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Abstract: A new median ranked set sampling procedure for positively skew distributions (NMRSSS) is proposed and used to 

estimate population mean. The estimators based on the proposed scheme are compared with the estimators based on ranked set 

sampling (RSS), median ranked set sampling (MRSS) and new median ranked set sampling (NMRSS) procedures. It is shown that 

the relative precisions of the estimators based on NMRSSS are higher than the estimators based on RSS, MRSS and NMRSS 

procedures. 
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1. INTRODUCTION 
 

Ranked set sampling (RSS) for estimating a population mean was proposed by McIntyre (1952) as a cost-efficient 

alternative to simple random sampling (SRS) if the observations can be ranked according to the characteristics under 

investigation by means of visual inspection or other methods not requiring actual measurements. The RSS procedure 

has been extensively used in agriculture, environmental, ecological and recently in human studies where the exact 

measurement of unit is either difficult or expensive. McIntyre indicated that the use of RSS is more powerful and 

superior to SRS procedure to estimate the population mean. However, the mathematical foundation for RSS was 

provided by Dell and Clutter (1972) and Takahasi and Wakimoto (1968). Dell and Clutter (1972) also showed that the 

estimator for population mean based on RSS is at least as efficient as the estimator based of SRS with the same number 

of observations even when there are ranking errors. The selection of ranked set sample of n involves drawing n random 

samples with n units in each sample. The n units in each sample are ranked with respect to a variable of interest by 

using judgement or other methods not requiring actual measurements. The unit with the lowest rank is measured from 

the first sample, the unit with the second lowest rank is measured from the second sample, and this procedure is 

continued until the unit with the highest rank is measured from the last sample. The 𝑛2 ordered observations in n 

samples can be displayed as 

 𝑥(11)        𝑥(12)        . . . .        𝑥(1𝑛) 

 𝑥(21)        𝑥(22)        . . . .        𝑥(2𝑛) 

 …        . . . . . .          . . . .        . . .. 
 ⋯        . . . . . .          . . . .        . . .. 

 𝑥(𝑛1)        𝑥(𝑛2)        . . . .        𝑥(𝑛𝑛) 

 

 We measure only n ( 𝑥(𝑖𝑖) , i=1,2,.., n) observations and they constitute the RSS. The n observations are 

independently but not identically distributed. In RSS, n is usually small and therefore, to increase the sample size, the 

above procedure is repeated r times. For convenience, we assume that r=1. 

http://dx.doi.org/10.12785/ijcts/060102 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
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Many investigators used RSS in the parametric setting (see Bhoj and Ahsanullah, 1996; Bhoj 1997a and 1997b; 

Lam, Sinah and Zong, 1994, 1995; Stokes, 1995). Most of the distributions considered by these investigators belong to 

the family of random variables with cumulative distribution function of the form 𝐹((𝑥 − 𝜇)/𝜎), where 𝜇 and 𝜎 are the 

location and scale parameters, respectively. Bhoj (2001) proposed ranked set sampling procedure with unequal samples 

(RSSU) to estimate the population mean and showed that it is superior to RSS for all distributions considered in his 

study. RSSU was shown to be superior for MRSS procedure when the distributions are symmetrical or moderately 

skew. Bhoj and Kushary (2014) proposed RSSU with unequal replications and showed that its relative precision for 

estimating population mean is higher than that based on MRSS procedure. More recently, Bhoj and Kushary (2016) 

proposed the estimator for population mean based on RSSU for heavy right tail distributions which is uniformly better 

than the estimators based on RSS and MRSS procedures. There are many variations of ranked set sampling to find the 

better estimator for the population mean. However, in this paper, we will concentrate on the median ranked set 

sampling (MRSS) and new median ranked set sampling (NMRSS) procedures. 

 

2.  NEW MEDIAN RANKED SET SAMPLING 
 

Bhoj (1997a) and Muttlak (1997) modified the RSS procedure which further reduced the variance of the estimator 

for population mean. Bhoj (1997a) proposed a general modified ranked set sampling in the parametric setting where he 

proposed to select only two order statistics when the sample size n=2m is even. He suggested to select the 𝑗𝑡ℎ order 

statistics from the first m samples and 𝑘𝑡ℎ order statistic from last m samples. The choices of the two order statistics 

depend on the distribution under consideration and the parameter(s) to be estimated. This modified ranked set sampling 

becomes the median ranked set sampling (MRSS) if one is interested in estimating the mean of a symmetrical 

distribution. Muttlak (1997) proposed to use MRSS in a nonparametric setting. 

