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Abstract: The aim of the present study is to evaluate the performance of the Stochastic EM (SEM) algorithm for 

estimating parameters in finite mixture distributions. For that purpose some simulation exercises which are based on the 

implementation of this algorithm are presented and they provide encouraging results. As a consequence it seems that 

SEM can offer a useful alternative for overcoming some well-known difficulties arising when the number of mixture 

components is itself an unknown parameter.  
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1. INTRODUCTION  

   Assume that 𝑋 is a random vector which has a distribution with probability density function of the form  𝑓(𝑥) =
∑ 𝑝𝑘𝑓(𝑥,
𝐾
𝑘=1 𝜃𝑘) , where 𝑓(𝑥, 𝜃𝑘)  is the density function of the 𝑘–th subpopulation/ component, 𝑝𝑘 is the 

probability of belonging to the 𝑘–th subpopulation/component and is usually called mixing weight, with 0 < 𝑝𝑘 < 1 

and ∑ 𝑝𝑘 = 1𝐾
𝑘=1 . We then say that the distribution of 𝑋 is a finite mixture with 𝐾 components. The aim of the present 

paper is to estimate the parameters of 𝑓(𝑥) using the Stochastic EM (SEM) algorithm. This algorithm has been well 

documented in earlier literature (see Celeux and Diebolt, [4,5,6], and Celeux, Chauveau and Diebolt, [3]). More recent 

research reveals the usefulness of the algorithm in diverse complex situations where mixture models are involved (see 

Bordes and Chauveau [2], and Teimouri, Rezakhah and Mohammadpour [10]). From a theoretical point of view this 

stochastic method can be regarded as a modified version of the well known EM algorithm (Redner and Walker, [9]), 

and was initially designed in order to circumvent some typical problems appearing when EM is used for estimating 

parameters in finite mixture distributions. Furthermore the method provides a useful tool for estimating the (unknown) 

number of components 𝐾. This is a nice feature of SEM keeping in mind that in a mixture context a major problem 

arises when testing for the number of components because of a breakdown in the regularity assumptions pertaining to 

the likelihood ratio test statistic 𝜆  , and as a result,  −2log(𝜆) does not have any longer its usual asymptotical 𝜒2 

distribution under the null hypothesis; a simple example about that is presented  in Titterington, Smith, and Makov [11]. 

Thus estimating the number of components  is a difficult problem, sometimes called “the mixture problem”,  and there 

is a rich literature on different ways for tackling it. Some ways to overcome this problem are provided by making use of 

the so-called algorithmic methods, like for example the SEM algorithm which is the method of interest in the present 

paper. In [3,4,5] extensive simulations were used in order to evaluate the performance of SEM (see [4])  and compare it 

to that of some other algorithms like for example EM and some other EM driven methods (see [3,5]). In a slightly 

different direction the purpose of the present study is to also evaluate the SEM performance for estimating parameters 

in mixtures, but it is more focused on highlighting basic strengths of this algorithm  on the basis of the investigation of 

some particular experimental cases.  
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2.      THE SEM ALGORITHM  

2.1.   Procedure 

        Although as aforementioned this method has already been described in numerous papers we also present it in the 

sequel mainly for reasons of clarity. The idea underlying the methodology of SEM is to insert a stochastic step (S-step) 

between the expectation step (E-step) and the maximization step ( M-step) of EM. More specifically, the procedure is as 

follows.  

Considering the number of components to be unknown, define an upper bound  𝐾 for this number and a threshold 𝑐(𝑁) 
lying between 0 and 1 (where by 𝑁 we denote the sample size). The SEM iteration 𝑞𝑟 → 𝑞𝑟+1 is E-step: for 𝑘 = 1,… , 𝐾 

and 𝑖 = 1,… , 𝑁 compute𝑡𝑘
𝑟(𝑥𝑖) = 𝑝𝑘

𝑟 𝑓(𝑥𝑖, 𝜃𝑘
𝑟) ∑ 𝑝𝑗

𝑟 𝑓(𝑥𝑖, 𝜃𝑗
𝑟)𝐾

𝑗=1⁄ . 

