

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 6, No.4 (July-2017)

E-mail address: randika.12@cse.mrt.ac.lk, pravinda.12@cse.mrt.ac.lk, jaward.12@cse.mrt.ac.lk, prashan.12@cse.mrt.ac.lk,

dilumb@cse.mrt.ac.lk

http://journals.uob.edu.bh

Automated Query Generation for Complex Event Processing:

A Shapelets, Parallel Coordinates, and Clustering Based

Approach

R.N. Navagamuwa
1
, K.J.P.G. Perera

2
, M.R.M.J. Sally

3
, L.A.V.N. Prashan

4

and H.M.N. Dilum Bandara
5

 1,2,3,4,5Department of Computer Science and Engineering, University Of Moratuwa, Katubedda, Sri Lanka

Received 19 Apr. 2017, Revised 28 May 2017, Accepted 15Jjun. 2017, Published 1 July 2017

Abstract: Automating query generation for Complex Event Processing (CEP) enables users to obtain useful insights from data,

going beyond what it already knew. Existing automation techniques are both computationally expensive and require extensive

domain-specific human interaction. We propose a technique that combines parallel coordinates and shapelets to automate the CEP

query generation. Moreover, if the provided dataset is unannotated, we run it through a clustering algorithm to cluster the time

instances into different event groups. Then each instance would be represented as a line on a set of parallel coordinates. Then the

shapelet-learner algorithm is applied to those lines to extract the relevant shapelets and will be ranked based on their information

gain. Next, the shapelets with similar information gain are divided into groups by a shapelet-merger algorithm. The best group for

each event is then identified based on the event distribution of the data set and is used to automatically generate queries to detect the

complex events. This technique can be applied to both multivariate and multivariate time-series data, and it is computationally and

memory efficient. It enables users to focus only on the shapelets with relevant information gains. We demonstrate the utility of this

technique using a set of real-world datasets.

Keywords: Clustering, Complex Event Processing, Multivariate Time Series, Parallel Coordinates, Shapelets

1. INTRODUCTION

With the increased bandwidth availability and lower
costs, more sensors are being deployed to build smart and
connected systems. However, gaining useful, real-time
insights from such large streams of data is increasingly
becoming difficult. Processing data on the fly with
Complex Event Processing (CEP) and stream processing
techniques [1] are gaining popularity to overcome such
limitations in Internet of Things (IoT) applications. For
example, CEP combines data from multiple, streaming
sources to identify meaningful events or patterns in real
time. While the detection of relevant events and patterns
may give insight about opportunities and threats related to
the data being monitored (e.g., set of sensor readings in
IoT applications and credit card transactions), significant
domain knowledge is required to write effective CEP
queries. Manual analysis of large data streams is not only
tedious and error prone, but also important events are
likely to be missed due to the limited domain knowledge
of the query writer. A promising alternative is to automate

the CEP query generation by automatically
extracting/mining interesting patterns from the past data
[2], [3], [4].

Time-series pattern mining and classification
techniques are extensively studied in the literature.
Dynamic Time Warping (DTW) [5] is one such technique
used to measure the similarity between two, time series
based on a distance measure. However, the computational
complexity of DTW grows exponentially with large and
multiple time series limiting its usages. Moreover, the
accuracy of the results depends on the chosen sliding
window, which is nontrivial to estimate [2]. A shapelet
[6], [7] is a time series subsequence that is identified as
being representative of class membership; hence, useful in
time-series classification. AutoCEP [2] proposed a
shapelet-based technique to automate the CEP query
generation for univariate time series. This itself is a major
limitation, as most real-world time-series used in CEP
tends to be multivariate. Moreover, AutoCEP generates
queries for each and every instance of the detected event,
requiring the CEP engine to concurrently process multiple

http://dx.doi.org/10.12785/ijcds/060404

186 R. N. Navagamuwa, et. al.: Automated Query Generation for Complex Event Processing…

http://journals.uob.edu.bh

queries. This unnecessarily increases the computational
and memory requirements of the CEP engine and
consequently degrades its performance. One trivial
optimization is to use the assistance of a domain-expert to
aggregate the queries and attempt to write one or few
queries. Ultra-fast shapelets [8] are proposed for
multivariate time-series classification. Ultra-fast shapelets
calculate a vectorized representation of respective
attributes of the dataset. Then a random forest is trained to
identify the shapelets with respect to the total dataset. The
leaves of the random forest are considered to be the
symbols. The number of occurrences of a symbol in the
raw data is counted and these symbol histograms are used
for the final classification using random forests. While
this technique is effective in classification, it cannot be
used to generate CEP queries, as the generated random
forest does not support backtracking and obtaining any
relevant information as to what data lead to the
classification of the event [8]. Rare itemset pattern mining
(AprioriRare) [9] is another technique. This technique
cannot be used to detect events that occur within a short
time span. Moreover, most related work focus only on
domain-specific datasets limiting the usability of the
proposed techniques across diverse datasets and
applications [10], [11].

