the state SN indicates a strong
confidence that the branch is not going to taken. For the

Figure 1. The State diagram for 3-bits counter.

gselect and gshare [12] predictors, the PHT is indexed by
a combination of the BHR bits and some lower order
bits of the branch address. To combine them, gselect
uses simple concatenation, while gshare uses a bitwise
exclusive OR operation.

Shaw [13] presented the original work on timing
schema. He considered only high-level languages con-
structs and did not take in his account the micro-
architectural features like branch prediction or instruc-
tion/data cache as these features were not used or known
at this time.

Colin and Puaut [14] presented the first work on worst
case execution time analysis using dynamic branch pre-
diction techniques. They computed the abstract state of
the BHT at the prediction time of branch by using static
simulation. They only considered local branch predictor
techniques.

TABLE I. Four-bit prediction scheme.

States Bits Direction
SN 0000 N
WNI1 0001 N
WN2 0010 N
WN3 0011 N
WN4 0100 N
WN35 0101 N
WN6 0110 N
WN7 0111 N
WTI1 1000 T
WT2 1001 T
WT3 1010 T
WT4 1011 T
WT5 1100 T
WT6 1101 T
WT7 1110 T
ST 1111 T

A similar approach to Colin and Puaut [14] was pre-
sented by Bate and Reutemann [15], [16] but they consid-
ered global branch predictor techniques. They classified
branches according to their semantic contexts. In [15]
they computed the maximum number of mispredictions
for only bimodal and global branch predictor, moreover
they used only 2-bit counters.

Mitra, Roychoudhury, and Li [7], [17], [18] used integer
linear programming (ILP) to compute the WCET for
global branch predictors. They derived a set of constraints
from control flow graph (CFG) and solved them using an
ILP solver. They only considered a branch history pattern
of two and four bits.

The approach by Mitra, Roychoudhury, and Li was
extended in [19]. Burguieére and Rochange modeled the
complexity of different branch predictors. Maiza and
Rochange [20] also computed WCET of branch predictors
using an ILP. Additionally, they modeled the complexity
and demonstrated that there exists a relation between
the branch history length and the complexity of the ILP
problem.

Puffitsch [21] used a persistence notion to model the
WCET of local branch predictors. He extended his work
in [22] by applying the persistence notion to global branch
predictors.

3. METHODOLOGY

This section introduces a method that accurately calcu-
lates the number of mispredictions of dynamic branch
predictors for loop structures in the worst case. The
novelty of the proposed method comes from supporting
all variations of two-level adaptive branch predictors in
addition to the gshare and gselect predictors and also for
supporting [/-bit counters.
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Here, we discuss the branch predictor behavior for
nested loops where the inner loop iterates n time while
the outer iterates m times. Such a nested loop implies that
the branch of the inner loop is executed several times
with the following outcome: (7""'N)". We propose to
classify all studied branch predictors into two categories
based on whether the PHT is indexed using the branch
history pattern or using the branch address. Branch
prediction techniques that depend basically on the branch
history pattern for indexing the PHT are: GAg, GAp,
GAs, gshare, and gselect. Branch prediction techniques
that depend basically on the branch address for indexing
the PHT are: PAg, PAp, PAs, SAg, SAp, and SAs.

Using the branch address leads to accessing the same
location in the PHT for all iterations. The situation is
different when the branch history pattern is used since
the BHR is shifted every time the branch is predicted
implying a potentially different pattern in each iteration.
We assume the following for simplicity:

1) The upper bound of the number of loop iterations
is known.

2) No interference between branch instructions; i.e.,
the same entry in the BHT is not shared by two
branches.

3) The loop does not contain any conditional
branches that may end or change the loop index
value.

As our aim is to derive a general form for the maximum
number of mispredictions for branch predictors using /-bit
counters, we first estimate the number of mispredictions
for the two branch prediction categories using 3- and 4-bit
counters as illustrated in subsections 3-A and 3-B. From
the two estimates, we are able to generalize a form for
[-bit counters.

A. Branch Address Based Category
a) Simple Loop

First, we compute the maximum number of mispredic-
tions for simple loops having branch outcomes following
the pattern T"~'N using 3- and 4-bit counters. Tables II
and IIT list the number of mispredictions for 3-bit and
4-bit counters respectively depending on the number of
loops iterations n and depending on the initial state of
the saturating counter stored in the PHT at the location
indexed by the branch. Each entry in the PHT table
is decremented or incremented depending on prediction
direction; taken or not-taken.

