
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 6, No.2 (Mar-2017)
http://dx.doi.org/10.12785/ijcds/060201

Clustered Networks-on-Chip:
Simulation and Performance Evaluation

Ahmed S. Hassan1, Ahmed A. Morgan2 and M. Watheq El-Kharashi1,3

1Department of Computer and Systems Engineering, Ain Shams University, Cairo, Egypt
2Department of Computer Engineering, Cairo University, Giza, Egypt

3Electrical and Computer Engineering Department, University of Victoria, Victoria, Canada

Received 11 Dec. 2016, Revised 8 Jan. 2017, Accepted 5 Feb. 2017, Published 1 March 2017

Abstract: In many-core Networks-on-Chip (NoC) systems, two topics have recently been researched; NoC clustering and
NoC simulation. NoC clustering investigates grouping processing elements (PEs) based on common characteristics between
them, like spatial locality or communication patterns. Research showed that NoC clustering achieved better performance and
load balancing. Furthermore, it allows scalability of the NoC grid. The other topic, NoC simulation, provides tools for early
evaluation of NoC systems. This allowed easy investigation of NoC systems with large number of PEs. Plenty of research has
been done in both topics separately. In this paper, we try to fill the gap. We extend an existing NoC simulation tool by adding
support for simulating NoC clusters and inter-NoC traffic. The presented NoC clustering simulator supports the modular design
technique, which in turn offers the flexibility in configuring cluster parameters. Examples of configurable parameters that are
supported by our modified simulator are: adding interconnection topologies to configure how the NoC entities are connected with
each other, adding a cluster manager that maps tasks to NoC entities based on the inter-NoC communication pattern, adding
latency factors of cluster links in the case of inter-NoC traffic, and adapting the routing algorithm for both inter-cluster and
intra-cluster traffic. A clustered NoC simulation case study shows the effectiveness of the modifications made to the simulator.
For example, a certain NoC setup is simulated twice, initially non-clustered then clustered, using the added features. Collected
data shows that the average clustered NoC routers’ energy consumption is 50% lower than the consumption in the non-clustered case.

Keywords: Clustering, Inter-NoC communication, NoC, NoCTweak

1. Introduction
Use of many-core System-on-Chip (SoC), and espe-

cially Networks-on-Chip (NoC) based platforms, have in-
creased dramatically. These platforms are loaded with lots
of processing elements (PEs) and other peripherals. As the
number of connected PEs increases, their communication
cost increases, in terms of hop count, and packets are
more prone to stalls and contention. Depending on task
mapping and routing protocols, the generated traffic could
result in high communication density between some PEs
and over certain links, in which PEs maybe close to one
another or in different neighborhoods.

In many-core NoC systems, two topics have been
researched recently; NoC clustering and NoC simulation.
NoC clustering investigates grouping PEs based on com-
mon characteristics, like spatial locality or communication
pattern, to form sub-NoC entities, then those sub-NoC
entities are placed in a bigger grid according to a given

mapping criteria. Research showed that NoC clustering
achieved better performance and load balancing. Further-
more, it allows scalability of the NoC grid. The other
topic, NoC simulation, provides tools for early evaluation
of many-core NoC systems. This allows easy investigating
of NoC systems with large number of PEs. The system
designer has to explore different NoC topologies and
routing techniques, along with different traffic patterns, to
reach the optimal performance and energy dissipation [1],
or trade-off between area and average delay [2]. This early
design space exploration comes with high cost, in both
time and resources.

There are two types of NoC simulators, systems-level
and circuit-level. In system-level simulation, the NoC
system design is evaluated as a whole. Parameters, like
routing algorithm efficiency and topology, are evaluated in
terms of communication latency and throughput [3]–[10].
System modeling can provide estimates for system pa-
rameters, like buffer and queue sizes [11]. As for circuit-

E-mail address: ahmedsayed.elaraby@gmail.com, ahmorgan@eng.cu.edu.eg, watheq.elkharashi@eng.asu.edu.eg

http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/060201
http://journals.uob.edu.bh

52 Ahmed S. Hassan, et al.: Clustered Networks-on-Chip: Simulation and Performance evaluation

level simulation, technology parameters are taken into
consideration, like critical path delays and temperature
variation [12]. For early design space exploration, system-
level simulators are more suitable.

Many literatures have investigated system-level NoC
simulation for early design space exploration. Noxim [3]
and NoCTweak [4] are notable examples. Most of the
NoC simulators focus on evaluating metrics, like through-
put and energy dissipation on the NoC platform level.
They further allow customizing the traffic communication
pattern and rate, the routing algorithm, and the topology.
NoC clustering has spread out and different clustering
techniques have been investigated to provide both optimal
performance and energy dissipation [13]–[17]. However,
those NoC clustering techniques are not included in the
mainstream NoC simulators. In our work, we addressed
this problem by modifying one of those simulators in or-
der to support NoC clustering simulation. We modified an
existing NoC simulation tool: NoCTweak. The following
NoC clustering simulation-related issues are investigated
in our work: NoC clusters platforms, traffic routing, and
cluster management.