In MRSS, we draw n random samples of size n from the population and rank n observation in each sample. If n is 

even, we measure 𝑚𝑡ℎ order statistic from the first m samples and (𝑚 + 1)𝑡ℎ order statistics from the last m samples 

where n=2m. If n is odd, we measure the observation with rank (n + 1)/2 from each sample. When n=2, RSS and MRSS 

procedures are identical. The relative precision of MRSS over RSS is superior when n is odd. Bhoj (2002) noted that 

the values of relative percentage increases in relative precisions are higher when we move from even to odd values of n, 

and they are lower when we switch from odd to even values of n. Therefore, Bhoj (2002) proposed a new median 

ranked set sampling (NMRSS) for even n=2m. In NMRSS, we draw samples of two sizes. We draw first m samples of 

size (n-1) and last m samples of size (n+1). Then we rank the observations in each sample as in RSS and MRSS. We 

only measure the median from each sample. Bhoj (2002) proposed the estimator for the population mean, 𝜇, based on 

NMRSS. He showed that for unimodal symmetric distributions around 𝜇, the NMRSS is better than MRSS procedure 

for n=2,4 and 6. For moderate skew distributions, NMRSS is better than MRSS for small n. However, the proposed 

estimator is not better than the one based on MRSS for the distributions with higher skewness and sample sizes higher 

than 2. In this paper, our main objective is to propose the estimator for the population mean based on NMRSS 

observations which will be better than the one based on MRSS for highly skew distributions and sample sizes greater 

than two. 
 

3.  ESTIMATORS FOR THE POPULATION MEAN 
 

McIntyre (1952) proposed the estimator for population mean, 𝜇, based on RSS as 

 

 𝜇̅ =
1

𝑛
∑  𝑛
𝑖=1 𝑥(𝑖𝑖). 

 

𝜇̅ is an unbiased estimator of 𝜇 with the property that 𝑉𝑎𝑟(𝜇̅) < 𝑉𝑎𝑟(𝑥̅), where 𝑥̅ is the sample mean based on simple 

random sample of size n . 

The estimator, 𝜇̂, based on MRSS, as defined in Section 2, is  

 𝜇̂ = (

1

𝑛
[∑  𝑚

𝑖=1 𝑥(𝑖𝑚) + ∑  𝑛
𝑖=𝑚+1 𝑥(𝑖𝑚+1)]   for even n,

1

𝑛
∑  𝑛
𝑖=1 𝑥(𝑖𝑘),    where  𝑘 = (𝑛 + 1)/2.

 

𝜇̂ is an unbiased estimator for 𝜇 when the distribution is symmetric around 𝜇 with the property that 𝑉𝑎𝑟(𝜇̂) ≤ 𝑉𝑎𝑟(𝜇̅), 
see Bhoj(1997a) and Mutlack(1997). 
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In this paper, we are planning to use the skew distributions. For these distributions, 𝜇̂‚ is a biased estimator for 𝜇 

except when n=2. In this case, for comparison purposes with other estimators, we use the mean square error (MSE) of 𝜇̂ 

where 𝑀𝑆𝐸 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + (𝑏𝑖𝑎𝑠)2. Muttlak (1997) demonstrated that for most distributions, MSE of 𝜇̂, is less than 

Var(𝑥̅) for small sample sizes. 

The estimator, 𝜇∗, based on NMRSS, as defined in section 2, is 

 

 𝜇∗ =
𝑤∑  𝑚

𝑖=1𝑥(𝑖𝑚)

𝑚
+
(1−𝑤)∑  𝑛

𝑖=𝑚+1𝑥(𝑖𝑚+1)

𝑚
, where   w = (n − 1)/2n. 