For initial states ST to WT1 when 3-bit counters are
used, the maximum number of mispredictions is always
1 since branch outcome is always taken except for the last
iteration when the loop is exited. Only the last iteration
will only be mispredicted. The number of mispredictions

for not-taken initial states, WN3 to SN, can be broken
down as follows;

e For n = 1, there are no mispredictions since the
branch outcome is not taken.

e For n = 2, the number of mispredictions for the
states WN2 to SN is 1 since these states remain
not taken when incremented which results in a
correct prediction in the second iteration when the
loop is actually exited. Thus, the first iteration is
the only one that gets mispredicted. The number
of mispredictions for state WN3 is 2 as this state
is not-taken leading to a misprediction in the first
iteration and then it is incremented to WT1 which
leads to another mispredition in the second iteration
when the loop is exited.

e For n = 3, the number of mispredictions for the
initial state WN3 is 2 as it is mispredicted for the
first and last iterations as follows: The outcome
of the branch in the first iteration is taken while
the state WN3 is not-taken after that the state
is incremented to the taken state WT1 which is
consistent with the outcome of the branch in the
second iteration then, WT1 is incremented in the
third iteration to the taken state WT2 while the
third iteration’s outcome is not-taken. However,
the initial state WN2 has 3 mispredictions as it
needs two increments to reach a taken state and
when it reaches one, the actual outcome becomes
not-taken. Finally, the number of misprediction for
initial states WN1 and SN are 2 as these states
are incremented three times to reach a not-taken
state and as such only the first two iterations are
mispredicted.

e For n = 4, the worst case occurs for the initial
state WN1. When this state is incremented 4 times,
it remains a not-taken state for the first 3 times
and become a taken state only for the last loop
iteration while the branch outcome is not-taken.
This scenario leads to 4 mispredictions.

e Forn > 5, the worst case is 5 mispredictions which
happens for initial state SN. In such case, the state
is incremented 4 times until it reaches a taken
state for the last iteration. This scenario leads to
a misprediction in the first 4 iterations and in the
last iteration.

The maximum number of mispredictions for 3-bit
counters in case of a simple loop, mpj,.p(n,3), can be
given by:

n, if n<5.

MmMPpioop (n,3) =
5, otherwise
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TABLE II. Number of branch mispredictions for branch address based category using 3-bit counters.
n ST| WT3| WT2| WT1| WN3| WN2| WNI1| SN| Max
1 1 1 1 1 0 0 0 0 1
2 1 1 1 1 2 1 1 1 2
3 1 1 1 1 2 3 2 2 3
4 1 1 1 1 2 3 4 3 4
=251 1 1 1 2 3 4 5 5
TABLE III. Number of branch mispredictions for branch address based category using 4-bit counters.
n ST| WT7 WT6 WTS WT4 WT3 WT2 WTI1 WN7 WN6| WN5 WN4 WN3 WN2| WNI1| SN| Max
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2
3 1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 2 3
4 1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3 4
5 1 1 1 1 1 1 1 1 2 3 4 5 4 4 4 4 5
6 1 1 1 1 1 1 1 1 2 3 4 5 6 5 5 5 6
7 1 1 1 1 1 1 1 1 2 3 4 5 6 7 6 6 7
8 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 7 8
>9 |1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 9

A similar analysis to the one conducted for 3-bit
predictors can be made for 4-bit predictors. From
Table III, it can be concluded that the maximum number
of mispredictions using 4-bit counters for simple loop,
mpje0p(n,4), can be given by:

n, if n<9.
mpl()ap(n’4) =

9, otherwise

In general, the maximum number of mispredictions for
branch address based category using [-bit counters for
simple loop, mpjep(n, 1), can be given by:

n, if n< 2141
mploop(nv D=

24, otherwise

where [ is the number of bits of the saturating counter.
Alternatively, the maximum number of mispredictions
can be given by:
Mpioop(n, ) = min(n, 25141
It can be expected that the maximum number of mispre-
dictions for nested loops would be m X mpy,,,(n) but we
will show next that this value would be an overestimate.