The above NoC simulators focused on simulating a
single NoC system, ignoring the scalability of the NoC
platform, which can be achieved by clustering multiple
NoC systems. Consequently, the interaction between NoC
clusters is not considered. In this paper, we fill this open
research gap by providing a tool to simulate NoC clusters.
We decided to select a NoC simulation tool and extend
it to support simulation traffic between multiple NoC
systems.

Out of the existing NoC simulators, we selected
NoCTweak [4] to modify for clustered NoC simulation.
NoCTweak large configuration options, especially the link
length, motivated us to select it for extension.

The following features are added to the original
NoCTweak:

1) Cluster Interconnection Topologies: How NoC en-
tities are connected with each other.

2) Latency Model: How latency is modeled and cal-
culated in the case of inter-NoC traffic.

3) Flit Routing: How flits are routed across the clus-
ter. There are two options here:

a) Same algorithm for inter- and intra-cluster
routing

b) Different algorithms for inter- and intra-
cluster routing

4) Cluster Manager: How to map tasks to NoC
entities, based on the inter-NoC communication
pattern.

The contributions of this paper are:

1) Introducing the concept of inter-NoC traffic simu-

lation.
2) Extending a NoC simulator, NoCTweak, to support

inter-NoC communication while evaluating NoC
performance.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 provides background on
NoC clustering. Section 4 reviews the original NoCTweak
simulator. Section 5 presents the new feature added in
NoCTweak to support simulating NoC clusters. Section
6 presents a clustered NoC simulation case study. The
paper is concluded in Section 7.

2. NoC Simulation RelatedWork
A handful of NoC simulators have been developed over

recent years. The main focus of NoC simulators was to
select and customize the NoC parameters, like the routing
algorithms, the communication pattern, the topology, the
router microarchitecture, and the traffic characteristics. In
the following sections we explore selected NoC simula-
tors.

A. Noxim

Noxim was developed by Palesi et al., and implemented
in SystemC [3]. Noxim provides a variety of options to
simulate 2-D NoC. The user can customize simulations
with different NoC sizes, router buffer sizes, flit sizes,
routing algorithms, and flit injection rates. The simulation
evaluates the NoC in terms of throughput, delay, and
power consumption. It also has the option to give detailed
statistics for each communication link per destination
node.

B. BookSim

Jiang et al. developed BookSim, which allows config-
uring topology, buffer size, routing algorithm, and router
micro-architecture [5]. Figure 1 shows BookSim high-
level architecture. It incorporates a top-level traffic gener-
ator, which wraps around the network under simulation.

C. GARNET

Most of the traditional NoC simulators are not full-
system simulators. They focus on simulating the NoC
interconnect behavior, producing results about evaluating
throughput and latency of the interconnect. Agarwal et al.
implemented GARNET as a full-system NoC simulator,
which enables the evaluation of components, like caches
and memory controller, along with NoC topology, router
microarchitecture, and routing algorithms [6].

D. NoCTweak

Tran et al. implemented NoCTweak, which allows a
wide range of configurations to be applied on the NoC

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 6, No.2, 51-61 (March-2017) 53

Figure 1. Top-level block diagram of BookSim [5].

platform under simulation [4]. NoCTweak has many con-
figuration options that are not found in other simulators,
e.g., completely controlling traffic patterns, number of flits
per packet, pipeline stages, switch and virtual channel
allocation policies, and inter-router link length.

3. NoC Clustering Background
With the steadily growing number of PEs in NoC

platforms, it became necessity to employ clustering tech-
niques that group related and heavily-communicated PEs
close to one another. Employed clustering technique
should reduce hop distance between communicating clus-
ters as much as possible. NoC clustering provides means
for load balancing, by task distribution and relocation, and
resource borrowing among clusters. Some NoC clustering
techniques require a PE to act as a manager for the
cluster [17].

Clustering can be static, where the shape and size of
the cluster does not change at runtime, or dynamic, where
the cluster size may change during runtime. Dynamic
clustering can be done by borrowing PEs from neigh-
boring clusters [16], [17], or by programmable-switch
fabric [18]. Cluster management can be done by a specific
node, i.e. the cluster manager, or handled entirely in the
router logic and routing algorithm.

A. Static Clustering

1) C-NOC

A basic NoC clustering technique is introduced in
Clustered NoC (C-NOC) [13]. In C-NOC, the traditional
router with four ports has been extended to have other
ports that connect to other clusters. Figure 2 shows a
2 × 2 C-NOC cluster connection, and each cluster is a
2 × 2 NoC.