 

This estimator is weighted average of NMRSS observations and it works well when the distributions under 

consideration are symmetric around 𝜇 or have low skewness. However, 𝜇∗ does not perform well when the distributions 

under consideration are highly skew or extremely skew with heavy right tail for 𝑛 > 2. 

In this paper we propose the estimators for 𝜇 which are weighted linear combinations of NMRSS observations for 

extremely skew distributions. In this paper, we have chosen Gamma (3), Gamma (5), Weibull (2) and Exponential 

distributions which have moderately large or large skewness. In addition, we have chosen Lognormal, Pareto (2.5) and 

Pareto (5) distributions which are extremely skew with heavy right tails. 

 

We propose the following set of nonparametric estimators for 𝜇 based on NMRSS observations: 

 

 𝜇̃𝑘 =
𝑤1∑  𝑚

𝑖=1𝑥(𝑖𝑚)

𝑚
+
𝑤2∑  𝑛

𝑖=𝑚+1𝑥(𝑖𝑚+1)

𝑚
,        where   k = 1,2, . . . ,5. 

 

The variance of 𝜇̃𝑘 is given by  

 

 𝑉𝑎𝑟(𝜇̃𝑘) = 𝜎
2[𝑤1

2 𝑉𝑚(𝑛−1)/𝑚 + 𝑤2
2 𝑉(𝑚+1)(𝑛+1)/𝑚], 

 

where 𝑉𝑚(𝑛𝑖) denotes the variance of the 𝑚𝑡ℎ order statistics from a sample of size 𝑛𝑖. 

We considered various values of 𝑤1 and 𝑤2 that were based on the ratio 𝑤2/𝑤1, and are given by  

 

 𝑅 =
𝑤2

𝑤1
=
1

𝑛
+

𝑛

𝑛−1
+

ℎ

𝑛−1
𝑑𝑛,        where 

  

     𝑑𝑛 =
𝑛 − 3.5827

1.8345𝑛 − 5.2518
,      𝑛 = 2,4 and 6, and ℎ ≥ 0. 

 

The values of 𝑤1 for three values of n are determined so that the new estimators for the population mean based on 

NMRSSS procedure perform better than the estimators based on RSS, MRSS and NMRSS schemes for the chosen 

seven distributions. The weight 𝑤1 is determined by 

 

 𝑤1 =
1+(𝑛/(𝑛2−6)).𝑐𝑛

1+𝑅
,        where 

  

 𝑐𝑛 = (

𝑛

𝐷
    for 𝑛 = 2

(𝑛−3)(9.25𝑛−23)

𝐷
    for 𝑛 = 4, 6,    and

 

 𝐷 = 50𝑛. 
In order to keep the number of weights within reasonable limits, in this paper, we chose only five values of h= 

0.55, 0.65, 0.75, 0.85 and 0.90. These values of h give the values of the ratios, 𝑤2/𝑤1, which are in the middle of the 

range of ratios for seven distributions. We get five estimators for population mean from these values of h. 
 

4.  COMPARISON OF ESTIMATORS 

We compare the various estimators for 𝜇  based on RSS, MRSS, NMRSS and NMRSSS procedures. For this 

purpose, we define the following nonparametric relative precisions (RPNs): 
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 𝑅𝑃𝑁𝑘 =
𝑉𝑎𝑟(𝜇̅)

𝑀𝑆𝐸(𝜇̃𝑘)
    for    𝑘 = 1,2, …5. 

𝑅𝑃𝑁6 =

(

 
 

𝑉𝑎𝑟(𝜇̅)

𝑀𝑆𝐸(𝜇∗)
if 𝜇∗ is a biased estimator

𝑉𝑎𝑟(𝜇̅)

𝑉𝑎𝑟(𝜇∗)
if 𝜇∗ is an unbiased estimator

 

 

𝑅𝑃𝑁7 =

(

 
 

𝑉𝑎𝑟(𝜇̅)

𝑀𝑆𝐸(𝜇̂)
if 𝜇̂ is a biased estimator

𝑉𝑎𝑟(𝜇̅)

𝑉𝑎𝑟(𝜇̂)
if 𝜇̂ is an unbiased estimator

 