S-step:  for every observed 𝑥𝑖  ( 𝑖 = 1,… , 𝑁) draw the pseudo-completed sample 𝑦𝑖 = (𝑥𝑖,𝑧(𝑥𝑖)) by replacing each 

missing quantity 𝑧(𝑥𝑖) by a value drawn at random according to the probabilities 𝑡𝑘
𝑟(𝑥𝑖), 𝑘 = 1,… , 𝐾. This amounts to 

drawing a single multinomial observation 𝑧𝑟 (𝑥𝑖 )=(𝑧𝑘
𝑟(𝑥𝑖), 𝑘 = 1,… , 𝐾) with probabilities 𝑡𝑘

𝑟 (𝑥𝑖), 𝑘 = 1,… , 𝐾 . The 

realizations  𝑧𝑟(𝑥𝑖) define a partition 𝑃𝑟 = {𝑃1
𝑟 , … , 𝑃𝑘

𝑟} of the observed sample 𝑥1,…,𝑥𝑛, with 𝑃𝑘
𝑟={𝑥𝑖 |(𝑧𝑘

𝑟(𝑥𝑖) = 1}. If 
card(𝑃𝑘

𝑟  )<𝑁𝑐(𝑁) the algorithm is re-initialized. 

M-step:  compute the maximum likelihood estimates 𝑞𝑟+1 using the pseudo-completed sample constructed at the S-step. 

This procedure amounts to computing  𝑝𝑘
𝑟+1 = (1 𝑁)⁄ ∑ (𝑧𝑘

𝑟(𝑥𝑖))
𝑁
𝑖=1  and estimating the 𝜃𝑘’s. 

 

         Note that according to theory successive SEM iterates constitute an ergodic Markov chain (see Celeux and 

Diebolt [5,6]).   
 

2.2.   Basic Properties 

       We now summarize in brief some nice properties of SEM. We first remark that this algorithm was designed in 

order to overcome some drawbacks of EM for estimating parameters in mixtures. In relation to the problem of 

estimating numbers of components it is interesting to note that SEM allows for misspecifications of these numbers; 

indeed one need only know an upper bound of this number (see Celeux and Diebolt, [6]). Note that the S-step deletes a 

nice feature of EM, namely that the observed likelihood is increased at each iteration, but on the other hand it allows 

SEM to avoid saddle points and local maxima (in contrast to EM), and thus this algorithm converges in general faster 

than EM. Note that the main  result for local convergence concerning SEM relies on Theorem 1, appearing in [6]. The 

theorem states in brief that under some regularity assumptions and provided that the sample size 𝑁 is large enough the 

sequence of iterates generated by the SEM algorithm will converge in distribution to a stationary normal distribution 

approximately concentrated around the MLE.  We finally mention that analytic properties of the SEM algorithm with 

practical applications in mixture models can be found in Celeux and Diebolt [4,5]. Note that in the latter articles 

simulation results that show nice features of SEM were provided.   
 

3.        SIMULATION STUDIES 

3.1.   The General Models 

       We now focus on some particular mixture models of interest and we evaluate the performance of the SEM 

algorithm on the basis of two experiments as we now present. Concerning the first experiment we consider the 

estimation of parameters in a two-normal component mixture situation with common variance. Data arising from such 

models were generated, and we evaluated the method’s performance using diverse sample sizes;  also different starting 

values for the parameters under estimation (especially the weights) were used in order to investigate whether these 

values could affect the performance of the algorithm. In all our models the normal distribution is chosen as the 

underlying distribution, and mixture components are considered to have a common variance, since as mentioned in 

McLachlan and Peel [7], p. 176,  “any continuous distribution can be approximated arbitrarily well by a finite mixture 

of normal densities with common variance”.  Concerning the second experiment we generated data from a single 

normal component to which we fitted a mixture of two normals. This application refers to the very important matter of 

testing between one and two normal components. Note that for cases where the (one-dimensional) component 

distributions are Gaussian, 𝜃𝑘takes the special form  𝜃𝑘 = (𝜇𝑘 , 𝜎𝑘) – where 𝜇𝑘 and 𝜎𝑘 refer respectively to the mean 

and the standard deviation of the 𝑘 -th component. In a mixture context, these parameters are estimated via the SEM 

algorithm using the following algebraic expressions in the one-dimensional case (see Celeux and Diebolt [5] for the 

general form of these expressions):  at iteration 𝑟 + 1,  
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          𝜇𝑘
𝑟+1 = ∑ 𝑧𝑘