2) CBHR

Saravanakumar et al. introduced Cluster Based Hi-
erarchical Routing (CBHR) by logically dividing the

Figure 2. C-NOC cluster architecture [13].

NoC nodes into smaller clusters [14]. To do this logical
clustering, the traffic is routed internally within a cluster
till it reaches a boundary router and then the traffic is
routed between clusters. Inter- and intra-cluster routing
algorithm can be different. Choosing internal or global
routing function depends on the header flit format, which
differs between a packet sent to inter- or intra-cluster
destination. Figure 3 shows how routing works.

Figure 3. Routing across different clusters in CBHR [14].
Routing algorithms for edge routers can be different from

algorithms for used in other routers.

3) Cluster-TG

Ge et al. introduced Cluster-based NoC Topology Gen-
eration (Cluster-TG) [15]. Cluster-TG generates irregular
topology for a given application, by grouping nodes
according to their communication bandwidth. Figure 4
shows an example of Cluster-TG clustering. Cluster-TG
clustering technique can minimize power consumption
and area cost.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

54 Ahmed S. Hassan, et al.: Clustered Networks-on-Chip: Simulation and Performance evaluation

(a) Communication graph (b) Cluster-TG result

Figure 4. Cluster-TG core clustering) [15].

4) CSA

Lu et al. introduced Clustering-based Simulated An-
nealing (CSA) algorithm for core-to-node mapping,
knowing the communication demands of the applica-
tion [19].

B. Dynamic Clustering

1) Decentralized Agent Based Re-clustering

Cui et al. introduced a task mapping algorithm, to
support scalability [16]. This is achieved by changing
NoC cluster size during runtime, depending on the system
load and communication pattern. The proposed technique
initially groups processing cores into clusters, and dynam-
ically changes the clusters size according to task mapping,
as depicted in Figure 5. If a task is mapped to a cluster,
which does not have sufficient resources to fulfill this task,
then this cluster borrows resources from its neighbors.

Figure 5. Runtime dynamic re-clustering [16].

2) Distributed Resource Management

Castilhos et al. introduced a distributed resource man-
agement in NoC [17]. This method relies on a cluster
manager that controls the cluster, in terms of dynamic
task mapping, task monitoring, and deadlines verification.
Depending on the task requirements, a cluster may request
to borrow resources from other clusters, also tasks can
be migrated between clusters. Figure 6 depicts the NoC

cluster architecture introduced in [17]. The NoC is divided
into multiple regions, each has one Local Master (LMP)
and different Slaves (SP). The NoC platform has one
Global Master (GMP), which receives requests for task
allocation and sends the requested task accordingly.

Figure 6. Global and local cluster managers in Clustered
Architecture [17].

4. The Original NoCTweak Simulator
NoCTweak is an open-source NoC simulator that is

based on SystemC [4]. It is used for exploring the perfor-
mance and energy dissipation of different NoC platforms.

A. Configuration Parameters

Figure 7. Generic 2-D NoC platform simulated by
NoCTweak [4].

NoCTweak is highly parametrized, allowing setting up
and simulating a board range of NoC configurations, such
as router type, network size, buffer size, routing algo-
rithm, arbitration policy, pipeline stages, supply voltage,
clock frequency, traffic pattern, packet length, injection
rate, simulation and warm-up times [4].

Original NoCTweak simulates only 2-D mesh NoC
platforms, as shown in Figure 7, where every PE is
consisted of a processing core and a network interface
(NI). Each PE node is linked to a router. Each router is
connected with its neighbors in the mesh.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 6, No.2, 51-61 (March-2017) 55

B. Router Models

NoCTweak simulates multiple router models, like
Wormhole, Virtual-channel, RoShaQ [20], bufferless, and
circuit-switched routers.

The NoCTweak default router is the Wormhole router.
Figure 8 shows the implementation of the wormhole
router, and Figure 8a shows a simplified diagram of
the Wormhole router architecture used in NoCTweak.
Router pipeline configuration is flexible, it can be be-
tween one and five pipeline stages. Figure 8b shows the
different pipeline stages, namely Buffer Write, Routing
Computation, Switch Allocation, Switch Traverse, and
Link Traverse.

(a) Component diagram.

(b) Pipeline stages.

Figure 8. Implementation of NoCTweak Wormhole router.

C. Statistic Outputs

Simulation statistics are generated for network latency,
network throughput, and average energy dissipated by
each router. Activities of circuit components of all routers
in the network are tracked and recorded as well.

5. NoC Clustering Simulation
In this section, we present the changes we applied on

NoCTweak in order to support NoC clustering simulation.
We maintained the regular 2-D NoC topology, as the
original simulator, and added new command-line options
for clustering. The following terminology is used: NoC
cluster is the group of PEs and NoC grid is the group of
interconnected NoC clusters.