We note that 𝜇̅  is always an unbiased estimator for 𝜇  . However, 𝜇̃𝑘  is a biased estimator for 𝜇  for skew 

distributions. It is clear that 𝑅𝑃𝑁𝑘/𝑅𝑃𝑁7 can be used for comparison of the estimators based on NMRSSS proposed in 

this paper and MRSS procedure. Similarly the values of 𝑅𝑃𝑁𝑘/𝑅𝑃𝑁6 can be used for comparison of the estimators 

based on the estimators proposed in this paper and the one proposed by Bhoj (2002) based on NMRSS procedure. The 

values of 𝑅𝑃𝑁𝑘, k=1,2,...,7. are presented in Table A1 for various distributions and n=2,4 and 6. The variances and 

biases of the various estimators based on NMRSSS, NMRSS and MRSS are given in Tables 2 and 3, respectively. In 

tables 1, 2 and 3, the first five columns, give the relative precision, variances and biases of the estimators based on 

NMRSSS procedure, while column 6 and 7 give the relative precisions, variances and biases based on the estimators 

based on NMRSS and MRSS procedures, respectively. 

We observed that 𝜇̃𝑘, k=1,2, ...,5. based on NMRSSS are all superior to the estimators for 𝜇 based on RSS and 

MRSS for all distributions and three sample sizes. The gains in the precisions of 𝜇̃𝑘, k=1,2,...,5. over the estimator 

based on RSS are substantial. The gains in precisions of the estimators based on NMRSSS over the MRSS estimators 

are quite good. 𝜇̃𝑘 is also superior to the estimator based on NMRSS proposed by Bhoj (2002) for n=4 and n=6 for all 

distributions and the gains in precisions are substantial. Bhoj (2002) recommended the NMRSS scheme with n=2 for all 

distributions and it works well. However, even for n=2, 𝜇̃𝑘, k=1,2,...5. is superior to 𝜇∗ for six out of seven diverse 

distributions considered in this paper. The only exception is Pareto(5) which is extremely heavy right tail distribution. 

We observe from Table 1 that the relative precision of the estimator based on NMRSSS increases with n for 

moderately skew Gamma distributions. For extremely skew distributions, such as , Weibull (2), Lognormal, Pareto (2.5) 

and Pareto (5), the relative precision increases when n increases from two to four, and it decreases when n increases 

from four to six. We note from Table 2 that the variances based on NMRSSS, MRSS and NMRSS procedures decrease 

as n increases. Table 3 shows that for two Gamma and Pareto (5) distributions bias in 𝜇̃𝑘 decreases as n increases. Also 

bias increases as n increases from two to four and then decreases when n increases from four to six for Weibull (2) and 

Pareto (2.5). In the case of exponential and lognormal distributions, bias in 𝜇̃𝑘 increases as n increases. The bias of 

estimators based on NMRSS and MRSS procedures increases with n for all distributions. Therefore MSE of the 

estimator increases for large n. In the case of Weibull (2) distribution for n=6, the estimators based on NMRSS and 

MRSS are even less efficient than the estimator based on RSS. 

 

5.  CONCLUSIONS and DISCUSSION 

In this paper, we proposed new median ranked set sampling procedure (NMRSSS) for highly skew distributions. 

The set of estimators for the population mean based on NMRSSS are proposed under nonparametric settings. The 

proposed estimators are weighted linear combinations of NMRSS observations where the weights are functions of 

sample size. These estimators are compared with the estimators based on the ranked set sampling (RSS), median ranked 

set sampling (MRSS) and new median ranked set sampling (NMRSS). It is shown that the estimators for 𝜇 based on 

NMRSSS procedure are superior to the estimators based on RSS and MRSS procedures for all seven distributions under 

consideration and the three samples sizes. It is observed that the gains in relative precisions of the estimators based on 

NMRSSS over RSS estimators are quite high. The gains in precision of NMRSSS over MRSS estimator are good. 

These gains depend on a particular distribution under consideration and sample size. 

The estimator based on NMRSSS is superior to the estimator based on NMRSS procedure for 𝑛 > 2 for all 

distributions. When n=2, the estimator based on the NMRSSS procedure is superior to the one based on NMRSS 

procedure for six out of seven distributions considered in this paper. 
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Based on the computations of relative precisions, we recommend the NMRSSS scheme to estimate the population 

mean based on even values of n when the samples are drawn from moderate skew or highly skew distributions. 
 