b) Nested Loop

Second, we derive a general formula for the maximum
number of mispredictions for nested loops using [-bit
counters by estimating the number of mispredictions for
3- and 4-bit counters. Tables IV and V show the state
transitions causing the highest number of mispredictions
for 3-bit and 4-bit predictors respectively. The state in the

inner loop is incremented according to the loop pattern
(T"'NY" while it is decremented when transitioning to
the next iteration of the outer loop. The number of
mispredictions for each n inner loop are as follows;

e For n = 1, the maximum number of mispredictions
using 3- and 4-bit counters are 4 and 8 respectively
in the worst case initial state ST. Here, the loop
iterates for one time with a not taken outcome
and taken prediction. The loop reaches the correct
prediction after 4 iterations of the outer loop in case
of a 3-bit predictor since the first not taken state
WN3 (011) can be reached from ST (111) after 4
decrements. Similarly, the 4-bit counter needs to
be decremented 8 times to reach the first not-taken
state WN7 (0111) from the 4-bit ST (1111). From
that it can be concluded that for n = 1 the maximum
number of mispredictions does not exceed 2/~! nor
the number of outer loop iterations m. As such it
can be given by min(m, 2/7").

e For n = 2, the two iterations are always mispre-
dicted if the WN3 or WN?7 are the initial states for
3- and 4-bit predictors respectively as the increment
lead the state to be a taken state which should be
not-taken. It is obvious that in this case, the number
of mispredictions for [-bit counters is 2 X m.

e For n = 3, the inner loop branch counter is incre-
mented twice and decremented once in each outer
loop iteration resulting in an effective increment
by one. So starting from a 3-bit SN (000) state,
we need 4 outer loop iterations to be incremented
4 times and reach the WT1 (100) state to start
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TABLE IV. The execution for branch address based category using 3-bit counter for nested loop .

Outer Loop Iteration Number

n 1 2 3 4 5

1 ST WT3 WT2 WT1 WN3

2 | WN3 > WT1 WN3 —» WTI1 WN3 —» WTI1 WN3 — WTI1 WN3 —» WTI1

3 SN » WNI 5 | WNI > WN2 > | WN2 > WN3 B | WN3 5 WTI> | WT1 » WT2 >
WN2 WN3 WTI1 WT2 WT3

4 SN » WNI 5 | WN2 B WN3 b | WIl > WI2 > | WI3STHST | ST>STH— STH
WN2 —» WN3 WTI —» WT2 WT3 — ST — ST ST

TABLE V. The execution for branch address based category using 4-bit counter for nested loop .
Outer Loop Iteration Number

n 1 2 3 4 5 6 7 8 9

1 ST WT7 WT6 WT5 WT4 WT3 WT2 WTI WN7

2 WN7 > | WN7 > | WN7 » | WN7 > | WN7 » | WN7 —» | WN7 > | WN7 > | WN7
WTI WTI WTI WTI WTI WTI WTI WTI WTI

3 SN > | WNl > | WN2 | WN3Ib> | WNd > | WNS > | WNO6 > | WN7 5 | WTI >
WNI » | WN2 > | WN3 > | WNd > | WNS > | WN6 > | WN7 > | WTI > | WI2 &
WN2 WN3 WN4 WNS5 WN6 WN7 WT1 WT2 WT3

4 |SN > | WN2 > | WNd B> | WNO6 > | WIl 5 | WI3 > | WI5 > | WI7 > | WTI7 >
WNl - | WN3 > | WN5 > |WN7 | WI2 | WI4 —» | WI6 —» | ST — | ST —
WN2 = | WN4 > | WN6 > | WTl » | WT3 > | WT5 —» | WT7 — | ST — | ST —
WN3 WN5 WN7 WT2 WT4 WT6 ST ST ST

providing a taken prediction. Starting from the fifth
outer iteration, we get only one misprediction per
iteration. The number of mispredictions in the first
4 loop iterations would be 2, 2, 3, and 2. In total
for m outer loop iterations, the total number of 3 +
2+2+2+m-4=m+ 5. Similarly, in the case of
the 4-bit counter, the number of mispredictions can
be shown to be m + 9. In general, it can be shown
that for I-bit counters, the number of mispredictions
ism+ 25+ 1.

e For n = 4, the loop needs two outer iterations in
case of a 3-bit counter to reach a loop with a taken
entry state since the entry state is incremented twice
in each outer loop iteration. From the third outer
iteration, the only mispredicted state is the exit
state. The number of mispredictions are 3 + 3 + m -
2 = m + 4. Similarly, the number of mispredictions
in case of a 4-bit counter is equal to m + 8 which
leads to a total number of mispredictions for /-bit
counters equal to m + 2/71.

