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Abstract: Automating query generation for Complex Event Processing (CEP) enables users to obtain useful insights from data, 

going beyond what it already knew. Existing automation techniques are both computationally expensive and require extensive 

domain-specific human interaction. We propose a technique that combines parallel coordinates and shapelets to automate the CEP 

query generation. Moreover, if the provided dataset is unannotated, we run it through a clustering algorithm to cluster the time 

instances into different event groups. Then each instance would be represented as a line on a set of parallel coordinates. Then the 

shapelet-learner algorithm is applied to those lines to extract the relevant shapelets and will be ranked based on their information 

gain. Next, the shapelets with similar information gain are divided into groups by a shapelet-merger algorithm. The best group for 

each event is then identified based on the event distribution of the data set and is used to automatically generate queries to detect the 

complex events. This technique can be applied to both multivariate and multivariate time-series data, and it is computationally and 

memory efficient. It enables users to focus only on the shapelets with relevant information gains. We demonstrate the utility of this 

technique using a set of real-world datasets.  
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1. INTRODUCTION  

With the increased bandwidth availability and lower 
costs, more sensors are being deployed to build smart and 
connected systems. However, gaining useful, real-time 
insights from such large streams of data is increasingly 
becoming difficult. Processing data on the fly with 
Complex Event Processing (CEP) and stream processing 
techniques [1] are gaining popularity to overcome such 
limitations in Internet of Things (IoT) applications. For 
example, CEP combines data from multiple, streaming 
sources to identify meaningful events or patterns in real 
time. While the detection of relevant events and patterns 
may give insight about opportunities and threats related to 
the data being monitored (e.g., set of sensor readings in 
IoT applications and credit card transactions), significant 
domain knowledge is required to write effective CEP 
queries. Manual analysis of large data streams is not only 
tedious and error prone, but also important events are 
likely to be missed due to the limited domain knowledge 
of the query writer. A promising alternative is to automate 

the CEP query generation by automatically 
extracting/mining interesting patterns from the past data 
[2], [3], [4]. 

Time-series pattern mining and classification 
techniques are extensively studied in the literature. 
Dynamic Time Warping (DTW) [5] is one such technique 
used to measure the similarity between two, time series 
based on a distance measure. However, the computational 
complexity of DTW grows exponentially with large and 
multiple time series limiting its usages. Moreover, the 
accuracy of the results depends on the chosen sliding 
window, which is nontrivial to estimate [2]. A shapelet 
[6], [7] is a time series subsequence that is identified as 
being representative of class membership; hence, useful in 
time-series classification. AutoCEP [2] proposed a 
shapelet-based technique to automate the CEP query 
generation for univariate time series. This itself is a major 
limitation, as most real-world time-series used in CEP 
tends to be multivariate. Moreover, AutoCEP generates 
queries for each and every instance of the detected event, 
requiring the CEP engine to concurrently process multiple 

http://dx.doi.org/10.12785/ijcds/060404 
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queries. This unnecessarily increases the computational 
and memory requirements of the CEP engine and 
consequently degrades its performance. One trivial 
optimization is to use the assistance of a domain-expert to 
aggregate the queries and attempt to write one or few 
queries. Ultra-fast shapelets [8] are proposed for 
multivariate time-series classification. Ultra-fast shapelets 
calculate a vectorized representation of respective 
attributes of the dataset. Then a random forest is trained to 
identify the shapelets with respect to the total dataset. The 
leaves of the random forest are considered to be the 
symbols. The number of occurrences of a symbol in the 
raw data is counted and these symbol histograms are used 
for the final classification using random forests. While 
this technique is effective in classification, it cannot be 
used to generate CEP queries, as the generated random 
forest does not support backtracking and obtaining any 
relevant information as to what data lead to the 
classification of the event [8]. Rare itemset pattern mining 
(AprioriRare) [9] is another technique. This technique 
cannot be used to detect events that occur within a short 
time span. Moreover, most related work focus only on 
domain-specific datasets limiting the usability of the 
proposed techniques across diverse datasets and 
applications [10], [11]. 