In this paper we have proposed a simple method of estimating population mean of positively heavy skewed 

distributions whose means and variances of order statistics are readily available. In our estimators we have used 

medians from the samples and finding the variance of the median in nonparametric setting would be much harder. Our 

method may be used for skew distributions whose means and variances are not readily available. In such situations 

bootstrap is a viable approach. The researchers suggested several methods and the algorithms of their methods of 

bootstrapping a RSS, see Modaress, Hui and Zheng (2006), Amiri and Modaress(2017), and Frey(2014). 

Skewed symmetric distributions have received more attention with applications in economics, finance , insurance, 

and telecommunications. One such distribution is the skewed Cauchy distribution which suffers from limited 

applicability because of the lack of finite moments. In order to overcome this problem Nadarajah and Kotz (2007) 

proposed a skewed truncated Cauchy distribution. Recently Teimouri and Nadarajah (2017) proposed an algorithm for 

simulating truncated Cauchy random variables in an efficient way. One can use extensive simulation to estimate the 

means and variances of order statistics which can be used to calculate relative precisions of our proposed estimators for 

skewed truncated Cauchy distribution. 
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  TABLE 1. NONPARAMETRIC RELATIVE PRECISIONS FOR THE ESTIMATORS FOR µ 
 

Distribution n RPN1 RPN2 RPN3 RPN4 RPN5 RPN6 RPN7 

Gamma(3) 2 1.1850 1.1813 1.1773 1.1733 1.1712 1.1651 1.0000 

 4 1.2691 1.2691 1.2689 1.2688 1.2688 1.2093 1.2090 

 6 1.3507 1.3506 1.3504 1.3502 1.3501 1.0228 1.0491 

Gamma(5) 2 1.1466 1.1427 1.1387 1.1346 1.1325 1.1309 1.0000 

 4 1.2535 1.2534 1.2533 1.2532 1.2532 1.2082 1.1980 

 6 1.2705 1.2704 1.2703 1.2702 1.2701 1.1056 1.1200 

Weib(2) 2 1.0775 1.0731 1.0687 1.0643 1.0621 1.0536 1.0000 

 4 1.1104 1.1102 1.1101 1.1100 1.1099 1.1099 1.1043 

 6 1.0757 1.0756 1.0755 1.0753 1.0753 1.0529 1.0612 

Exponential 2 1.3602 1.3572 1.3539 1.3504 1.3486 1.3333 1.0000 

 4 1.2814 1.2812 1.2811 1.2809 1.2808 1.2251 1.2712 

 6 1.0308 1.0306 1.0304 1.0302 1.0300 0.8238 0.8734 

Lognormal 2 2.2655 2.2753 2.2838 2.2911 2.2944 2.2224 1.0000 

 4 2.3440 2.3439 2.3438 2.3437 2.3436 2.2070 2.2766 

 6 1.7258 1.7255 1.7252 1.7249 1.7248 1.3954 1.4807 

Pareto(2.5) 2 3.7310 3.7863 3.8383 3.8871 3.9104 3.7181 1.0000 

 4 5.8928 5.8927 5.8926 5.8925 5.8924 4.8527 5.0387 

 6 5.6682 5.6672 5.6663 5.6653 5.6648 3.1227 3.3120 

Pareto(5) 2 1.7301 1.7319 1.7331 1.7336 1.7337 1.8753 1.0000 

 4 2.7615 2.7616 2.7617 2.7617 2.7617 1.7873 1.8586 

 6 4.5108 4.5113 4.5117 4.5120 4.5122 1.1415 1.2131 

 