A. Cluster Interconnection Topologies

Our simulator supports two types of cluster intercon-
nections, as shown in Figure 9, which depicts a 4×4 NoC
cluster grid with each cluster has 2 × 2 PE. In the first

type, all of the edge routers of a cluster are interconnected
with neighboring clusters, as shown in Figure 9a. The
second type has only one link between a cluster and its
neighbors, as in shown Figure 9b. For different PEs to be
able to communicate, the location of the cluster is added
in the source and destination addresses.

(a) Fully interconnected NoC cluster.

(b) NoC cluster with one link per neighbor.

Figure 9. Types of NoC cluster interconnection.

B. Latency Model
Latency in the NoCTweak is calculated by getting the

difference in time stamps between packet head injection
(from the source PE) and tail reception (at the destination
PE). Part of this delay is the Link Traverse (LT) delay. The
inter-router link length is used in calculating the LT delay,
which in turn affects the pipeline time and the operating
frequency. The LT delay is calculated only at software
initialization.

In the case of clustered NoC, the inter-cluster links are
much longer than local intra-cluster links. Therefore, we
have added on that a weight on the inter-cluster links in
order to enhance the accuracy of the calculation. This
weight can be considered as the ratio of the inter-cluster
link length to that of the intra-cluster one.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

56 Ahmed S. Hassan, et al.: Clustered Networks-on-Chip: Simulation and Performance evaluation

For example, lets consider Ethernet as the inter-cluster
link. If a packet would traverse intra-cluster link in 1
cycle, and the same packet would traverse the inter-cluster
Ethernet link in 100 cycles, the weight in this case is 100.

C. Flit Routing

At initialization, each PE in the system is given a unique
ID. This ID is based on the coordinates of its cluster and
the coordinates within the cluster, given by this equation:

ID = (x + (y × xdim))
+ ((clusterx + (clustery×clusterXdim))× (xdim×ydim))

(1)

where x and y are the PE X and Y location within
its cluster, xdim and ydim are the single NoC cluster
dimensions, clusterx and clustery are the X and Y location
of the cluster within the cluster grid, and clusterXdim is
the X dimension of the NoC cluster grid. If a PE wants to
communicate with another PE, it decodes both the source
PE and the destination PE IDs and add the IDs to the flit.

There are two ways to apply traffic routing algorithms.
Either to apply the same selected routing algorithm
on the whole system, or select different routing algo-
rithms for inter-cluster traffic than intra-cluster traffic. For
both ways, we used the routing algorithms provided by
NoCTweak to set the routing algorithm for inter- and intra-
cluster traffic. NoCTweak provides these routing algo-
rithms: XY, Negative-First minimal adaptive, West-First
minimal adaptive, North-Last minimal adaptive, Odd-
Even minimal adaptive, and lookup-table based routing.

1) Same Algorithm for Inter- and Intra-cluster Routing

Packets will be routed between clusters and within each
cluster. Depending on the cluster interconnection type,
which was discussed in section 5-A, the meaning of this
feature differs.

If the clusters are fully interconnected, then the routing
algorithm is applied on the system as a whole. The system
is treated as a single cluster of size (xdim × clusterXdim) ×
(ydim × clusterYdim), where clusterYdim is the Y dimension
of the NoC cluster grid. This is not different from the
original NoCTweak simulation, except it is applied on
a larger scale and the latency model is different due to
the inter-cluster links. Figure 10a shows how XY routing
algorithm is applied on a fully interconnected NoC cluster
grid.

For the case of one interconnection link between clus-
ters, the algorithm is applied within each cluster to reach
the router that interconnects the next cluster according to
the routing algorithm. Figure 10b shows an example of
XY routing. In this example, flits are routed within the
source cluster till it reaches the cluster interconnection

(a) XY routing in case of cluster with full interconnection.

(b) Example of XY routing in case of cluster with one link per
neighbor.

Figure 10. XY routing for NoC cluster interconnection.

link, then flits are routed through the grid’s x-dimension.
Thereafter, flits are routed within that cluster to reach the
interconnecting link. They are then routed through the
grid’s y-dimension. Finally, they are routed within the
destination cluster to reach the destination PE.

2) Different Algorithms for Inter- and Intra-cluster Rout-
ing

When different algorithms are selected for inter- and
intra-cluster routing, the simulator behaves as the case of
clustering with one link between a cluster and its neigh-
bor. However, the routing algorithm within the cluster
is different from the one for inter-cluster routing. The
routers execute different routing algorithms based on their
position, i.e. if they are cluster-internal or cluster-interface
routers.

D. Cluster Manager

In our simulator, we adapted a centralized cluster man-
agement technique, where a global system manager is

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 6, No.2, 51-61 (March-2017) 57

Figure 11. Algorithm for assigning tasks to NoC clusters.