We propose a technique that represents the given 
multivariate data set as a set of parallel coordinates, and 
then extract shapelets out of those coordinates to 
automatically generate CEP queries. Even a multivariate 
time series can be mapped to a set of parallel coordinates, 
by representing each time instance as a separate line. 
Extracted shapelets are sorted according to the 
information gains and then divided into several groups. 
Out of the all groups, best group for each event is 
identified. Then the most important shapelets in the 
identified groups are used to generate one CEP query per 
group. This enables one to generate CEP queries for 
commonalities, anomalies, as well as time-series 
breakpoints in a given multivariate time-series dataset 
without having any domain knowledge. Users can focus 
on groups with high or low information gain depending 
on the application. Moreover, compared to related work, 
shapelets identify most relevant attributes in a dataset for 
a particular event, enabling us to write more efficient CEP 
queries and only one query per event (unless the same 
event is triggered by unrelated attribute combinations). 
While our solution up to this point assumes that the input 
dataset is annotated, many real-world datasets are not 
annotated. It is not trivial to annotate a large multivariate 
dataset without expert judgment and extensive manual 
work. Therefore, to realize the true benefits of automated 
CEP query generation, it is essential to be able to handle 
unannotated datasets. To address this problem, we also 
propose a clustering technique to cluster the time 
instances into different event groups. Using a set of real-
world datasets, we demonstrate that the proposed 
technique can be applied effectively to auto generate CEP 
queries for common and abnormal events while 

identifying the relevant features and event occurrence 
timeframe. Moreover, the proposed technique has a 
relatively low computational and memory requirements 
compared to prior work. 

Rest of the paper is organized as follows. Section II 
introduces shapelets, parallel coordinates, and problem 
formulation. Section III presents the proposed technique. 
Section IV explains implementation details and the 
proposed clustering technique to handle unannotated 
datasets. Performance analysis is presented in Section V. 
Concluding remarks and future work are discussed in 
Section VI. This is an extended version of the paper in 
[12], and the major extensions include the clustering 
technique proposed to cluster unannotated time instances 
into different event groups and expanded performance 
analysis with both annotated and unannotated datasets. 

2. PRELIMINARIES 

We first define relevant terms and then define 

shapelets and parallel coordinates as applicable to the 

domain of CEP query generation. The research problem 

is then formulated. 

A. Definitions 

Time-Series — A time-series T = t1,..., tm is an ordered 
set of m real-valued variables. 

Multivariate Time-Series — A multivariate time-series 
T = t1, . . ., tm is a sequence of m vectors, where ti = (ti,1, . . 
. , ti,s) ε ℝs

 with s attributes/variables. 

Sub-sequence (S
t
p) — Given a time-series T, a 

subsequence S
t
p of T is a sampling of length l ≤ m of 

contiguous positions from T starting at time p, i.e., S
t
p = 

tp, tp+1...,tp+l-1, for 1 ≤ p ≤ m - l + 1. 

Set of All Sub-sequences (STl) — Set of all possible sub-
sequences S

t
p that can be extracted by sliding a window of 

length l across T is STl = {all S
t
p of T, for 1 ≤  p ≤ m - l + 

1}. 

Sub-sequence Distance — Given T and S
t
p 

SubsequenceDist(T, S
t
p) is the minimum distance between 

p contiguous positions obtained by sliding S
t
p across T. 

We use Euclidean distance as the distance function.  

Entropy — Consider a time series data set D consisting 
of two classes, A and B. Let proportions of objects 
belonging to class A and B be p(A) and p(B), respectively. 
Then the entropy of D is: 

            I(D) = -p(A)log(p(A)) - p(B)log(p(B)) (1) 
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Figure 1.  Time-series shapelets 

 

 

 

Figure 2.  Parallel coordinates representation of Occupancy Detection 
dataset from [14] 

Information Gain (Gain) — Given a certain split 
strategy sp which divides D into two subsets D1 and D2, 
let the entropy before and after splitting be I(D) and Î(D), 
respectively. Then the information gain for split sp is: 

Gain(sp) = I(D) - Î(D) 

Gain(sp) = I(D) - (p(D1)(ID1}) + p(D2)I(D2))         (2) 

Optimal Split Point (OSP) — Consider a time-series 
data set D with two classes A and B. For a given S

t
p, we 

choose some distance threshold dth and split D into D1 and 
D2, s.t. for every time series object T1,i in D1, 
SubsequenceDist(T1,i, S

t
p) ≤ dth and for every T2,i in D2, 

SubsequenceDist(T2,i, S
t
p) ≥ dth. An Optimal Split Point 

(OSP) is a distance threshold that Gain(S
t
p, dOSP(D,Stp)) ≥ 

Gain(S
t
p,dth) for any other distance threshold dth. 

