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Abstract: In this paper, we explore the application of hidden Markov model (HMM) in the modeling of agricultural price data. 

Normal hidden Markov model is fitted and compared with univariate autoregressive moving average (ARMA) model. The 

parameters of the model are estimated using EM algorithm and the sequence of hidden states are obtained based on the best fitted 

model. 
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1. INTRODUCTION  

Agricultural prices are highly volatile as they are largely influenced by so many unpredictable and irregular factors 

that are random in nature. Presently the agricultural prices are determined by the domestic and international market 

forces. Therefore price forecasting is a challenging and difficult task due to the stochastic and irregular form of the 

price.  

 The two data sets considered in this study are the global monthly average price of banana during the period 

January 2011 to December 2016 and local price of banana during January 2013 to December 2017. During the past few 

decades, one of the most important and widely used time series model for price forecasting is the ARMA model which 

is based on normal distribution. The time series data of global and local banana prices have kurtosis less than that of a 

normal distribution. In this situation, we explore the possibility of applying hidden Markov model (HMM) in the 

modeling of banana price and compare it with ARMA model, the most commonly used model for the analysis of price 

data.  

2. HIDDEN MARKOV MODEL  

An HMM is a stochastic model with an underlying Markov process that is not directly observable. But the process 

can be observable through another stochastic process that depends on hidden states constitute a sequence of 

observations. The theory of HMM was introduced by [1] as an extension to the first order Markov process. In the late 

1980s and early 1990s, HMMs were introduced to computational sequence analysis [3] and applied HMM in DNA 

sequence analysis. HMMs have been widely used in modern continuous speech recognition systems [5], biological 

sequence analysis [4], speech recognition [8], computational finance [7] , gene prediction [6] etc. A description of 

parameter estimation of HMMs can be found in [2]. An elaborate discussion of the theory, application and computation 

of the HMMs are available in [10].  

In an HMM, the states are not directly visible, but the output depends on hidden states is observable. Let 

1,2,...}=:{ tSt  represents the unobserved parameter process satisfying Markov property. Let 1,2,...}=:{ tZt  is 

the state-dependent process such that, when tS  is known, the distribution of tZ  depends only on current state tS  and 

not on previous states.  

 Let )(zpi  be the probability density function of tZ  if the Markov chain is in the current state i  at time t .  
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where ))(,),((=)( 1 tutut mu  is the initial distribution of the Markov chain, )(zP  is the diagonal matrix with 
thi  

diagonal element )(zpi  and 1 = 1)(1 . If )(tu  is the initial distribution and )(= ijΓ  is the transition probability 

matrix of the Markov chain such that 1=
1
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 and 0ij . Then the distribution at time 1t  can be given as 

follows:  

 .)(=1)( Γuu tt   

 If the Markov chain has stationary distribution )...( 1 mδ , then δδΓ =1t
 for all Nt  and hence  

 '.)(=)=( 1δPP zzZt  

If nzzz ,,, 21   is the observation sequence generated by an HMM and δ  be the initial distribution which is 

assumed to be  the same as the stationary distribution implied by the transition probability matrix Γ , then the 

likelihood function is the following:  
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 A.  Normal-HMM 

 Consider an m-state HMM with a Markov chain having transition probability matrix Γ , stationary distribution δ  

and univariate normal state dependent distribution  
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  << z ,  << i ,  

and 0>i . The parameters are estimated using EM algorithm. A detailed description of the iterative procedure 

involved in EM algorithm is available in [10]. The appropriate number of states m  is decided on the basis of Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) values. AIC and BIC are defined as follows:  

nlogpLBIC

pLAIC


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log2=

2log2=
 

where logL  is the log-likelihood of the model, p  is the number of parameters and n is the total number of 

observations. The mean and variance of the distribution ip  is given below.  
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 Using Viterbi algorithm, a decoding algorithm for finding the most likely sequence of hidden states conceived by 

[9], one can find the best state sequence with respect to the sequence of observations which maximize the likelihood 

function (1).  

3. MODELING OF BANANA PRICE  

A.  Global Price 

The data given in Table I is the monthly average global price of banana per metric tonne in 

USDollar during the period January 2011 to December 2016. The data is available at 

MPBANSOPUSDseriesorgstlouisfedfredhttps //..//: . 

 
TABLE I.  GLOBAL BANANA PRICES FROM JANUARY 2011 TO DECEMBER 2016 IN  USD/METRIC TONNE. 