It can be seen that for n > 3, the number of outer
loop iterations needed to reach correct predictions can
be given by the formula: % and that the number of
mispredictions before that will not exceed n for each
outer loop iteration. In addition, it can be seen that the
formula that applies on n = 4 is applicable to n > 4 as

well.

The maximum number of mispredictions for the branch
address category of predictors using /-bit counters can
be summarized by :

min(m, 271, ifn=1

2 X m, ifn=2
mploop(n, m, l) =

m+271 + 1 ifn=3

m+ 21, ifn>4

B. Branch Pattern Based Category

This section continues the analysis of the maximum
number of mispredictions for nested loops when [-bit
predictors from the branch history pattern category are
used.

As in the previous cases, the outer loop iterates m times
and inner loop iterates n times with a k-bit history pattern
and a [-bit counter. Predictors from this category work
as follows at each branch prediction the history pattern
is shifted left by one or zero and also the counter is
incremented or decremented by one according to branch
direction.

It is important to note that for this category of predictors
when the same branch instruction is encountered, the
branch history does not necessarily point to the same
location in the PHT table since the branch history pattern
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is shifted to the left each time. However, since we are
assuming a k-bit history pattern and a regular branch

TABLE VII. The execution for branch pattern based category
using 3-bit counter for nested loop with n=4 and k=2 .

direction pattern of (7"~'N)™, the history pattern will Outer | Pattern | Direction | Counter | Prediction
stabilize to a repeating sequence of patterns after the iter
first k-1 iterations provided that k is greater than n. This #
behavior is illustrated in Tables VI and VIIL. | 00 T 000 N
Table VI provides a worst-case execution trace when n 01 T 000 N
11 T 011 N
TABLE VL The execution for branch pattern based category 11 N 100 T
using 3-bit counter for nested loop with n=3 and k=7. ) 0 T 000 N
Outer | Pattern | Direction | Counter | Prediction 01 T 001 N
iter 11 T 011 N
# 11 N 100 T
1 0000000 T 000 N 3 10 T 001 N
0000001 T 000 N 01 T 010 N
0000011 N 111 T 11 T 011 N
2 0000110 T 000 N 11 N 100 T
0001101 T 000 N 4 10 T 010 N
0011011 N 111 T 01 T 011 N
3 0110110 T 000 N 11 N 011 N
1101101 T 000 N 11 T 100 T
1011011 N 111 T 5 10 T 011 N
4 0110110 T 001 N 01 T 100 T
1101101 T 001 N 11 T 011 N
1011011 N 110 T 11 N 100 T
5 0110110 T 010 N 6 10 T 100 T
1101101 T 010 N 01 T 101 T
1011011 N 101 T 11 T 011 N
¢ |OI10T10 T 011 N 11 N 100 T
1101101 T 011 N
1011011 N 100 T
0110110 T 100 T total number of mispredictions are 12 which equal 4 x n
7 1101101 T 100 T = 2" x n as each taken state needs 2! to reach the not-
1011011 T 011 N taken and vice versa.
0110110 T 101 T Table VII provides a worst-case execution trace when
8 1101101 T 101 T n =4,k =2 and [ = 3. Again, to get the worst
1011011 N 010 N case, we assume that an initial history pattern of 00

=3,k =7,and [ = 3. To get the worst case, we assume an
initial history pattern of 0000000 and an initial value of
000 (SN) for the 3-bit predictors corresponding to taken
branches and an initial value of 111 (ST) corresponding
to not-taken branches. The pattern needs 6 times to
reach the first repeated pattern of 0110110. Thus, these 6
non-repeated patterns are mispredicted so the number of
mispredictions in these non-repeated patterns is equal to
k-1. In Table VI example, 3 different patterns are repeated
and each pattern needs to be encountered 4 times to reach
the correct prediction. As a result, we get an additional
12 mispredictions. In general, the number of repeated
patterns is equal to n and the number of times each each
of these patterns is mispredicted is equal to 2/~'. The
total number of mispredictions is therefore nx 2"-!. Each
pattern needs 4 times to reach the correct state so the