B. Shapelets  

As seen in Figure. 1 Shapelets can be defined as time-
series sub-sequences. Shapelets can be of varying lengths, 
and many sub-sequences can be extracted by sliding a 
window of given length l. In shapelet-based classification, 
the objective is to identify a shapelet that is in some sense 
maximally representative of a class. 

C. Parallel Coordinates 

Parallel coordinates are widely used to visualize 

multivariate data [13]. Figure. 2 illustrates the parallel 

coordinates representation of the room occupancy dataset 

obtained from the UCI Machine Learning repository [14], 

which consists of six attributes. A dataset with n 

dimensions (i.e., attributes) is mapped to a set of points 

on n parallel lines, where each line represents an instance 

of data. These points are then connected using a line. A 

separate line is drawn for each instance of data (i.e., each 

row). For example, in Figure. 2 part of the dataset  

 

 

Figure 3.  High-level architecture of the proposed solution 

selected based on the Light attribute is shown in black, 

and rest of the data set is visualized in gray. When 

scaling these coordinate systems, it is recommended to 

use normalized data to prevent bias to certain 

dimensions. 

D. Problem Statement 

In contrast to the relational database systems that 

issue dynamic queries on stored and indexed data, CEP 

filters incoming streams of data through pre-written 

queries to detect events of interest. Hence, relevant 

queries need to be provided to the CEP engine a priori. 

We address the problem of needing domain knowledge to 

write a meaningful CEP queries through automation. 

Though a couple of related work attempt to automate 

CEP query generation, they support only univariate time 

series data [2]. 

We propose a solution which can be used to generate 

CEP queries for multivariate time series without 

requiring expert domain knowledge. In proposing the 

solution we assume that each instance in the obtained 

dataset is annotated according to the respective event (we 

relax this constraint in Section IV). In this work, we 

specifically focus on filter queries in CEP, as they are the 

most frequently used queries in CEP. Typically filter 

query has the following template: 

SELECT {*} 

WHERE {attr1 ≥ a and attr2 < b}          (3) 

WITHIN {t1 ≤ time ≤ t2} 

 

Therefore, the problem that this research attempts to 

address can be formulated as follows: 

 

How to automatically construct a filter query per event, 

which contains the most relevant attributes, their range 

of values, and the event detection time frame? 

3. PROPOSED TECHNIQUE 

To auto generate queries for Complex Event 
Processors, we propose the modularized architecture 
illustrated in Figure. 3. The four main modules perform 
the following tasks: 
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Data Processor — Converts the input dataset (e.g., 

time series data in text, XML, or CSV format) into a 

 

 

Figure 4.  Multivariate time-series mapped as parallel coordinates 

generic format used by the rest of the modules. If the 
dataset is pre-annotated, then each instance in the given 
dataset corresponds to an occurrence of a specific event, 
i.e., each data instance is classified/labeled with the 
corresponding event. The module then counts the number 
of events of each type, and their proportions with respect 
to the total number of events in the entire dataset. 

If the given dataset is not pre-annotated, we propose 

a clustering-based technique to annotate the dataset. The 

proposed clustering technique would cluster each 

data/time instance to a particular event. This is useful in 

calculating the information gain with respect to each 

shapelet and also to filter out the all generated shapelets 

to identify the most important shapelets.  

Shapelet Generator — This is the core module of the 

system which uses pattern mining. This module identifies 

the most appropriate shapelets to represent each event. 

First, the multivariate (time series) dataset is mapped to a 

set of parallel coordinates. Figure. 4 is an exemplary 

representation of a multivariate time series with six 

attributes and five, time instances converted to parallel 

coordinates. Then all the shapelets are extracted from the 

parallel coordinates while varying the length l of the 

sliding window. Though the shape of the extracted 

shapelets depends on the order of the attributes, the final 

outcome of the solution is independent of the order. The 

length of an identified shapelet is bounded by the number 

of attributes m in the time series (i.e., 1 ≤ l ≤ m). 

Therefore, our technique produces a much lower number 

of shapelets compared to prior work (e.g., [2]), where m 

can be as large as the length of the time series. Moreover, 

it is not required to apply heuristics or expert knowledge 

to determine the optimum minimum and maximum 

length of shapelets as in [2]. Therefore, our Shapelet 

Learner Algorithm is both computationally and memory 

efficient. 