We propose a technique that represents the given
multivariate data set as a set of parallel coordinates, and
then extract shapelets out of those coordinates to
automatically generate CEP queries. Even a multivariate
time series can be mapped to a set of parallel coordinates,
by representing each time instance as a separate line.
Extracted shapelets are sorted according to the
information gains and then divided into several groups.
Out of the all groups, best group for each event is
identified. Then the most important shapelets in the
identified groups are used to generate one CEP query per
group. This enables one to generate CEP queries for
commonalities, anomalies, as well as time-series
breakpoints in a given multivariate time-series dataset
without having any domain knowledge. Users can focus
on groups with high or low information gain depending
on the application. Moreover, compared to related work,
shapelets identify most relevant attributes in a dataset for
a particular event, enabling us to write more efficient CEP
queries and only one query per event (unless the same
event is triggered by unrelated attribute combinations).
While our solution up to this point assumes that the input
dataset is annotated, many real-world datasets are not
annotated. It is not trivial to annotate a large multivariate
dataset without expert judgment and extensive manual
work. Therefore, to realize the true benefits of automated
CEP query generation, it is essential to be able to handle
unannotated datasets. To address this problem, we also
propose a clustering technique to cluster the time
instances into different event groups. Using a set of real-
world datasets, we demonstrate that the proposed
technique can be applied effectively to auto generate CEP
queries for common and abnormal events while

identifying the relevant features and event occurrence
timeframe. Moreover, the proposed technique has a
relatively low computational and memory requirements
compared to prior work.

Rest of the paper is organized as follows. Section II
introduces shapelets, parallel coordinates, and problem
formulation. Section III presents the proposed technique.
Section IV explains implementation details and the
proposed clustering technique to handle unannotated
datasets. Performance analysis is presented in Section V.
Concluding remarks and future work are discussed in
Section VI. This is an extended version of the paper in
[12], and the major extensions include the clustering
technique proposed to cluster unannotated time instances
into different event groups and expanded performance
analysis with both annotated and unannotated datasets.

2. PRELIMINARIES

We first define relevant terms and then define

shapelets and parallel coordinates as applicable to the

domain of CEP query generation. The research problem

is then formulated.

A. Definitions

Time-Series — A time-series T = t1,..., tm is an ordered
set of m real-valued variables.

Multivariate Time-Series — A multivariate time-series
T = t1, . . ., tm is a sequence of m vectors, where ti = (ti,1, . .
. , ti,s) ε ℝs

 with s attributes/variables.

Sub-sequence (S
t
p) — Given a time-series T, a

subsequence S
t
p of T is a sampling of length l ≤ m of

contiguous positions from T starting at time p, i.e., S
t
p =

tp, tp+1...,tp+l-1, for 1 ≤ p ≤ m - l + 1.

Set of All Sub-sequences (STl) — Set of all possible sub-
sequences S

t
p that can be extracted by sliding a window of

length l across T is STl = {all S
t
p of T, for 1 ≤ p ≤ m - l +

1}.

Sub-sequence Distance — Given T and S
t
p

SubsequenceDist(T, S
t
p) is the minimum distance between

p contiguous positions obtained by sliding S
t
p across T.

We use Euclidean distance as the distance function.

Entropy — Consider a time series data set D consisting
of two classes, A and B. Let proportions of objects
belonging to class A and B be p(A) and p(B), respectively.
Then the entropy of D is:

 I(D) = -p(A)log(p(A)) - p(B)log(p(B)) (1)

 Int. J. Com. Dig. Sys. 6, No.4, 185-195 (July-2017) 187

http://journals.uob.edu.bh

Figure 1. Time-series shapelets

Figure 2. Parallel coordinates representation of Occupancy Detection
dataset from [14]

Information Gain (Gain) — Given a certain split
strategy sp which divides D into two subsets D1 and D2,
let the entropy before and after splitting be I(D) and Î(D),
respectively. Then the information gain for split sp is:

Gain(sp) = I(D) - Î(D)

Gain(sp) = I(D) - (p(D1)(ID1}) + p(D2)I(D2)) (2)

Optimal Split Point (OSP) — Consider a time-series
data set D with two classes A and B. For a given S

t
p, we

choose some distance threshold dth and split D into D1 and
D2, s.t. for every time series object T1,i in D1,
SubsequenceDist(T1,i, S

t
p) ≤ dth and for every T2,i in D2,

SubsequenceDist(T2,i, S
t
p) ≥ dth. An Optimal Split Point

(OSP) is a distance threshold that Gain(S
t
p, dOSP(D,Stp)) ≥

Gain(S
t
p,dth) for any other distance threshold dth.

B. Shapelets

As seen in Figure. 1 Shapelets can be defined as time-
series sub-sequences. Shapelets can be of varying lengths,
and many sub-sequences can be extracted by sliding a
window of given length l. In shapelet-based classification,
the objective is to identify a shapelet that is in some sense
maximally representative of a class.