𝑟(𝑥𝑖
𝑁
𝑖=1 )𝑥𝑖 ∑ 𝑧𝑘

𝑟(𝑥𝑖
𝑁
𝑖=1 )⁄  ,            (1)                                                                   

 

 and            

 

𝜎𝑘
𝑟+1 =√∑ 𝑧𝑘

𝑟(𝑥𝑖
𝑁
𝑖=1 )(𝑥𝑖 − 𝜇𝑘

𝑟+1)2 ∑ 𝑧𝑘
𝑟(𝑥𝑖

𝑁
𝑖=1 )⁄  .  (2)  

 

(Note that in all our experiments we consider a known common variance for the components and thus equation (2) is 

irrelevant).  

  

Finally, the mixing weight is estimated as reported in the previous section, i.e. 

 

𝑝𝑘
𝑟+1 = (1 𝑁)⁄ ∑ (𝑧𝑘

𝑟(𝑥𝑖))
𝑁
𝑖=1  .                                   (3)                                                   

                                          

3.2.    Computing Issues 

        Concerning implementation issues for the aforementioned experiments, note that since as mentioned by Celeux, 

Chauveau, and Diebolt [3], p. 296, “SEM does not provide directly a pointwise estimate” , we used the simulation 

procedure proposed by these authors, pp. 296-297. That is, we choose to run a total number of 100 iterations for SEM, 

where a “warm-up”  step of 75 iterations is first performed (in order to reach the stationary regime of SEM), and then 

we average the estimates over the remaining 25 iterations. The mean SEM estimates obtained from this procedure in the 

next sections are denoted by the symbol  (. )̅̅ ̅̅ .   

        We also report that Fortran 77 was used for programming purposes. The Nag library was used for generating 

pseudorandom numbers.  
 

3.3.    First Experiment 

  The experiment concerns Model (1) which is a mixture of the form 1/2N(0,1)+1/2N(4,1), i.e.  has two normal 

components, and a common variance (and  thus corresponding data are generated from 1/2N(0,1)+1/2N(4,1)). The 

parameters to be estimated are the mixing weights and the means. Note that this model has also been used in an earlier 

paper concerning the stochastic EM algorithm, in a somehow different context (see Polymenis [8]). The model was 

chosen to have well-separated components in order to avoid problems associated with severely overlapping components 

like those reported in Section 6 of [3] for mixture M1.  In the context of our experiment four sample sizes and different 

starting values of the parameters are used for the fitted models in five simulation exercises and are presented in Table 1. 

Furthermore consecutive SEM iterates are obtained using equations (1) and (3) and the parameter means, computed as 

reported in the previous section, are reported in Table 1. The method works well (as expected) for very large sample 

sizes (500 and 1000) and starting values for the parameters under estimation which are near the true parameter values. 

For a medium sample size of 200 and starting values not so near as for the two previous models, especially those 

concerning the mixing weights, the performance of SEM is quite good as well. For the rather small sample size (𝑁 = 

100) and starting values 𝜇1 = 0.975, 𝜇2 = 4.67 , 𝑝1 = 0.69, almost equal to those used for 𝑁 = 200, the performance 

of SEM is also fine, with estimated means near the true means and estimated weights only  slightly further from the true 

weights than were corresponding estimated weights for 𝑁 = 200. Thus decreasing the sample size from 200 to 100 does 

not seem to substantially affect the performance of the algorithm. Furthermore it is interesting to remark how well the 

method works for the case where the sample size is as before (𝑁 = 100) and the starting values are far from the true 

parameter values especially those concerning the mixing weights (𝜇1 = 2.114 , 𝜇2 = 6.187 , 𝑝1 = 0.99). Although the 

fitted model can be considered to be almost  a single normal component (with one outlier), SEM manages to recover the 

true model. This result also shows the strength of the SEM algorithm since, as aforementioned, SEM detects the true 

model specification only when the fitted model includes a number of components which is at least equal to that of the 

true model; this practically means that in case an exact single normal component were fitted it would have been 

impossible for the algorithm to detect a two-component mixture.        
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Table 1. Initial and estimated parameters. The true  model is 1/2N(0,1)+1/2N(4,1). 
 