 

Figure 5.  Shapelets slide across the time series 

 

Figure 6.  Shapelets that are representative of event 

Once all shapelets are extracted, the next step is to 

identify a subset of the shapelets that are representative 

of patterns in the parallel coordinates. For this, we use 

information gain (Eq. 2) to quantify the extent to which a 

selected shapelet is similar to a given line on parallel 

coordinates. For example, Figure. 5 shows two shapelets, 

one with attributes 1 and 2 (shapelet S1) and another with 

attributes 1, 2, and 3 (shapelet S2). We slide both S1 and 

S2 across the line/row with t = 5000 and find the 

minimum distance between the shapelet and line. For 

example, S1 has a relatively lower distance between the 

attributes 1-2 and 3-4, whereas S2 has a relatively lower 

distance between attributes 1-3 and 4-6. This is estimated 

using the SubsequenceDist() function defined in Section 

2.1. The same process is applied to all other time 

instances and shapelets. This results in a matrix of 

minimum distance values for each (shapelet, time 

instance) pair. Next using Eq. 1 and Eq. 2 provided in 

Preliminaries, we find the Optimal Splitting Point (OSP) 

[6] for each row of minimum distance values, to find the 

maximum information gain for each shapelet. The 

shapelets are then ranked based on the descending order 

of their information gain. We then use Shapelet Merger 

Algorithm to group shapelets within the ranked list with 

respect to their information gain. Because the shapelets 

with similar information gains produce similar insights, 

groups created using Shapelet Merger Algorithm allows 

us to cluster the similar informative shapelets together. 
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Finally, Important Shapelet Extraction Algorithm is used 

to identify the most suitable shapelets to represent each 

event type, which would result in an output similar to 

Figure. 6. 

Visual Representation — This is an optional module 

that visualizes generated shapelets, enabling users to 

select what shapelets to choose for query generation. 

While the system can auto generate queries without any 

user suggestions, this module facilitates and accepts user 

approval allowing the user to select the shapelets that the 

user is interested in. As seen in Figure. 6 user may also 

select a subset of the attributes and their range of values 

that he/she expects to use in the generated queries. Such 

user intervention reduces false positives and improves the 

performance of the CEP engine, as not every identified 

event may be of practical importance. 

Query Generator — Given the chosen shapelets, this 

module auto generates CEP queries based on the input 

provided by the hint generator module and incorporating 

any user-provided hints. Here we generate one query per 

each event with the relevant query parameters generated 

by the system, or set of attributes and ranges approved by 

the user. The module identifies the most relevant 

attributes and their value ranges to be used while 

constructing the query along with the optimal time 

periods within which each event occurs. Optimal time 

periods are identified by analyzing the event distribution 

of the actual dataset and choosing the longest event 

detection time period with respect to each occurrence of 

an event. Using these data, the module generates filter 

queries (similar to Eq. 3) for each and every event of the 

given dataset. 

4. IMPLEMENTATION 

In this paper, we introduce an enhanced way to define 
shapelets using parallel coordinates as an object with four 
attributes s = (g, i, a, c). g is the information gain, which 
measures the similarity between shapelet and time series. i 
is the time-series identifier, which is the row number of 
the line on parallel coordinates (see Figure. 4). a is the 
starting column/attribute number. We store the 
normalized values of the attributes which belong to the 
particular shapelet in c. We also keep track of the original 
values c, as those are later required to generate CEP 
queries. 

We first check on the dataset status and in case if it is 
not annotated we run the dataset through the proposed 
clustering technique and obtain an annotated version of 
the original dataset (see next Section for details). Next, we 
transform the multivariate time-series dataset into parallel 
coordinates as seen in Figure. 2. Our method builds upon 
two main phases which are illustrated in Figure. 7. Next, 
the implementation of each phase is discussed in detail. 

 

Figure 7.  Architecture of the Shapelet Generator Module 

 

A. Clustering Technique for Data Annotation 

The proposed clustering technique becomes effective 

only if the user provides an unannotated dataset. 

Algorithm 1 initially calculates the Euclidean distances 

between each pair of data points or time instances. The 

resulting distance matrix is then clustered using OPTICS 

algorithm [15] resulting in an annotation for each time 

instance. In doing so, the dataset in common data format 

needs to be clustered in a manner in which each data/time 

instance is classified with respect to an identified event. 