C. Parallel Coordinates

Parallel coordinates are widely used to visualize

multivariate data [13]. Figure. 2 illustrates the parallel

coordinates representation of the room occupancy dataset

obtained from the UCI Machine Learning repository [14],

which consists of six attributes. A dataset with n

dimensions (i.e., attributes) is mapped to a set of points

on n parallel lines, where each line represents an instance

of data. These points are then connected using a line. A

separate line is drawn for each instance of data (i.e., each

row). For example, in Figure. 2 part of the dataset

Figure 3. High-level architecture of the proposed solution

selected based on the Light attribute is shown in black,

and rest of the data set is visualized in gray. When

scaling these coordinate systems, it is recommended to

use normalized data to prevent bias to certain

dimensions.

D. Problem Statement

In contrast to the relational database systems that

issue dynamic queries on stored and indexed data, CEP

filters incoming streams of data through pre-written

queries to detect events of interest. Hence, relevant

queries need to be provided to the CEP engine a priori.

We address the problem of needing domain knowledge to

write a meaningful CEP queries through automation.

Though a couple of related work attempt to automate

CEP query generation, they support only univariate time

series data [2].

We propose a solution which can be used to generate

CEP queries for multivariate time series without

requiring expert domain knowledge. In proposing the

solution we assume that each instance in the obtained

dataset is annotated according to the respective event (we

relax this constraint in Section IV). In this work, we

specifically focus on filter queries in CEP, as they are the

most frequently used queries in CEP. Typically filter

query has the following template:

SELECT {*}

WHERE {attr1 ≥ a and attr2 < b} (3)

WITHIN {t1 ≤ time ≤ t2}

Therefore, the problem that this research attempts to

address can be formulated as follows:

How to automatically construct a filter query per event,

which contains the most relevant attributes, their range

of values, and the event detection time frame?

3. PROPOSED TECHNIQUE

To auto generate queries for Complex Event
Processors, we propose the modularized architecture
illustrated in Figure. 3. The four main modules perform
the following tasks:

188 R. N. Navagamuwa, et. al.: Automated Query Generation for Complex Event Processing…

http://journals.uob.edu.bh

Data Processor — Converts the input dataset (e.g.,

time series data in text, XML, or CSV format) into a

Figure 4. Multivariate time-series mapped as parallel coordinates

generic format used by the rest of the modules. If the
dataset is pre-annotated, then each instance in the given
dataset corresponds to an occurrence of a specific event,
i.e., each data instance is classified/labeled with the
corresponding event. The module then counts the number
of events of each type, and their proportions with respect
to the total number of events in the entire dataset.

If the given dataset is not pre-annotated, we propose

a clustering-based technique to annotate the dataset. The

proposed clustering technique would cluster each

data/time instance to a particular event. This is useful in

calculating the information gain with respect to each

shapelet and also to filter out the all generated shapelets

to identify the most important shapelets.

Shapelet Generator — This is the core module of the

system which uses pattern mining. This module identifies

the most appropriate shapelets to represent each event.

First, the multivariate (time series) dataset is mapped to a

set of parallel coordinates. Figure. 4 is an exemplary

representation of a multivariate time series with six

attributes and five, time instances converted to parallel

coordinates. Then all the shapelets are extracted from the

parallel coordinates while varying the length l of the

sliding window. Though the shape of the extracted

shapelets depends on the order of the attributes, the final

outcome of the solution is independent of the order. The

length of an identified shapelet is bounded by the number

of attributes m in the time series (i.e., 1 ≤ l ≤ m).

Therefore, our technique produces a much lower number

of shapelets compared to prior work (e.g., [2]), where m

can be as large as the length of the time series. Moreover,

it is not required to apply heuristics or expert knowledge

to determine the optimum minimum and maximum

length of shapelets as in [2]. Therefore, our Shapelet

Learner Algorithm is both computationally and memory

efficient.

Figure 5. Shapelets slide across the time series

Figure 6. Shapelets that are representative of event

Once all shapelets are extracted, the next step is to

identify a subset of the shapelets that are representative

of patterns in the parallel coordinates. For this, we use

information gain (Eq. 2) to quantify the extent to which a

selected shapelet is similar to a given line on parallel

coordinates. For example, Figure. 5 shows two shapelets,

one with attributes 1 and 2 (shapelet S1) and another with

attributes 1, 2, and 3 (shapelet S2). We slide both S1 and

S2 across the line/row with t = 5000 and find the

minimum distance between the shapelet and line. For

example, S1 has a relatively lower distance between the

attributes 1-2 and 3-4, whereas S2 has a relatively lower

distance between attributes 1-3 and 4-6. This is estimated

using the SubsequenceDist() function defined in Section

2.1. The same process is applied to all other time

instances and shapelets. This results in a matrix of

minimum distance values for each (shapelet, time

instance) pair. Next using Eq. 1 and Eq. 2 provided in

Preliminaries, we find the Optimal Splitting Point (OSP)

[6] for each row of minimum distance values, to find the

maximum information gain for each shapelet. The

shapelets are then ranked based on the descending order

of their information gain. We then use Shapelet Merger

Algorithm to group shapelets within the ranked list with

respect to their information gain. Because the shapelets

with similar information gains produce similar insights,

groups created using Shapelet Merger Algorithm allows

us to cluster the similar informative shapelets together.