TABLE I. Cluster configuration options

Parameter Description Default value
cdimx X dimension length of the NoC grid 1
cdimy Y dimension length of the NoC grid 1

cintercon
Cluster interconnection type
FULL : All edge links are interconnected
MIN : Only one link interconnects a neighbor cluster

FULL

crouting Routing algorithm for inter-cluster packet routing Algorithm selected for NoCTweak
clinkfactor Delay factor for inter-cluster links 1.0
cmanager Enable the use of cluster manager

responsible for mapping tasks to clusters based on the
task communication graph (TCG). The simulator is given
a TCG file, describing the number of tasks to map and
the communication between tasks.

The algorithm for mapping the tasks is implemented, as
shown in Figure11. The cluster manager takes a TCG and
does an initial clustering of tasks. Then, it iterates over
the clusters, merging and splitting clusters. The mapping
stops when all tasks are mapped to clusters, and no cluster
is assigned a number of tasks exceeding its capacity.

For sake of simplicity, we based our clustering algo-
rithm on DBSCAN [21]. This algorithm has an over-
all average runtime complexity of O(n log n). Another
NoC-specific algorithm can be used to obtain optimum
performance, either power optimization [22], area opti-
mization [23], network reliability [24], genetic algorithm-
based technique [25], or by using multi-objective task
mapping [26]. Mapping a resultant task cluster to a
location within the cluster grid is done according to Shell
sorting.

For task mapping within a cluster, we relied on the

original NoCTweak task mapping logic.

E. Cluster Configuration Options
In our extension, we provide configuration options for

NoC grid size, cluster interconnection type, inter-cluster
routing algorithm, inter-cluster links delay factor, and
using cluster manager. Intra-cluster routing is configured
using the original NoCTweak option “-routing”. The de-
scription of newly presented options is listed in Table I.
An example of the use of these configurations is given in
Listing 1.

Listing 1. NoCTweak simulation configurations

dimx 10 dimy 10 r o u t i n g xy o u t s e l
h i g h e r c r e d i t b s i z e 8 sa r r
l e n g t h 10 f i r 0 . 5 0
-cdimx 4 -cdimy 4 -cintercon FULL -crouting xy

The aforementioned configurations are passed along with
the original NoCTweak options. Our current implementa-
tion supports taking only one set of cluster configuration
options, which is configured using the original NoCTweak

http://journals.uob.edu.bh

http://journals.uob.edu.bh

http://journals.uob.edu.bh

58 Ahmed S. Hassan, et al.: Clustered Networks-on-Chip: Simulation and Performance evaluation

options and applies this set on all of the clusters in the
NoC grid.

6. Clustered NoC Simulation Case Study
In this section, we discuss the results obtained when

using our simulator to evaluate different NoC cluster
designs to validate the versatility of clustering parameters
and assess simulation time versus NoC cluster and grid
sizes. Listing.1 shows the configuration options that were
used. The options in italic format are the options added to
configure the NoC cluster grid, according to Table I. Sim-
ulations are executed till 100,000 packets are exchanged.
Simulations where done on a Windows 10 machine with
a 2.2GHz Intel i7 Quadcore processor and 6 GB RAM.

A. Simulation Time

We simulated non-clustered NoC, which is the original
NoCTweak, and cluster grid of size 2×2, 4×2, and 4×4.
For each cluster grid, cluster sizes of 10 × 10, 8 × 8 and
4 × 4 are simulated. Random tasks are mapped into the
NoC, 100 tasks are mapped to cluster of size 10 × 10,
64 tasks are mapped to cluster size 8 × 8, and 16 tasks
are mapped to cluster size of 4 × 4. For the NoCTweak
configurations, we have used the default option in most
of the configurations. To test the system under different
traffic loads, we varied the Flit Injection Rate (FIR) from
0.2 to 0.5.

Figure 14 shows the time taken to run the simulation
with different cluster and grid sizes. For example, simulat-
ing non-clustered 10 × 10 NoC took about 211 seconds,
and simulating a grid of size 4 × 4, which contains 16
clusters of 10 × 10 PE, took about 4500 seconds.

On average, the clustering simulation and task mapping,
add about 0.3 overhead over the time it takes to simulate
a single NoC system, multiplied by the number of NoC
clusters in the grid. This time increase is due to the cluster
manager overhead, and the logic for the modified latency
model. Considering the benefits of using clustering with
large scale NoC, the overhead in simulation time is not
much.

B. Packet Latency

Figure 12 shows the result obtained by running different
FIR on different cluster sizes with different grid sizes.
Each sub-figure represents a grid size, while the legend
within each sub-figure represents the cluster size. In the
non-clustered case, the packet latency increases with both
the FIR and the cluster size. This makes sense as with
increasing the FIR, more flits are stalled in the routers’
buffers. Furthermore, with the increase in the cluster size,
flits travels more hobs.

As we increase the grid size, keeping the same number
of tasks, the average hop count a packet traverses is

increased, which in turn increases the packet latency. Our
simulation shows a degraded performance between the
non-clustered case and the other clustered ones. Packet
latency increases, with an average of 58%, as we increase
the grid dimension.