The output of the clustering technique would modify the 

dataset by appending another column with the numerical 

values to denote the cluster number, which indicates the 
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event type that each column belongs to. This information 

is then effectively used in the information gain 

calculation step of the query generator module.  

The proposed clustering technique is domain 

independent and it is based on the numerical values 

within the dataset. We initially extract all numerical 

attributes of the dataset and then normalize those values. 

We then calculate the Euclidean distances between the 

data points of each time instance and produces a distance 

matrix. Then the resulting distance matrix is fed to the 

OPTICS algorithm, which clusters each row separately. 

The reason to use this technique is, in terms of detecting 

events, we look for different pattern instances within the 

obtained time instances throughout the dataset. 

Calculation of the distance of corresponding data points 

with respect to each time instances is one of the best 

methods to compare and identify the differences in 

patterns among the time instances. The key advantage of 

the proposed clustering implementation is its ability to 

work without any user input apart from providing the 

dataset, meaning any unannotated dataset could even be 

processed via our implementation. 

The reason to have a distance matrix is that shapelets 

are distinguished according to the distances of each row. 

Thus, having a distance matrix to distinguish the dataset 

is more appropriate. Now each row is clustered with 

OPTICS algorithm, as it is an unsupervised, density-

based clustering technique, which is more suitable for our 

approach as shapelets are extracted according to their 

similarity of distances and densities. 

Then in the next iteration, the base time instance 

becomes the next time instance in the dataset and the 

above process will continue as explained. At the end of 

each iteration, the obtained Euclidean distances per each 

time instance with respect to selected base time instance 

is used to cluster the data points using the OPTICS 

algorithm. At the end, each time instance is put to a 

cluster that it belongs to. After scanning through the 

entire dataset we obtain the results array and scan 

through it and assign each time instance to the cluster 

which has the highest count in terms of its belongingness. 

This value will be appended to the dataset in which each 

time instance would have its corresponding event type. 

Line 2 of the clustering algorithm (see Algorithm 1) 

normalizes the data and assign it to normData array. 

Then the for loop (line 5 onwards) starts to scan through 

each element in normData and for each of the element of 

this array, we calculate euclidean distance with all the 

other elements. The number of times line 8 is executed 

equals to the array size. This allows us to obtain a 

distance matrix distListRow. Afterward, each of the rows 

in the distance matrix is processed through the OPTICS 

algorithm to cluster, which contains one-dimensional 

clustering of the obtained distances. This is implemented 

in line 11 and 12. At the end, algorithm analyses the row-

wise cluster distribution and assigns each row for the 

respective cluster which it happens to fall into most of the 

time. The rest of the code is implemented such that result 

array (line 4) is updated by giving the annotation. 

To cluster the obtained Euclidean distances, we 

considered popular unsupervised, density-based 

clustering techniques, namely DBSCAN [16], OPTICS, 

and Single-Linkage Clustering [17]. One of the main 

drawbacks in DBSCAN is we have to decide parameters 

globally. Deciding parameters globally is important as 

without that the hierarchical nature of densities could not 

be measured. However, to do decide parameters globally, 

we need to have an idea of the data distribution within 

the dataset. Because from the beginning we intended to 

make the implementation domain and user independent, 

obtaining information on the data distribution within the 

dataset becomes infeasible. As DBSCAN cannot always 

be used to cluster data with different densities, we need 

to know the densities of data so that we can give a 

suitable threshold as a parameter. For instance, within the 

DBSCAN implementation, if a selected radius r1 gives a 

cluster named C and another radius r2 which is greater 

than r1 gives a separate cluster named B, this would 

make C as a subset of B, which limits the precision of the 

derived clusters. This happens with inappropriate global 

parameter setting. This issue can be overcome in 

OPTICS algorithm by iteratively developing clusters 

starting from a small neighborhood radius. 

Furthermore, hierarchical clustering techniques also 

do provide satisfactory results, but with the limitation of 

high time and memory complexity compared to density-

based methods. Therefore, to go line with our objective 

of finding time instances of similar patterns, which are 

dense around another time instance, hence it is required 

to cluster the obtained Euclidean distance values 

considering the density and in doing so we did use 

OPTICS algorithm (which is an extension of DBSCAN 

which overcomes DBSCAN algorithm's limitations). 