 Int. J. Com. Dig. Sys. 6, No.4, 185-195 (July-2017) 189

http://journals.uob.edu.bh

Finally, Important Shapelet Extraction Algorithm is used

to identify the most suitable shapelets to represent each

event type, which would result in an output similar to

Figure. 6.

Visual Representation — This is an optional module

that visualizes generated shapelets, enabling users to

select what shapelets to choose for query generation.

While the system can auto generate queries without any

user suggestions, this module facilitates and accepts user

approval allowing the user to select the shapelets that the

user is interested in. As seen in Figure. 6 user may also

select a subset of the attributes and their range of values

that he/she expects to use in the generated queries. Such

user intervention reduces false positives and improves the

performance of the CEP engine, as not every identified

event may be of practical importance.

Query Generator — Given the chosen shapelets, this

module auto generates CEP queries based on the input

provided by the hint generator module and incorporating

any user-provided hints. Here we generate one query per

each event with the relevant query parameters generated

by the system, or set of attributes and ranges approved by

the user. The module identifies the most relevant

attributes and their value ranges to be used while

constructing the query along with the optimal time

periods within which each event occurs. Optimal time

periods are identified by analyzing the event distribution

of the actual dataset and choosing the longest event

detection time period with respect to each occurrence of

an event. Using these data, the module generates filter

queries (similar to Eq. 3) for each and every event of the

given dataset.

4. IMPLEMENTATION

In this paper, we introduce an enhanced way to define
shapelets using parallel coordinates as an object with four
attributes s = (g, i, a, c). g is the information gain, which
measures the similarity between shapelet and time series. i
is the time-series identifier, which is the row number of
the line on parallel coordinates (see Figure. 4). a is the
starting column/attribute number. We store the
normalized values of the attributes which belong to the
particular shapelet in c. We also keep track of the original
values c, as those are later required to generate CEP
queries.

We first check on the dataset status and in case if it is
not annotated we run the dataset through the proposed
clustering technique and obtain an annotated version of
the original dataset (see next Section for details). Next, we
transform the multivariate time-series dataset into parallel
coordinates as seen in Figure. 2. Our method builds upon
two main phases which are illustrated in Figure. 7. Next,
the implementation of each phase is discussed in detail.

Figure 7. Architecture of the Shapelet Generator Module

A. Clustering Technique for Data Annotation

The proposed clustering technique becomes effective

only if the user provides an unannotated dataset.

Algorithm 1 initially calculates the Euclidean distances

between each pair of data points or time instances. The

resulting distance matrix is then clustered using OPTICS

algorithm [15] resulting in an annotation for each time

instance. In doing so, the dataset in common data format

needs to be clustered in a manner in which each data/time

instance is classified with respect to an identified event.

The output of the clustering technique would modify the

dataset by appending another column with the numerical

values to denote the cluster number, which indicates the

190 R. N. Navagamuwa, et. al.: Automated Query Generation for Complex Event Processing…

http://journals.uob.edu.bh

event type that each column belongs to. This information

is then effectively used in the information gain

calculation step of the query generator module.

The proposed clustering technique is domain

independent and it is based on the numerical values

within the dataset. We initially extract all numerical

attributes of the dataset and then normalize those values.

We then calculate the Euclidean distances between the

data points of each time instance and produces a distance

matrix. Then the resulting distance matrix is fed to the

OPTICS algorithm, which clusters each row separately.

The reason to use this technique is, in terms of detecting

events, we look for different pattern instances within the

obtained time instances throughout the dataset.

Calculation of the distance of corresponding data points

with respect to each time instances is one of the best

methods to compare and identify the differences in

patterns among the time instances. The key advantage of

the proposed clustering implementation is its ability to

work without any user input apart from providing the

dataset, meaning any unannotated dataset could even be

processed via our implementation.

The reason to have a distance matrix is that shapelets

are distinguished according to the distances of each row.

Thus, having a distance matrix to distinguish the dataset

is more appropriate. Now each row is clustered with

OPTICS algorithm, as it is an unsupervised, density-

based clustering technique, which is more suitable for our

approach as shapelets are extracted according to their

similarity of distances and densities.

Then in the next iteration, the base time instance

becomes the next time instance in the dataset and the

above process will continue as explained. At the end of

each iteration, the obtained Euclidean distances per each

time instance with respect to selected base time instance

is used to cluster the data points using the OPTICS

algorithm. At the end, each time instance is put to a

cluster that it belongs to. After scanning through the

entire dataset we obtain the results array and scan

through it and assign each time instance to the cluster

which has the highest count in terms of its belongingness.

This value will be appended to the dataset in which each

time instance would have its corresponding event type.

Line 2 of the clustering algorithm (see Algorithm 1)

normalizes the data and assign it to normData array.

Then the for loop (line 5 onwards) starts to scan through

each element in normData and for each of the element of

this array, we calculate euclidean distance with all the

other elements. The number of times line 8 is executed

equals to the array size. This allows us to obtain a

distance matrix distListRow. Afterward, each of the rows

in the distance matrix is processed through the OPTICS

algorithm to cluster, which contains one-dimensional

clustering of the obtained distances. This is implemented

in line 11 and 12. At the end, algorithm analyses the row-

wise cluster distribution and assigns each row for the

respective cluster which it happens to fall into most of the

time. The rest of the code is implemented such that result

array (line 4) is updated by giving the annotation.