   

Year Jan Feb Mar Apr May Jun 

2011 949.42 1013.12 994.17 1013.47 1022.10 986.31 

2012 942.99 1045.12 1151.43 1029.33 955.44 956.33 

2013 933.82 925.41 938.57 912.23 908.00 911.60 

2014 928.42 946.13 966.85 945.50 916.00 926.07 

2015 911.60 966.85 1045.96 1059.14 946.79 929.18 

2016 1011.25 1052.35 1020.90 998.09 987.57 993.22 

 Jul Aug Sep Oct Nov Dec 

2011 964.22 960.25 945.50 956.33 959.32 946.76 

2012 966.85 954.84 966.85 959.04 937.34 945.80 

2013 925.41 937.60 939.23 936.82 922.13 925.41 

2014 930.82 961.59 925.41 922.41 904.70 908.60 

2015 938.33 956.66 951.78 933.58 932.32 932.32 

2016 1004.67 1051.53 1013.31 976.39 959.94 959.94 

 
The autocorrelation function (ACF) of the data given in Table 1 is given in Fig. 1. 

 
Figure 1. ACF of Global Price  

 

The banana price series has a kurtosis of 2.7021 which is less than that of a normal distribution. In addition, the 

price series shows serial correlation for the first lag. In this situation, we model the price data using normal mixture 

models, assuming both independent observations and Markov dependent mixture models, known as normal-HMM. Let 

us fit normal-HMM with two, three and four states and Box-Jenkin's ARMA model to the data. Fitting of a normal-
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HMM involves estimation of δ , μ  ,σ  and Γ  by maximising the likelihood function (1). AIC and BIC values of each 

fitted model are given in Table II.  
     

TABLE II.         COMPARISON OF FITTED MODELS BY AIC AND BIC. 
 

Model - log L AIC BIC 

2-state HMM 345.8483 701.6966 713.0799 

3-state HMM 332.8115 687.6230 712.6664 

4-state HMM 330.7309 699.4618 742.7185 

ARMA(1,1) 347.8700 703.7400 712.8400 

  

On comparing AIC and BIC values one can see that 3-state normal-HMM is the best fitted model. For the fitted 3-

state normal-HMM, the estimate of the transition probability matrix Γ  obtained is the following:  

  

 Γ  = 





















0.80390.19610.0000

0.11590.64910.2350

0.05680.11130.8319

 . 

 The corresponding estimates of δ  , μ  and σ  are shown in Table III. 

 

            TABLE III.       STATIONARY DISTRIBUTION AND PARAMETERS OF 3-STATE NORMAL-HMM. 
 

   Parameter   State 1   State 2   State 3 

 δ    0.4119   0.2946   0.2935  

μ    927.6933  956.1636  1020.9425 

σ    12.1558   7.8888   39.2086 

 

The mean and variance of 3-state normal-HMM computed using equations (2) are 963.4493 and 2042.8030 

respectively. Note that these values are very close to the sample mean 963.2601 and  sample variance 2040.2260 .  

 Prediction of the most likely sequence of Markov states given the observed data set (decoding) of 3-state normal-

HMM is done using Viterbi algorithm and is given in Table IV.  

  
TABLE IV.  THE MOST LIKELY SEQUENCE OF HIDDEN STATES OF 3-STATE NORMAL-HMM. 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2011 2 3 3 3 3 3 2 2 2 2 2 2 

2012 2 3 3 3 2 2 2 2 2 2 1 1 

2013 1 1 1 1 1 1 1 1 1 1 1 1 

2014 1 2 2 2 1 1 1 2 1 1 1 1 

2015 1 2 2 3 2 1 1 2 2 1 1 1 

2016 3 3 3 3 3 3 3 3 3 3 2 2 

 

The state predictions of banana prices in the months of the year 2017 based on 3-state normal-HMM is given in 

Table V.  

 
 

TABLE V.       STATE PREDICTION USING 3-STATE HMM: THE PROBABILITY THAT THEMARKOV CHAIN 

WILL BE IN A GIVEN STATE IN THE SPECIFIED MONTH OF 2017. 
  

 Year 2017  Jan  Feb  Mar  Apr  May  Jun  

State=1  0.2011  0.2997  0.3513  0.3795  0.3956  0.4051  

State=2  0.5888  0.4154  0.3362  0.2994  0.2818  0.2732  

State=3  0.2101  0.2849  0.3125  0.3211  0.3226  0.3217 
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  Jul  Aug  Sept  Oct  Nov  Dec  

State=1  0.4109  0.4150  0.4168  0.4183  0.4192  0.4198 

State=2  0.2688  0.2664  0.2651  0.2644  0.2639  0.2637 

State=3  0.3203  0.3191  0.3181  0.3173  0.3169  0.3165  

  

B.    Local Price 

 Let us consider the maximum of monthly banana prices per 100 kg of our own local market, namely Pala, during 

the period January 2013 to December 2017. The data is available at ingovagmarknethttp ..//:  and given in Table 

VI.  
 

TABLE VI.     LOCAL BANANA PRICES FROM JANUARY 2013 TO DECEMBER 2017 IN  RUPEES/100 KG. 