In terms of user interaction with our system, in 

which the user happens to be a domain expert, that user 

could provide the additional information such as the 

number of events within the dataset and proportionate 

event distribution to increase the accuracy of labelling the 

events. Conducting parameter tuning in the OPTICS 

algorithm also allows a user to increase the accuracy. 
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B. Phase one: Shapelet Learner 

The Shapelet Learner extracts all the shapelets from 
the obtained parallel coordinates. We set the default 
minimum length (lmin) of a shapelet as two, while the 
maximum (lmax) is set to the number of attributes m (i.e., 2 
≤ l ≤ m). However, a user may override these values. 
Afterward, Algorithm 2 of the Shapelet Generator module 
extracts all possible shapelets, while varying the shapelet 
length. First, the shapelet list is initialized to store the 
extracted shapelets (line 2). Then shapelets are extracted 
by going through each row r in the Dataset D. The outer 
loop increments the length of a shapelet l up to lmax, while 
the inner loop increments start to scans  

 

through each r. The inner-most loop (line 13-16) extracts 
all attributes between lmin to l for a given starting point. 
Then we convert each shapelet's content to standard 
normal using zNorm() function to prevent any biases to 
specific attributes. Moreover, in line 19 we also store the 
raw values of shapelets, as they are later required while 
generating queries.  

We also calculate and save the information gain of 
each shapelets using infoGain() function (line 20). First, 
the SubsequenceDist() function is used to find the 
minimum distance between the row and the shapelet by 
sliding the shapelet across the row, one attribute at a time 
(see Figure. 5). By repeating the function, the minimum 
distance per each row is found and saved in an array. 
Then by sequentially splitting the array, we calculate the 
information gain using Eq. 2. Finally, for each shapelet, 
we get the maximum information gain and the 
corresponding split point, which would be the Optimum 
Splitting Point of the array. In line 21, each shapelet and 
its metadata are then added to the shapelets list, which is 
later returned by the algorithm. 

C. Phase Two: Shapelet Extraction 

All the extracted shapelets are first sorted according 

to their information gain. Then these shapelets are 

divided into a set of groups and then merged using 

Algorithm 3. The algorithm takes the set of shapelets S 

and number of shapelets per group (groupsize) as the 

input. group size is proportional to the total number of 

shapelets. groupsize is selected based on the cluster 

pruning technique in which we set the number of groups 
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to the square root of the total number of identified 

shapelets. If desired, the user may also define the 

groupsize. Then in line 12 to 15, the grouped shapelets are 

updated by adding their series ID (i.e., raw number), 

starting positions (i.e., starting attribute index), and class 

value (i.e., event type). Finally, the algorithm returns all 

the merged shapelets (line 25). 

 

Important Shapelet Finder algorithm (Algorithm 4) 

takes three parameters, namely merged shapelets, 

classified/labeled dataset, and class values (i.e., event 

types). Line 2 and 3 initialize two lists named shapletArr 

and classValueProb, which would respectively contain 

important shapelets and probabilities for class values 

within the total dataset. Then for each class value, a set 

data structure is created named shapeletBucket. 

findProb() function calculates the probability of the 

relevant class values within the dataset, and then put that 

to shapeletBucket (line 8 to 10). As the next step, (in line 

12 to 17) each merged shapelet is included into a relevant 

shapeletBucket, based on the most probable class values 

for each group of shapelets. This is achieved using 

maxProbClassVal() function. Next, Algorithm 4 finds the 

absolute differences between the probabilities of actual 

events of the dataset and groups of shapelets. This is 

calculated using the getMinDifShape() function (line 28). 

Because the chosen group of shapelets per each event 

comprises of the minimum difference with respect to the 

actual event distribution in the dataset, it enables us to 

choose the most representative groups of shapelets per 

each event. Finally, the extracted group of shapelets are 

added to the shapeletArr (line 29). 

 

Regardless of the CEP query language, two blocks are 

needed to generate a meaningful CEP query for an event 

(see Eq. 3). First, the time frame (or window) of the rule 

need to be identified from the extracted shapelets. This is 

specified using the within construct. Second, the 

conditions that need to be met on the captured sequence 

of events is defined using the where construct. Once the 

relevant parameters and constructs are known, we use the 

technique proposed in [2] to automatically generate the 

queries. The conditions are extracted using the selected 

attributes and their respective range of the important 

shapelets. If the user wants to get a CEP rule to identify 

multiple events, in addition to above two blocks, filter 

block should be added as follows: 

 

within [window] {relevent-events}where[conditions]  (4) 

5. PERFORMANCE ANALYSIS 

Here we provide an analysis of clustering technique 

as well as query generation for CEP using shapelets and 

parallel coordinates. We use two multivariate time series 

datasets obtained from UCI machine learning repository 

[14], [18] to conduct the performance analysis.  