To cluster the obtained Euclidean distances, we

considered popular unsupervised, density-based

clustering techniques, namely DBSCAN [16], OPTICS,

and Single-Linkage Clustering [17]. One of the main

drawbacks in DBSCAN is we have to decide parameters

globally. Deciding parameters globally is important as

without that the hierarchical nature of densities could not

be measured. However, to do decide parameters globally,

we need to have an idea of the data distribution within

the dataset. Because from the beginning we intended to

make the implementation domain and user independent,

obtaining information on the data distribution within the

dataset becomes infeasible. As DBSCAN cannot always

be used to cluster data with different densities, we need

to know the densities of data so that we can give a

suitable threshold as a parameter. For instance, within the

DBSCAN implementation, if a selected radius r1 gives a

cluster named C and another radius r2 which is greater

than r1 gives a separate cluster named B, this would

make C as a subset of B, which limits the precision of the

derived clusters. This happens with inappropriate global

parameter setting. This issue can be overcome in

OPTICS algorithm by iteratively developing clusters

starting from a small neighborhood radius.

Furthermore, hierarchical clustering techniques also

do provide satisfactory results, but with the limitation of

high time and memory complexity compared to density-

based methods. Therefore, to go line with our objective

of finding time instances of similar patterns, which are

dense around another time instance, hence it is required

to cluster the obtained Euclidean distance values

considering the density and in doing so we did use

OPTICS algorithm (which is an extension of DBSCAN

which overcomes DBSCAN algorithm's limitations).

In terms of user interaction with our system, in

which the user happens to be a domain expert, that user

could provide the additional information such as the

number of events within the dataset and proportionate

event distribution to increase the accuracy of labelling the

events. Conducting parameter tuning in the OPTICS

algorithm also allows a user to increase the accuracy.

 Int. J. Com. Dig. Sys. 6, No.4, 185-195 (July-2017) 191

http://journals.uob.edu.bh

B. Phase one: Shapelet Learner

The Shapelet Learner extracts all the shapelets from
the obtained parallel coordinates. We set the default
minimum length (lmin) of a shapelet as two, while the
maximum (lmax) is set to the number of attributes m (i.e., 2
≤ l ≤ m). However, a user may override these values.
Afterward, Algorithm 2 of the Shapelet Generator module
extracts all possible shapelets, while varying the shapelet
length. First, the shapelet list is initialized to store the
extracted shapelets (line 2). Then shapelets are extracted
by going through each row r in the Dataset D. The outer
loop increments the length of a shapelet l up to lmax, while
the inner loop increments start to scans

through each r. The inner-most loop (line 13-16) extracts
all attributes between lmin to l for a given starting point.
Then we convert each shapelet's content to standard
normal using zNorm() function to prevent any biases to
specific attributes. Moreover, in line 19 we also store the
raw values of shapelets, as they are later required while
generating queries.

We also calculate and save the information gain of
each shapelets using infoGain() function (line 20). First,
the SubsequenceDist() function is used to find the
minimum distance between the row and the shapelet by
sliding the shapelet across the row, one attribute at a time
(see Figure. 5). By repeating the function, the minimum
distance per each row is found and saved in an array.
Then by sequentially splitting the array, we calculate the
information gain using Eq. 2. Finally, for each shapelet,
we get the maximum information gain and the
corresponding split point, which would be the Optimum
Splitting Point of the array. In line 21, each shapelet and
its metadata are then added to the shapelets list, which is
later returned by the algorithm.

C. Phase Two: Shapelet Extraction

All the extracted shapelets are first sorted according

to their information gain. Then these shapelets are

divided into a set of groups and then merged using

Algorithm 3. The algorithm takes the set of shapelets S

and number of shapelets per group (groupsize) as the

input. group size is proportional to the total number of

shapelets. groupsize is selected based on the cluster

pruning technique in which we set the number of groups

192 R. N. Navagamuwa, et. al.: Automated Query Generation for Complex Event Processing…

http://journals.uob.edu.bh

to the square root of the total number of identified

shapelets. If desired, the user may also define the

groupsize. Then in line 12 to 15, the grouped shapelets are

updated by adding their series ID (i.e., raw number),

starting positions (i.e., starting attribute index), and class

value (i.e., event type). Finally, the algorithm returns all

the merged shapelets (line 25).

Important Shapelet Finder algorithm (Algorithm 4)

takes three parameters, namely merged shapelets,

classified/labeled dataset, and class values (i.e., event

types). Line 2 and 3 initialize two lists named shapletArr

and classValueProb, which would respectively contain

important shapelets and probabilities for class values

within the total dataset. Then for each class value, a set

data structure is created named shapeletBucket.

findProb() function calculates the probability of the

relevant class values within the dataset, and then put that

to shapeletBucket (line 8 to 10). As the next step, (in line

12 to 17) each merged shapelet is included into a relevant

shapeletBucket, based on the most probable class values

for each group of shapelets. This is achieved using

maxProbClassVal() function. Next, Algorithm 4 finds the

absolute differences between the probabilities of actual

events of the dataset and groups of shapelets. This is

calculated using the getMinDifShape() function (line 28).