TABLE 2. VARIANCE FOR THE ESTIMATORS FOR µ 
 

Distribution n Var1 Var2 Var3 Var4 Var5 Var6 Var7 

Gamma(3) 2 0.8581 0.8606 0.8632 0.8659 0.8673 0.8923 1.0605 

 4 0.2546 0.2546 0.2546 0.2546 0.2546 0.2410 0.2540 

 6 0.1245 0.1245 0.1245 0.1245 0.1245 0.1097 0.1125 

Gamma(5) 2 1.4635 1.4681 1.4730 1.4781 1.4807 1.5216 1.7430 

 4 0.4394 0.4394 0.4394 0.4394 0.4395 0.4160 0.4341 

 6 0.2162 0.2162 0.2162 0.2163 0.2163 0.1906 0.1944 

Weib(2) 2 0.0668 0.0670 0.0673 0.0676 0.0677 0.0694 0.0736 

 4 0.0207 0.0207 0.0207 0.0207 0.0207 0.0196 0.0200 

 6 0.0103 0.0103 0.0103 0.0103 0.0103 0.0091 0.0092 

Exponential 2 0.2552 0.2556 0.2560 0.2564 0.2567 0.2656 0.3750 

 4 0.0709 0.0709 0.0709 0.0709 0.0709 0.0671 0.0747 
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 6 0.0334 0.0334 0.0334 0.0334 0.0334 0.0295 0.0310 

Lognormal 2 0.7621 0.7569 0.7522 0.7481 0.7462 0.7965 1.9672 

 4 0.1590 0.1590 0.1589 0.1588 0.1588 0.1501 0.1912 

 6 0.0665 0.0665 0.0665 0.0665 0.0665 0.0587 0.0654 

Pareto(2.5) 2 0.2350 0.2304 0.2263 0.2224 0.2206 0.2472 1.0243 

 4 0.0325 0.0324 0.0324 0.0324 0.0324 0.0306 0.0417 

 6 0.0128 0.0128 0.0128 0.0128 0.0128 0.0113 0.0129 

Pareto(5) 2 0.0198 0.0197 0.0196 0.0196 0.0196 0.0206 0.0424 

 4 0.0046 0.0046 0.0046 0.0046 0.0046 0.0044 0.0053 

 6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0018 0.0020 

 

TABLE 3. BIAS FOR THE ESTIMATORS FOR µ 

Distribution n Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7(MRSS) 

Gamma(3) 2 -.1919 -.1930 -.1940 -.1949 -.1954 -.1341 0.0000 

 4 -.1334 -.1334 -.1335 -.1335 -.1336 -.2118 -0.1788 

 6 -.0673 -.0674 -.0674 -.0674 -.0675 -.2463 -0.2317 

Gamma(5) 2 -.2381 -.2392 -.2402 -.2412 -.2417 -.1403 0.0000 

 4 -.0823 -.0823 -.0824 -.0824 -.0824 -.2165 -0.1809 

 6 0.0598 0.0598 0.0597 0.0597 0.0597 -.2489 -0.2342 

Weib(2) 2 -.0396 -.0397 -.0399 -.0401 -.0401 -.0222 0.0000 

 4 -.0111 -.0111 -.0112 -.0112 -.0112 -.0350 -0.0296 

 6 0.0143 0.0142 0.0142 0.0142 0.0142 -.0407 -0.0383 

Exponential 2 -.1430 -.1440 -.1449 -.1458 -.1462 -.1250 0.0000 

 4 -.1751 -.1752 -.1752 -.1753 -.1753 -.1979 -0.1667 

 6 -.1806 -.1806 -.1807 -.1807 -.1807 -.2306 -0.2167 

Lognormal 2 -.3259 -.3282 -.3304 -.3325 -.3335 -.2977 0.0000 

 4 -.4238 -.4239 -.4240 -.4241 -.4241 -.4578 -0.3969 

 6 -.4464 -.4464 -.4465 -.4466 -.4466 -.5197 -0.4944 

Pareto(2.5) 2 -.1989 -.2003 -.2015 -0.2027 -0.2033 -0.1683 0.0000 

 4 -.2150 -.2151 -.2151 -0.2152 -0.2152 -0.2549 -0.2244 

 6 -.1958 -.1958 -.1958 -0.1959 -0.1959 -0.2855 -0.2732 

Pareto(5) 2 -.0689 -.0693 -.0696 -.0699 -.0701 -.0446 0.0000 

 4 -.0361 -.0362 -.0362 -.0362 -.0362 -.0693 -0.0596 

 6 -.0033 -.0033 -.0033 -.0033 -.0033 -.0793 -0.0752 

 