Year Jan Feb Mar Apr May Jun 

2013 4200 4200 4300 4200 3600 4600 

2014 4200 3400 3000 3400 3400 3400 

2015 4400 3800 3800 3200 3800 3800 

2016 3400 3600 3600 5400 5400 6400 

2017 5800 5800 4800 5200 4700 4700 

 Jul Aug Sep Oct Nov Dec 

2013 5400 5800 6000 5600 5400 4400 

2014 3800 6400 6800 6800 5000 4600 

2015 3800 5200 5400 4400 3800 3800 

2016 6800 7400 7400 4000 4400 4400 

2017 4400 6000 6800 5000 5000 4500 

 

The autocorrelation function (ACF) of the data given in Table 3.2.1 is given in Fig. 2.  

 
Figure 2. ACF of Local price  

 

Here also we fit normal-HMM with two, three and four states and Box-Jenkin's ARMA model. AIC and BIC values 

of the fitted models are given in Table VII.  

  
 TABLE VII.    COMPARISON OF FITTED MODELS BY AIC AND BIC. 

 

  Model   - log L   AIC   BIC  

 2-state HMM   488.8214   989.6428   1002.1145  

3-state HMM   474.1935   972.3870   997.5191  

4-state HMM   468.1055   976.2111   1018.0980  

ARMA(2,1)   483.5400   977.0900   987.5600  

  

 AIC value selects 3-state HMM whereas BIC selects ARMA model for the data. The transition probability matrix 

  for the fitted 3-state normal-HMM is the following:  
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 Γ  = 





















0.83760.16240.0000

0.11610.51480.3691

0.21010.00000.7899

 . 

 The corresponding estimates of δ , μ  and σ  are shown in Table VIII. 

 
TABLE VIII.            STATIONARY DISTRIBUTION AND PARAMETERS OF 3-STATE   NORMAL-HMM. 

 

Parameter State 1 State 2 State 3 

δ 0.3333 0.1667 0.5000 

μ 3569.791 4318.944 5630.15 

σ 239.6449 132.1290 885.4618 

 

The mean and standard deviation of 3-state normal-HMM computed using equation (2)  are 4724.854 and 1138.419 

respectively which are close to the sample mean 4733.333  and sample standard deviation 1135.956 . 

 Prediction of the most likely sequence of Markov states given the observed data set (decoding) of 3-state normal-

HMM is done using Viterbi algorithm and is given in Table IX.  

 
TABLE  IX.     THE MOST LIKELY SEQUENCE OF HIDDEN STATES OF 3-STATE NORMAL-HMM. 

   

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2013 2 2 2 2 1 3 3 3 3 3 3 2 

2014 2 1 1 1 1 1 1 3 3 3 3 3 

2015 2 1 1 1 1 1 1 3 3 2 1 1 

2016 1 1 1 1 3 3 3 3 3 2 2 2 

2017 3 3 3 3 3 3 3 3 3 3 3 3 

 

  The state predictions of banana prices in the months of the year 2018 based on 3-state normal-HMM is given in 

Table X.  

 
TABLE  X. STATE PREDICTION USING 3-STATE HMM: THE PROBABILITY THAT THE  MARKOV CHAIN WILL 

BE IN A GIVEN STATE IN THE SPECIFIED MONTH OF 2018. 

   

 Year 2018  Jan  Feb  Mar  Apr  May  Jun  

 State=1  0.1847  0.2646  0.3003  0.3168  0.3247  0.3287  

State=2  0.2690  0.2076  0.1830  0.1732  0.1693  0.1677  

State=3  0.5463  0.5278  0.5167  0.5100  0.5060  0.5036 

  Jul  Aug  Sept  Oct  Nov  Dec  

 State=1  0.3308  0.3319  0.3325  0.3328  0.3330  0.3332 

State=2  0.1671  0.1668  0.1667  0.1667  0.1667  0.1667 

State=3  0.5021  0.5013  0.5008  0.5005  0.5003  0.5001  

  

CONCLUSION 

  For the global banana price data, the best fitted model is found to be the 3-state normal-HMM having stationary 

distribution δ = (0.4119 0.2946 0.2935), state dependent mean vector μ = (927.6933 956.1636 1020.9425) and σ = 

(12.1558 7.8888 39.2086). On studying the Viterbi path of states of 3-state HMM in relation with the prices, it is found 

that state 1 corresponds to less than 940 USD, state 2 corresponds to price between 940 USD and 970 USD and state 3 

corresponds to more than 970 USD. From  Table V it can be seen that the probability that the Markov chain will be in 

state 2 is high for the months January and February and the probability is high for state 1 for the rest of the months.  

 The best fitted model for the local banana price is found to be the 3-state normal-HMM having stationary 

distribution δ = (0.3333 0.1667 0.5000), state dependent mean vector μ = (3569.7910 4318.9440 5630.15) and σ = 
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(239.6449 132.1290 885.4618). On studying the Viterbi path of states of 3-state HMM in relation with the local market 

prices, it is found that state 1 corresponds to less than 4000 rupees, state 2 corresponds to price between 4000 rupees 

and 4400 rupees and state 3 corresponds to more than 4400 rupees.  

 The present study reveals that HMMs can be effectively used to model and study the hidden factors (states) which 

affect the prices of agricultural commodities.   
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