Because the chosen group of shapelets per each event

comprises of the minimum difference with respect to the

actual event distribution in the dataset, it enables us to

choose the most representative groups of shapelets per

each event. Finally, the extracted group of shapelets are

added to the shapeletArr (line 29).

Regardless of the CEP query language, two blocks are

needed to generate a meaningful CEP query for an event

(see Eq. 3). First, the time frame (or window) of the rule

need to be identified from the extracted shapelets. This is

specified using the within construct. Second, the

conditions that need to be met on the captured sequence

of events is defined using the where construct. Once the

relevant parameters and constructs are known, we use the

technique proposed in [2] to automatically generate the

queries. The conditions are extracted using the selected

attributes and their respective range of the important

shapelets. If the user wants to get a CEP rule to identify

multiple events, in addition to above two blocks, filter

block should be added as follows:

within [window] {relevent-events}where[conditions] (4)

5. PERFORMANCE ANALYSIS

Here we provide an analysis of clustering technique

as well as query generation for CEP using shapelets and

parallel coordinates. We use two multivariate time series

datasets obtained from UCI machine learning repository

[14], [18] to conduct the performance analysis.

The accuracy of the proposed clustering technique is

calculated with a direct comparison with the original

datasets. The obtained datasets were annotated. For

testing purposes, we removed the annotation and the rest

of the attributes in the dataset were run through the

proposed clustering technique, and the resulting

annotation was compared with the original annotation.

Moreover, we quantify the accuracy of the generated

CEP queries using recall, precision, false positives, and

false negatives. Furthermore, the computational

complexity is theoretically analyzed.

A. Occupancy Dataset

Following results obtained upon the "Occupancy

Detection" dataset provided in UCI Machine Learning

Repository [14] which is a multivariate time series

dataset which has seven attributes. The dataset itself

consist of 8,143 instances out of which it has 6,414

instances which have a state of not occupied (occupancy

= 0) and 1,729 instances which have a state of occupied

(occupancy = 1) resulting approximately 78% of not

occupied events and 21% of occupied events. Table I
with summarized clustering results accounts for 92.55 %

of accuracy.

TABLE I. OCCUPANCY DATASET CLUSTERING RESULTS

Metric Value

Maximum Radius (ε) 0.19

Minimum Number of Points (m)

2

Total number of time instances considered

1,100

Correctly clustered time instances

1,018

Incorrectly clustered time instances

82

Accuracy of the clustering technique 92.55% (1,018/1,100)

Our research has been conducted to solve the

problem of generating queries to detect the occupied

event, as well as not occupied event along with a timely

representation. “Occupancy Detection” dataset [14]

represents accurate occupancy detection of an office

room from light, temperature, humidity, and CO2

measurements.

Figure. 8 illustrates the extracted shapelets

visualization with respect to event 1 of detecting non-

occupancy events as well as Figure. 9 displays the

extracted shapelets visualization with respect to event 2

of detecting occupancy events. Most appropriate

shapelets of Figure. 8 are within attributes 1 and 3 (i.e.,

humidity and CO2).

 Int. J. Com. Dig. Sys. 6, No.4, 185-195 (July-2017) 193

http://journals.uob.edu.bh

Figure 8. Shapelets corresponding to not occupied events

Figure 9. Shapelets corresponding to occupied events

TABLE II. OCCUPANCY DATASET EVENT DETECTION RESULTS

Event Metric Value

Not occupied

No of events in dataset

No of events detected using CEP query
Recall

Precision

False positives
False negatives

291

286
98.28%

100.00%

0
5 (1.72%)

Occupied

No of events in dataset

No of events detected using CEP query
Recall

Precision

False positives
False negatives

196

196
100.00%

84.48%

36(18.37%)
0

As seen in Figure. 9 for the occupied event CO2 and

humidity ratio attributes are more relevant. The longest

time window for not occupied events was between

17:32:00 - 22:23:00 on 2015/02/08. Whereas for the

occupied events it was 14:49:00 - 18:40:00 on

2015/02/09. Based on these time gaps we set the event

detection time frame. These attributes, their range of

values, and the optimal event detection time frames are

then used to generate queries.

Table II summarizes the accuracy of detected events

based on the auto-generated queries. It can be seen that

the generate CEP query is able to detect all the occupied

events, it missed a few not occupied events (1.7% of total

dataset). However, false positives for occupied events

were relatively high (18.4%). Overall recall, precision,

false positive, and false negative values are acceptable

for both the occupied and not occupied events, indicating

the usefulness of auto-generate CEP queries.