Degradation in packet latency may be contributed to
the clustering algorithm. Clustering techniques, other than
DBSCAN, would result in lower latency increase. How-
ever, these clustering techniques have higher execution
time complexity and their implementation are left for
future work.

Similarly, we used NoCTweak default mapping function
to map tasks onto PEs within the cluster. However,
other mapping functions would result in better latency
results. For example, task mapping within each cluster
should consider mapping tasks with high inter-cluster
traffic to edge PEs. Task mapping should also consider
the cluster interconnection type. Moreover, task mapping
should consider whether the cluster is fully interconnected
or has one link per neighbor, in order to minimize intra-
cluster routing overhead.

C. Router Power and Energy

Figure 13 shows simulation results for power and
energy. Results were obtained by running the simulation
with a 0.5 FIR. Figure 13a shows that clustering helped
lowering the average power consumption per router with
about 50%. The main driver behind this improvement
in power consumption is that the buffering, arbitrating,
and credit tracking activities in the router have been
decreased. Task mapping, resulted from clustering, gener-
ated traffic that spread across most of the routers evenly.
This lowered the average router power consumption.

Figure 13b shows the average energy per packet per
router. Energy is calculated by as:

(2)
AveragePacketEnergy

=
(AveragePower)/(ClockFrequency)

(TotalNumberO f Packets)

According to (2), as the average router power decreases in
clustering an NoC, while maintaining the same total num-
ber of packets, the average packet energy also decreases
compared to the non-clustered case.

7. Conclusion And FutureWork
In this paper, we presented an extension to NoCTweak

NoC simulator to support simulating NoC clustering. The
new simulator features include grouping multiple NoC
clusters in a grid and configuring the cluster interconnec-
tion type. Our extension allows having different routing
algorithms for inter and intra-cluster traffic. Also, it allows

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 6, No.2, 51-61 (March-2017) 59

 0

 50

 100

 150

 200

 250

 300

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

)

Injection rate (flit/cycle/node)

4x4 cluster
8x8 cluster

10x10 cluster

(a) Non-Clustered.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

)

Injection rate (flit/cycle/node)

4x4 cluster
8x8 cluster

10x10 cluster

(b) 2 × 2 grid.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

)

Injection rate (flit/cycle/node)

4x4 cluster
8x8 cluster

10x10 cluster

(c) 4 × 2 grid.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

)

Injection rate (flit/cycle/node)

4x4 cluster
8x8 cluster

10x10 cluster

(d) 4 × 4 grid.

Figure 12. Average packet latency versus flit injection rate.

 350

 400

 450

 500

 550

 600

 650

4x4 8x8 10x10

Ro
ut

er
 P

ow
er

 (
m

W
/r

ou
te

r)

Cluster Dimension

Non-clustered
2x2 Grid
4x2 Grid
4x4 Grid

(a) Average router power versus cluster size.

 4

 6

 8

 10

 12

 14

 16

 18

4x4 8x8 10x10

Ro
ut

er
 E

ne
rg

y
Pe

r
Pa

ck
et

 (
pJ

/p
ac

ke
t/

ro
ut

er
)

Cluster Dimension

Non-clustered
2x2 Grid
4x2 Grid
4x4 Grid

(b) Average router energy per packet versus cluster
size.

Figure 13. Average router power and energy.

adding delay factor on the inter-cluster links and adding
a cluster manager.

In the future, we aim to verify the simulation results
against actual implementation of NoC clusters on an
FPGA. We further want to extend the simulator to support
dynamic clustering, dynamic scaling, resource borrowing,
and the ability to configure different NoC clusters with
different configurations. As for clustering technique, we
aim at supporting the techniques mentioned in [13]–[17],
[19], [27]–[30], and allowing users to specify their own
custom technique as well.

Acknowledgment
This paper is a significant extension and update of a

paper that appeared in the proceedings of the Workshop
on Design and Performance of Networks on Chip (DP-
NoC 2016) in conjunction with the The 11th International
Conference on Future Networks and Communications
(FNC 2016) [31]. All trademarks ™ and registered trade-
marks ® mentioned, cited, or referenced in this document
remain the property of their respective owners.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

60 Ahmed S. Hassan, et al.: Clustered Networks-on-Chip: Simulation and Performance evaluation

 0

 1000

 2000

 3000

 4000

4x4 8x8 10x10

Si
m

ul
at

io
n

tim
e

(s
)

Cluster Dimension

Non-clustered
2x2 Grid
4x2 Grid
4x4 Grid

Figure 14. Cluster simulation time for different cluster and NoC
sizes.

References

[1] F. Gebali, H. Elmiligi, and M. W. El-Kharashi, Networks-on-
chips: theory and practice. CRC press, 2011.