𝑁 = 100                             𝑁 = 100                             𝑁 = 200                             𝑁 = 500                             𝑁 = 1000                             

  𝜇1 = 2.114       
𝜇1̅̅ ̅ = 0.048           

𝜇1 = 0.975   
𝜇1̅̅ ̅ = 0.048      

𝜇1 = 1.036   
𝜇1̅̅ ̅ = 0.135             

 𝜇1 = 0.277  
   

 𝜇1̅̅ ̅ = 0.048                                 

 𝜇1 = 0.416           
  

 𝜇1̅̅ ̅ = 0.069                                                                                                                                                      

𝜇2 = 6.187  

 
𝜇2̅̅ ̅ = 4.021                            

 𝜇2 = 4.67     
  

 𝜇2̅̅ ̅ = 4.02                            

 𝜇2 = 4.66        
 

 𝜇2̅̅ ̅ = 4.01                                 

   𝜇2 = 4.18         
   

 𝜇2̅̅ ̅ = 3.978                            

𝜇2 = 4.214       

  
𝜇2̅̅ ̅ = 3.96                                                                                                                                                 

𝑝1 = 0.99  
     

 𝑝1̅ = 0.48                                 

𝑝1 = 0.69  
 

 𝑝1̅ = 0.48                                  

 𝑝1 = 0.71          
  

𝑝1̅ = 0.49                                                                                          

 𝑝1 = 0.573     
   

 𝑝1̅ = 0.518                              

   𝑝1 = 0.59 
 

   𝑝1̅ = 0.512   

   𝑝2 = 0.01        
    

   𝑝2̅̅ ̅ = 0.52                  

 𝑝2 = 0.31 
 

 𝑝2̅̅ ̅ = 0.52                  

 𝑝2 = 0.29      
 

 𝑝2̅̅ ̅ = 0.51               

 𝑝2 = 0.427  
   

 𝑝2̅̅ ̅ = 0.482                                       

 𝑝2 = 0.41 
 

   𝑝2̅̅ ̅ = 0.488               

Letters without the symbol (. )̅̅ ̅̅  are initial parameters. Letters with the symbol (. )̅̅ ̅̅  are estimated mean parameters using SEM. 

 

3.4.    Second Experiment 

We now focus on our second experiment, that is, the case where data arise from a standardized normal model to 

which a mixture of two normal components is fitted. 

Evidence concerning the performance of SEM is provided on the basis of  two simulation exercises. More 

specifically let true Model (2) be a normal N(0,1) model (and thus data are generated from a standardized normal 

distribution)  to which mixtures with two normal components of the form 0.606N(−0.365,1)+0.394N(0.491,1), which 

we call Model (2)1 , and 0.934N(−0.077,1)+0.066N(0.672,1), which we call Model (2)2 , are fitted. Like for Model 

(1)  parameters under estimation are the mixing weights and the means. Note that Model (2)1 has also been used in an 

earlier paper concerning the stochastic EM algorithm, in a somehow different context (see Polymenis [8]). These 

models were included into our analysis because although they are not standardized normals their shapes approximate 

that of N(0,1), as we now explain. Models (2)1  and (2)2 are both poorly separated  (respective Mahalanobis distances 

are 0.856 and 0.749) and hence it is difficult to graphically distinguish their component densities (see Mc Lachlan and 