B. EEG Eye State Dataset

Following results obtained upon the “EEG-Eye

State” dataset provided in UCI Machine Learning

Repository [26] which is a multivariate time series

dataset which has 15 attributes. Electroencephalogram

(EEG) dataset related to opening and closing of eyes [18]

which has been detected via a camera during the EEG

measurement, and later used to annotate the EEG time

series by analyzing the video frames. Eye-open state is

indicated using binary 0 while the eye-closed state is

indicated using 1. The dataset itself consist of 14,980

instances which comprise of time instances with respect

to eye open and eye closed events.

TABLE III. EEG DATASET CLUSTERING RESULTS

Metric Value

Maximum Radius (ε) 0.18

Minimum Number of Points (m)

2

Total number of time instances considered

1,000

Correctly clustered time instances

795

Incorrectly clustered time instances

205

Accuracy of the clustering technique 79.50% (795/1,000)

TABLE IV. EEG EYE SATE DATASET EVENT DETECTION RESULTS

Event Metric Value

Eye-open

No of events in dataset
No of events detected using CEP query

Recall

Precision
False positives

False negatives

665
635

97.39%

100.00%
0

17 (2.67%)

Eye-closed

No of events in dataset
No of events detected using CEP query

Recall

Precision
False positives

False negatives

69
68

98.55%

100.00%
0

1 (1.45%)

194 R. N. Navagamuwa, et. al.: Automated Query Generation for Complex Event Processing…

http://journals.uob.edu.bh

Table III with summarized clustering results

accounts for 79.5 % of accuracy. Furthermore, Figure. 10

and 11 correspond to the most appropriate shapelets to

detect event 0 and 1 respectively. Most appropriate

shapelets for eye-open state are within attributes 8-13

Figure 10. Shapelets corresponding to EEG eye-open state

Figure 11. Shapelets corresponding to EEG eye-closed state

(Figure. 10). As seen in Figure. 10 attributes 4-5, 6-7, and

8-9 are more relevant for eye-closed event. The longest

time window for eye-open state was between time stamps

128,349s to 204,516s, while for the eye-closed events it

was 14,976s to 128,232s. We generate queries based on

these three shapelets and event detection time frames. As

there are three shapelets the where clause in Eq. 3 is of

the form (Attr 4's range AND Attr 5's range) OR (Attr 6's

range AND Attr 7's range) OR (Attr 8's range AND Attr

9's range).

Table IV summarizes the accuracy of detected events

based on the auto-generated queries. For this dataset zero

false positives are observed for both eye-open and eye-

closed events. False negatively are also very low for both

events (2.7% and 0.1%, respectively). Both the precision

and recall are also close to 100%, indicating that results

queries are able to detect relevant events with good

accuracy.

Since the solution has been divided into four main

algorithms, we have computed the time complexities of

those four algorithms separately. Algorithm 1 has a time

complexity of O(nm
2
). Algorithm 2 has a time

complexity of O(nm
3
). Algorithm 3 has a time

complexity of O(nm
2
). Algorithm 4 has a time

complexity of O(n
3/2

m
3
). Ultra-fast Shapelets [8] has a

time complexity of O(pnm
2
) and AutoCEP [2] has a time

complexity of O(n
2
) where n is the number of instances

(time-series), m is the number of attributes and p(< n) is a

random number. Ultra-fast shapelets introduce a

shapelet-based clustering technique in which they do not

focus on query generation and AutoCEP only focuses on

univariate domain makes it harder to compare those two

techniques directly with ours as we cover full cycle from

shapelet generation to the query generation.

6. SUMMARY AND FUTURE WORK

We proposed a technique to automatically generate

CEP queries based on multivariate time-series data. The

proposed technique initially clusters the multivariate time

instances provided, the dataset is unannotated. Then it

maps the annotated multivariate time-series to a set of

parallel coordinates. Then key patterns that are

representative of the events are identified using time-

series shapelets. We also propose a technique to identify

the most relevant shapelets per event, such that only a

single CEP query will be generated per event. The

proposed technique is both computationally and memory

efficient compared to prior work, as the length of a

shapelet is bounded by the number of attributes.

Moreover, the performance of the CEP engine is also

improved, as only one query will be generated per events.

Furthermore, using two real datasets, we demonstrate that

the resulting queries have good accuracy in detecting

relevant events. In future, we plan to further improve the

accuracy and extend the proposed technique to facilitate

constructing CEP queries while capturing inter-

dependencies among attributes in multivariate time

series. Moreover, extending the techniques to other forms

of CEP queries such as patterns and sequences would be

of interest.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions to
improve the quality of this paper.

REFERENCES

[1] B. M. Michelson, “Event-driven architecture overview. event-

driven soa is just part of the eda story,” Tech. Rep., 2006.

[2] R. Mousheimish, Y. Taher, and K. Zeitouni, "Complex event

processing for the non-expert with autocep," in Proc. 10th ACM

Intl. Conf. on Distributed and Event-based Systems, 2016, p.
340343.

[3] A. Margara, G. Cugola, and G. Tamburrelli, "Towards

automated rule learning for complex event processing," Tech.
Rep., 2013.

 Int. J. Com. Dig. Sys. 6, No.4, 185-195 (July-2017) 195

http://journals.uob.edu.bh

[4] G. Cugola, A. Margara, and G. Tamburrelli, "Learning from
the past: automated rule generation for complex event

processing," in Proc. 8th ACM Intl. Conf. on Distributed Event-

Based Systems, 2014, p. 4758.