The accuracy of the proposed clustering technique is 

calculated with a direct comparison with the original 

datasets. The obtained datasets were annotated. For 

testing purposes, we removed the annotation and the rest 

of the attributes in the dataset were run through the 

proposed clustering technique, and the resulting 

annotation was compared with the original annotation. 

Moreover, we quantify the accuracy of the generated 

CEP queries using recall, precision, false positives, and 

false negatives. Furthermore, the computational 

complexity is theoretically analyzed. 

A. Occupancy Dataset 

Following results obtained upon the "Occupancy 

Detection" dataset provided in UCI Machine Learning 

Repository [14] which is a multivariate time series 

dataset which has seven attributes. The dataset itself 

consist of 8,143 instances out of which it has 6,414 

instances which have a state of not occupied (occupancy 

= 0) and 1,729 instances which have a state of occupied 

(occupancy = 1) resulting approximately 78% of not 

occupied events and 21% of occupied events. Table I 
with summarized clustering results accounts for 92.55 % 

of accuracy. 

TABLE I.  OCCUPANCY DATASET CLUSTERING RESULTS 

Metric Value 

Maximum Radius (ε)  0.19 

Minimum Number of Points (m) 

 
2 

Total number of time instances considered  

 
1,100 

Correctly clustered time instances 
 

1,018 

Incorrectly clustered time instances  
 

82 

Accuracy of the clustering technique 92.55% (1,018/1,100) 

 

Our research has been conducted to solve the 

problem of generating queries to detect the occupied 

event, as well as not occupied event along with a timely 

representation. “Occupancy Detection” dataset [14] 

represents accurate occupancy detection of an office 

room from light, temperature, humidity, and CO2 

measurements.  

Figure. 8 illustrates the extracted shapelets 

visualization with respect to event 1 of detecting non-

occupancy events as well as Figure. 9 displays the 

extracted shapelets visualization with respect to event 2 

of detecting occupancy events. Most appropriate 

shapelets of Figure. 8 are within attributes 1 and 3 (i.e., 

humidity and CO2).  
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Figure 8.  Shapelets corresponding to not occupied events  

 

Figure 9.  Shapelets corresponding to occupied events 

TABLE II.  OCCUPANCY DATASET EVENT DETECTION RESULTS 

Event Metric Value 

Not occupied 

No of events in dataset 

No of events detected using CEP query 
Recall 

Precision 

False positives 
False negatives  

291 

286 
98.28% 

100.00% 

0 
5 (1.72%) 

Occupied 

No of events in dataset 

No of events detected using CEP query 
Recall 

Precision 

False positives 
False negatives 

196 

196 
100.00% 

84.48% 

36(18.37%) 
0 

 

As seen in Figure. 9 for the occupied event CO2 and 

humidity ratio attributes are more relevant. The longest 

time window for not occupied events was between 

17:32:00 - 22:23:00 on 2015/02/08. Whereas for the 

occupied events it was 14:49:00 - 18:40:00 on 

2015/02/09. Based on these time gaps we set the event 

detection time frame. These attributes, their range of 

values, and the optimal event detection time frames are 

then used to generate queries. 
 

Table II summarizes the accuracy of detected events 

based on the auto-generated queries. It can be seen that 

the generate CEP query is able to detect all the occupied 

events, it missed a few not occupied events (1.7% of total 

dataset). However, false positives for occupied events 

were relatively high (18.4%). Overall recall, precision, 

false positive, and false negative values are acceptable 

for both the occupied and not occupied events, indicating 

the usefulness of auto-generate CEP queries. 

B. EEG Eye State Dataset 

Following results obtained upon the “EEG-Eye 

State” dataset provided in UCI Machine Learning 

Repository [26] which is a multivariate time series 

dataset which has 15 attributes. Electroencephalogram 

(EEG) dataset related to opening and closing of eyes [18] 

which has been detected via a camera during the EEG 

measurement, and later used to annotate the EEG time 

series by analyzing the video frames. Eye-open state is 

indicated using binary 0 while the eye-closed state is 

indicated using 1. The dataset itself consist of 14,980 

instances which comprise of time instances with respect 

to eye open and eye closed events. 