and an initial value of 000 (SN) for the 3-bit predictors
corresponding to taken branches and an initial value
of 111 (ST) corresponding to not-taken branches. The
pattern needs one time to reach the first repeated pattern
01 so this one time is mispredicted again resulting in k—1
mispredictions. Since n is greater than & in this example,
the number of repeated history patterns is not equal to
n. In fact, the only patterns that may appear and get
repeated are the ones that have a single 0 corresponding to
a single not-taken branch at the end of each execution of
the inner loop. As such, there are k patterns with a single
0 and a single pattern (all ones) that might get repeated.
Each of the k patterns with a single zero needs to be
encountered 2/~ in order to reach the correct prediction
leading to 2/~ x k misprediction. For the all-ones pattern,
the same rules used in subsection 3-A can be applied
since the predictor associated with this pattern is always
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decremented once and incremented n — k — 1 times.

We can summarize that the history patterns can divided
into three groups; non-repeated, repeated with a single
zero, and repeated without zeros where in each group the
number of mispredictions can be given by :

e Non-repeated
mploopinirp(m» n, k’ l): k-1
e For repeated patterns with a single zero:

21 %, ifn<k
mploopirpiz(ms n,k, l) =
2T %k, if n>k
e For repeated patterns without zeros:
O’
ifn<k
21—1’
ifn=k+1
2 X m,
mploopirpinz(m, nk,l) = ifn=k+2
m+25N 4+ 1,
ifn=k+3
m+ 271,
nzk+4

The following formula gives the final misprediction
count as the sum of the three preceding

mispredictions:
2l n+ k-1,
ifn<k
2 sk + k+ 20— 1,
n=k+1
-1
M Ploop(ms . ko ) = 27 Xk+k+2m rll’=k+2
25k + k+m+ 201,
n=k+3
2 s k+k+m+20 =1,
nzk+4

4. REsuLts

In this section, we evaluate the proposed method and
formulas using the SimpleScalar simulator [23]. We ex-
tended the simulator to support different number of satu-
rating counter bits. Since our focus is counting the number
of mispredictions thus we configured the SimpleScalar
simulator to zero data/instruction cache misses. We used
the following three branch predictors: a GAg predictor
with a single 4-bit BHR indexing a 16-entry PHT, a
gshare predictor with a single 4-bit BHR XORed with
the 4-least significant bits of the branch address indexing
a 16-entry PHT, and a bimodal predictor with a 16-entry
BHT. Figures 2 and 3 show the results for the upper

115
Number of branch mispredictions for two bits
350
= 300
g 250
5 200
2 150 =
2
2 100
2 50
. DU _
0 2 4 6 8 10 12 14 16 18

number of inner loop iterations (n)

GAg/gshare bimodal

Figure 2. The maximum number of branch mispredictions for
two bits counter.

Number of branch mispredictions for four bits

Mispredictions (mp)
N
o
o
|

0 2 4 6 8 10 12 14 16 18

number of inner loop iterations (n)

>— GAg/gshare bimodal

Figure 3. The maximum number of branch mispredictions for
four bits counter.

bound of number of mispredictions for the GAg, gshare,
and bimodal predictors two and four bits saturating coun-
ters. Note that the Gshare and GAg predictors produced
identical results and were merged for that reason. These
results are obtained from SimpleScalar for a C program
of the following form:

for (int
{
for (int b=0; b < n; b++)
{
// do something
}
}

a=0; a < 150; a++)

Figures 2 and 3 show that the inner loop with two
iterations give the maximum number of branch mispredic-
tions for the bimodal predictor. Moreover, the number of
mispredictions for the bimodal predictor remain constant
after four inner iterations as discussed in section 3. For
GAg and gshare predictors, the maximum number of
branch mispredictions occurs when the difference be-
tween the number of inner iterations and the number of
history pattern bits is two. Similarly, the number of branch
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mispredictions remains constant when the difference is
greater or equal to four. All the above observations are
consistent with the equations we derived in Section 3.

5. CoNcLusIOoN

In this paper, we provide general and accurate formulas
for the estimation of mispredictions for two-level adap-
tive branch predictors. The generality of our formulation
comes from that it can be applied to any two-level branch
predictor and to all sizes of saturating counters. Previous
work for estimating the number of mispredictions can
only be used for specific predictors and only when the sat-
urating counter size does not exceed 2 bits. The provided
formulas are both proven and evaluated empirically using
SimpleScalar. As such the formulas are shown to provide
accurate estimates for the number of mispredictions and
as such they can be used towards computing a tight worst-
case estimation of the execution time of realtime systems.
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