Peel, [7], p. 9). Also parameters involved in Model (2)2 indicate that it has a shape close to that of a standardized 

normal since (2)2 can be approximately considered as a standardized normal plus a few outliers whereas this is not so 

obvious for Model (2)1. Concerning the latter model one can easily compute basic moments and compare them to 

corresponding ones from a standardized normal in order to check whether there is any similarity in their shapes. For this 

purpose we computed these moments for Model (2)1   using results of proposition 2.2.1. of Wang [12] and found 

mean=−0.0277,  standard deviation= 1.084, skewness= 0.025 and kurtosis=2.96, which are close to mean=0, standard 

deviation=1, skewness=0, and kurtosis=3 (the theoretical moments of N(0,1)) and thus the shape of the model 

distribution can be considered to be close to that of N(0,1). Our goal is then to investigate the performance of the SEM 

algorithm in these situations. Also note that in this experiment a large sample size of 500 is used in order to improve 

the performance of SEM. Like for the previous experiment equations (1) and (3) are used and corresponding parameter 

means are duly computed. Results are as follows. For the first simulation exercise, i.e., when Model (2)1 is fitted, the 

estimated (mean) parameters of interest obtained from equations (1) and  (3) are  𝑝1̅̅̅ = 0.922 , 𝜇1̅̅ ̅ = 0.00233 ,𝑝2̅̅ ̅ 
= 0.078,𝜇2̅̅ ̅ = −0.394 . These results point towards an approximate single component model, since 𝑝1̅̅̅  is much closer 

to 1 than were the starting value for 𝑝1  (0.606), and  𝜇1̅̅ ̅very close to the true mean 0. Furthermore, by results of 

proposition 2.2.1. of Wang [12],   moments obtained for the estimated model are  mean= −0.0286 , standard deviation= 

1.0113, skewness=−0.003734, and kurtosis=3.00098, and thus are much closer to corresponding theoretical moments 

from  N(0,1)  than were  initial moments of Model (2)1.   Concerning the second simulation exercise, i.e., when Model 

(2)2 is fitted, corresponding (mean) estimates for the parameters of interest obtained from SEM are 𝑝1̅̅̅ = 0.998 , 𝜇1̅̅ ̅ 
= −0.0243 , 𝑝2̅̅ ̅ = 0.002 , 𝜇2̅̅ ̅ = −2.2 . These results show the good performance of the SEM algorithm since 𝑝1̅̅̅ is 

much closer to 1 than were its starting value (0.934), even though the latter value was also quite large.  The second 

component has almost disappeared and thus a single component model is clearly indicated by SEM.  Furthermore 𝜇1̅̅ ̅  is 

closer to the true mean value 0 than were the initial value (−0.077). Finally remark that SEM estimates obtained for 

Model (2)2 are slightly more accurate than those for Model (2)1. 
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4.        CONCLUSION 

The performance of the SEM algorithm was evaluated in the present paper. Our simulation results concerning the 

first experiment and presented in Table 1 indicate that when data are generated from a mixture with two normal 

components and a reasonable degree of components separation SEM shows in general a nice performance in detecting 

the true parameter values. The algorithm performs well even for an extreme case, presented in Table 1, where the 

mixing weight of the first fitted component is very close to 1, the fitted component means are away from the true means 

and the sample size is rather small. Concerning the second experiment, that is the case where data are generated from a 

standardized normal distribution, the fitted models are two-component mixtures which have quite different parameters 

but whose shapes resemble that of a single standardized normal component. This is a particular characteristic we 

included in order to assess its impact on the method since as far as we know it has not been investigated in previous 

literature concerning the SEM algorithm. Our simulation results show that after implementation of SEM the second 

component has almost disappeared and the estimated mean of the first component is close to 0 for both simulation 

exercises. This nice performance of SEM is also in accordance with results presented in [4,5] regarding the assessment 

of the algorithm in case the model is overfitted. We finally note that the method seems to work well for both 

experiments used in this paper independently of the starting values. On the other hand it is understood that this result is 

obtained within the limited framework of our study; more practical experiments would be needed in order to have a 

better insight about the role of starting values. However our results agree with the statements concerning starting values 

for SEM provided by Celeux and Diebolt [5, p. 10] and by Baudry and Celeux [1, p. 6], and with the results of [4,5]. 
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