[2] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Multi-objective optimization for networks-on-chip architectures
using genetic algorithms,” in Proceedings of 2010 IEEE Inter-
national Symposium on Circuits and Systems. IEEE, 2010, pp.
3725–3728.

[3] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti,
“Noxim: An open, extensible and cycle-accurate network on
chip simulator,” in 2015 IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2015, pp. 162–163.

[4] A. Tran and B. Baas, “Noctweak: A highly parameterizable simu-
lator for early exploration of performance and energy efficiency of
networks on-chip,” Dept. Electr. Comput. Eng., Univ. California,
Davis, CA, USA, Tech. Rep. ECE-VCL-2012-2, 2012.

[5] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and
W. Dally, “Booksim interconnection network simulator,” http://
nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim, vis-
ited 2017-02-03.

[6] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A
detailed on-chip network model inside a full-system simulator,”
in Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on. IEEE, 2009, pp. 33–
42.

[7] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebali, “A
topology-based design methodology for networks-on-chip appli-
cations,” in 2007 2nd International Design and Test Workshop.
IEEE, 2007, pp. 61–65.

[8] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Power con-
sumption of 3D networks-on-chips: Modeling and optimization,”
Microprocessors and Microsystems, vol. 37, no. 6, pp. 530–543,
2013.

[9] J. Latif, S. Azam, H. N. Chaudhry, and T. Muhammad, “Per-
formance evaluation of modern network-on-chip router architec-
tures,” Int. J. Com. Dig. Sys, vol. 5, no. 2, 2016.

[10] R. K. Saini and M. Ahmed, “2D hexagonal mesh Vs 3D mesh
network on chip: A performance evaluation,” Int. J. Com. Dig.
Sys, vol. 4, no. 1, 2015.

[11] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Modeling and
implementation of an output-queuing router for networks-on-
chips,” pp. 241–248, 2007.

[12] K. Aisopos, C.-H. O. Chen, and L.-S. Peh, “Enabling system-level
modeling of variation-induced faults in networks-on-chips,” in
Proceedings of the 48th Design Automation Conference. ACM,
2011, pp. 930–935.

[13] M. R. Seifi and M. Eshghi, “A clustered noc in group commu-
nication,” in TENCON 2008-2008 IEEE Region 10 Conference.
IEEE, 2008, pp. 1–5.

[14] U. Saravanakumar, R. Rangarajan, R. Haripriya, R. Nithya, and
K. Rajasekar, “Cluster based hierarchical routing algorithm for
network on chip,” Circuits and Systems, vol. 4, no. 05, p. 401,
2013.

[15] F. Ge, N. Wu, X. Qin, and Y. Zhang, “Clustering-based topology
generation approach for application-specific network on chip,” in
Proceedings of the world congress on engineering and computer
science, vol. 2, 2011.

[16] Y. Cui, W. Zhang, and H. Yu, “Decentralized agent based re-
clustering for task mapping of tera-scale network-on-chip sys-
tem,” in 2012 IEEE International Symposium on Circuits and
Systems. IEEE, 2012, pp. 2437–2440.

[17] G. Castilhos, M. Mandelli, G. Madalozzo, and F. Moraes,
“Distributed resource management in NoC-based mpsocs with
dynamic cluster sizes,” in 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2013, pp. 153–158.

[18] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Introducing
OperaNP: a reconfigurable NoC-based platform,” in Electrical
and Computer Engineering, 2007. CCECE 2007. Canadian Con-
ference on. IEEE, 2007, pp. 940–943.

[19] Z. Lu, L. Xia, and A. Jantsch, “Cluster-based simulated annealing
for mapping cores onto 2D mesh networks on chip,” in De-
sign and Diagnostics of Electronic Circuits and Systems, 2008.
DDECS 2008. 11th IEEE Workshop on. IEEE, 2008, pp. 1–6.

[20] A. T. Tran and B. M. Baas, “Roshaq: High-performance on-chip
router with shared queues,” in Computer Design (ICCD), 2011
IEEE 29th International Conference on. IEEE, 2011, pp. 232–
238.

[21] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[22] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebali,
“Power optimization for application-specific networks-on-chips:
A topology-based approach,” Microprocessors and Microsystems,
vol. 33, no. 5, pp. 343–355, 2009.

[23] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and
F. Gebali, “Area-aware topology generation for application-
specific networks-on-chip using network partitioning,” in 2009
IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing. IEEE, 2009, pp. 979–984.

[24] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebalis,
“A reliability-aware design methodology for networks-on-chip
applications,” in Design & Technology of Integrated Systems in
Nanoscal Era, 2009. DTIS’09. 4th International Conference on.
IEEE, 2009, pp. 107–112.