TABLE III.  EEG DATASET CLUSTERING RESULTS 

Metric Value 

Maximum Radius (ε)  0.18 

Minimum Number of Points (m) 

 
2 

Total number of time instances considered  

 
1,000 

Correctly clustered time instances 
 

795 

Incorrectly clustered time instances  
 

205 

Accuracy of the clustering technique 79.50% (795/1,000) 

 

TABLE IV.  EEG EYE SATE DATASET EVENT DETECTION RESULTS 

Event Metric Value 

Eye-open 

No of events in dataset 
No of events detected using CEP query 

Recall 

Precision 
False positives 

False negatives  

665 
635 

97.39% 

100.00% 
0 

17 (2.67%) 

Eye-closed 

No of events in dataset 
No of events detected using CEP query 

Recall 

Precision 
False positives 

False negatives 

69 
68 

98.55% 

100.00% 
0 

1 (1.45%) 
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Table III with summarized clustering results 

accounts for 79.5 % of accuracy. Furthermore, Figure. 10 

and 11 correspond to the most appropriate shapelets to 

detect event 0 and 1 respectively. Most appropriate 

shapelets for eye-open state are within attributes 8-13 

  

 

Figure 10.  Shapelets corresponding to EEG eye-open state 

 

 

Figure 11.   Shapelets corresponding to EEG eye-closed state 

(Figure. 10). As seen in Figure. 10 attributes 4-5, 6-7, and 

8-9 are more relevant for eye-closed event. The longest 

time window for eye-open state was between time stamps 

128,349s to 204,516s, while for the eye-closed events it 

was 14,976s to 128,232s. We generate queries based on 

these three shapelets and event detection time frames. As 

there are three shapelets the where clause in Eq. 3 is of 

the form (Attr 4's range AND Attr 5's range) OR (Attr 6's 

range AND Attr 7's range) OR (Attr 8's range AND Attr 

9's range). 

Table IV summarizes the accuracy of detected events 

based on the auto-generated queries. For this dataset zero 

false positives are observed for both eye-open and eye-

closed events. False negatively are also very low for both 

events (2.7% and 0.1%, respectively). Both the precision 

and recall are also close to 100%, indicating that results 

queries are able to detect relevant events with good 

accuracy. 
 

Since the solution has been divided into four main 

algorithms, we have computed the time complexities of 

those four algorithms separately. Algorithm 1 has a time 

complexity of O(nm
2
). Algorithm 2 has a time 

complexity of O(nm
3
). Algorithm 3 has a time 

complexity of O(nm
2
). Algorithm 4 has a time 

complexity of O(n
3/2

m
3
). Ultra-fast Shapelets [8] has a 

time complexity of O(pnm
2
) and AutoCEP [2] has a time 

complexity of O(n
2
) where n is the number of instances 

(time-series), m is the number of attributes and p(< n) is a 

random number. Ultra-fast shapelets introduce a 

shapelet-based clustering technique in which they do not 

focus on query generation and AutoCEP only focuses on 

univariate domain makes it harder to compare those two 

techniques directly with ours as we cover full cycle from 

shapelet generation to the query generation. 
 

6. SUMMARY AND FUTURE WORK 

We proposed a technique to automatically generate 

CEP queries based on multivariate time-series data. The 

proposed technique initially clusters the multivariate time 

instances provided, the dataset is unannotated. Then it 

maps the annotated multivariate time-series to a set of 

parallel coordinates. Then key patterns that are 

representative of the events are identified using time-

series shapelets. We also propose a technique to identify 

the most relevant shapelets per event, such that only a 

single CEP query will be generated per event. The 

proposed technique is both computationally and memory 

efficient compared to prior work, as the length of a 

shapelet is bounded by the number of attributes. 

Moreover, the performance of the CEP engine is also 

improved, as only one query will be generated per events. 

Furthermore, using two real datasets, we demonstrate that 

the resulting queries have good accuracy in detecting 

relevant events. In future, we plan to further improve the 

accuracy and extend the proposed technique to facilitate 

constructing CEP queries while capturing inter-

dependencies among attributes in multivariate time 

series. Moreover, extending the techniques to other forms 

of CEP queries such as patterns and sequences would be 

of interest. 
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