[5] A. Chotirat, E. Ratanamahatana, and Keogh, "Everything you

know about dynamic time warping is wrong," in Proc. 3rd

Workshop on Mining Temporal and Sequential Data, Seattle, WA,
2004.

[6] L. Ye and E. Keogh, "Time series shapelets," in Proc. 15th

ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, 2009, pp. 947–956.

[7] Q. He, Zhidong, F. Zhuang, T. Shang, and Z. Shi, "Fast

time series classification based on infrequent shapelets," in 2012
11th International Conference on Machine Learning and

Applications, vol. 1, Dec 2012, pp. 215–219.

[8] M. Wistuba, J. Grabocka, and L. Schmidt-Thieme. (2015)
Ultra-fast shapelets for time series classification. [Online].

Available: http://arxiv.org/abs/1503.05018

[9] L. Szathmary, A. Napoli, and P. Valtchev, “Towards rare itemset
mining,” in Proc. 19th IEEE Intl. Conf. on Tools with Artificial

Intelligence(ICTAI 2007), 2016.

[10] H. Obweger, J. Schiefer, M. Stinger, P. Kepplinger, and S.
Rozsnyai, "User-oriented rule management for event-based

applications," in Proc. 5th ACM Intl. Conf. on Distributed event-

based system, May 2011, pp. 39–48.

[11] A. Kavelar, H. Obweger, J. Schiefer, and M. Suntinger,

"Web-based decision making for complex event processing

systems," in Proc. 6th World Congress on Services, 2010, p.

453458.

[12] R. N. Navagamuwa, K. J. P. G. Perera, M. R. M. J. Sally, L. A. V.

N.Prashan, and H. M. N. D. Bandara, "Shapelets and parallel
coordinates based automated query generation for complex event

processing," in Proc. IEEE Smart Data, 2016.

[13] J. Johansson and C. Forsell, "Evaluation of Parallel
coordinates: Overview, categorization, and guidelines for future

research," IEEE Trans. Vis. Comput. Graphics, vol. 22, pp. 579–

588, 2016.

[14] R. Feldheim, UCI machine learning repository: Occupancy

detection data set, 2016. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

[15] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,

“Optics: Ordering points to identify the clustering structure,” in
Proceedings of the 1999 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’99, 1999,

pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/304182.304187

[16] H. B äcklund, A. Hedblom, and N. Neijman, “A density-

based spatial clustering of application with noise,” Data Mining
TNM033, pp. 11–30, 2011.

[17] C. Jin, M. Mostofa, A. Patwary, A. Agrawal, W. Hendrix,

W. keng Liao, and A. Choudhary, “Disc: A distributed single-
linkage hierarchical clustering algorithm using mapreduce,” in

Proc. 4th International SC Workshop on Data Intensive

Computing in the Clouds (DataCloud), 2013.

[18] UCI machine learning repository: EEG eye state data set, 2013.

[Online]. Available:

http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

R. N. Navagamuwa has graduated

from the University of Moratuwa with

a Bachelor's degree in Computer

Science and Engineering. .He has

successfully completed the Google

Summer of Code Program in 2016

with Eclipse Foundation. His main

interest areas are Algorithms,

Distributed Programming, Enterprise

Integration, Web Technologies and Image Processing. He

currently works as a software engineer at AdroitLogic Lanka

(Pvt) Ltd.

 K. J. P. G. Perera has graduated from

the University of Moratuwa with a

Bachelor's degree in Computer Science

and Engineering. His research interest

is in the areas of Microservice

Architectures, Big Data Analytics,

Cloud Computing, Complex Event

Processing and Web Technologies. He

currently works as a software engineer at CAKE LABS (Pvt)

Ltd

 M. R. M. J. Sally has graduated from

the University of Moratuwa with a

Bachelor's degree in Computer

Science and Engineering. His research

interest is in the areas of Distributed

Systems, Cloud Computing, Parallel

Computing, and Scientific

Computing. He currently works as a

software engineer at ShipXpress (Pvt) Ltd.

L. A. V. N. Prashan has graduated

from the University of Moratuwa

with a Bachelor's degree in

Computer Science and Engineering.

His research interest is in the areas of

Distributed Systems, Big Data

Analysis, Cloud Computing,

Microservice Architectures, and

Complex Event Processing. He

currently works as a software engineer at WSO2 Lanka (Pvt)

Ltd.

H. M. N. Dilum Bandara received

B.Sc. (First Class Honors) in

Computer Science and Engineering

from the University of Moratuwa, Sri

Lanka in 2004 and M.S. and Ph.D. in

Electrical and Computer Engineering

from Colorado State University in

2008 and 2012, respectively. He is a

Senior Lecturer at Dept. of Computer

Science and Engineering, University of Moratuwa, Sri Lanka.

His research interests are in the areas of IoT, Data Engineering,

Distributed Systems (Cloud, P2P, and HPC), and Security. He

is a member of the IEEE.

http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