[25] A. Morgan, H. Elmiligi, M. El-Kharashi, and F. Gebali,
“Bio-inspired NoC architecture optimization,” in Autonomic

http://journals.uob.edu.bh

http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim
http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim
http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 6, No.2, 51-61 (March-2017) 61

Networking-on-Chip: Bio-Inspired Specification, Development,
and Verification, P. Cong-Vinh, Ed. CRC Press, 2012, pp. 21–45.

[26] A. A. Morgan, H. Elmiligi, F. Gebali, and M. W. El-Kharashi,
“Unified multi-objective mapping and architecture customisation
of networks-on-chip,” IET Computers & Digital Techniques,
vol. 7, no. 6, pp. 282–293, 2013.

[27] Y. Z. Tei, Y. W. Hau, N. Shaikh-Husin, and M. N. Marsono,
“Network partitioning domain knowledge multiobjective applica-
tion mapping for large-scale network-on-chip,” Applied Compu-
tational Intelligence and Soft Computing, vol. 2014, p. 9, 2014.

[28] P. Gorski and D. Timmermann, “Centralized traffic monitoring for
online-resizable clusters in networks-on-chip,” in Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), 2013
8th International Workshop on. IEEE, 2013, pp. 1–8.

[29] R. Manevich, I. Cidon, and A. Kolodny, “Dynamic traffic distri-
bution among hierarchy levels in hierarchical networks-on-chip
(NoCs),” in Networks on Chip (NoCS), 2013 Seventh IEEE/ACM
International Symposium on. IEEE, 2013, pp. 1–8.

[30] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Networks-on-chip architecture customization using network par-
titioning: A system-level performance evaluation,” International
Journal of Computing and Digital Systems, vol. 4, no. 1, pp.
19–31, Jan 2015.

[31] A. S. Hassan, A. A. Morgan, and M. W. El-Kharashi, “An
enhanced network-on-chip simulation for cluster-based routing,”
Procedia Computer Science, vol. 94, pp. 410–417, 2016.

Ahmed S. Hassan Ahmed S. Hassan
received B.Sc. degree in systems and
biomedical engineering, Cairo University,
Egypt, in 2011. He is an embedded soft-
ware developer, specialized in multicore
architecture, wireless connectivity, and au-
tomotive Ethernet. Currently an M.Sc.
candidate at Ain Shams University, Cairo,
working on many-core Systems-on-Chip
(SoC) analysis and design.

Ahmed A. Morgan Ahmed A. Morgan
received the Ph.D.degree from the Uni-
versity of Victoria, Victoria, BC, Canada,
in 2011, and the B.Sc. degree (first class
honors) and the M.Sc. degree from the
Faculty of Engineering at Shoubra, Benha
University, Egypt in 2000 and 2005, re-
spectively. He got a Diploma in Electronic
Design Automation (EDA) and VLSI De-
sign from the Information Technology In-

stitute (ITI), Cairo, Egypt in 2002. He is an Assistant Professor
in the Department of Computer Engineering, Cairo University,
Egypt. His research interests include parallel architectures, mul-
ticore systems, digital VLSI design, wireless sensor networks,
and Networks-on-Chip (NoC) modeling, optimization, and per-
formance evaluation.

M. Watheq El-Kharashi M. Watheq El-
Kharashi received the Ph.D. degree in
computer engineering from the Univer-
sity of Victoria, Victoria, BC, Canada, in
2002, and the B.Sc. degree (first class
honors) and the M.Sc. degree in computer
engineering from Ain Shams University,
Cairo, Egypt, in 1992 and 1996, respec-
tively. He is a Professor in the Department
of Computer and Systems Engineering,

Ain Shams University, Cairo, Egypt and an Adjunct Professor
in the Department of Electrical and Computer Engineering,
University of Victoria, Victoria, BC, Canada. His general re-
search interests are in advanced system architectures, especially
Networks-on-Chip (NoC), Systems-on-Chip (SoC), and secure
hardware. He published about 100 papers in refereed interna-
tional journals and conferences and authored two books and 6
book chapters.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	NoC Simulation Related Work
	Noxim
	BookSim
	GARNET
	NoCTweak

	NoC Clustering Background
	Static Clustering
	C-NOC
	CBHR
	Cluster-TG
	CSA

	Dynamic Clustering
	Decentralized Agent Based Re-clustering
	Distributed Resource Management

	The Original NoCTweak Simulator
	Configuration Parameters
	Router Models
	Statistic Outputs

	NoC Clustering Simulation
	Cluster Interconnection Topologies
	Latency Model
	Flit Routing
	Same Algorithm for Inter- and Intra-cluster Routing
	Different Algorithms for Inter- and Intra-cluster Routing

	Cluster Manager
	Cluster Configuration Options

	Clustered NoC Simulation Case Study
	Simulation Time
	Packet Latency
	Router Power and Energy

	Conclusion And Future Work
	References
	Biographies
	Ahmed S. Hassan
	Ahmed A. Morgan
	M. Watheq El-Kharashi

