

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.2 (Mar-2020)

E-mail: lk04@eulji.ac.kr, anjaeju@gmail.com, gkgkthgml@gmail.com, ymkwon@eulji.ac.kr

 http://journals.uob.edu.bh

Efficient Algorithm for Malware Classification:

n-gram MCSC

Myung-Jae Lim

1
, Jae-Ju An

1
, So-Hee Jun

1
 and Young-Man Kwon

1*

1Department of Medical IT, Eulji University, Seongnam, Korea

*: corresponding author

Received 27 Sep. 2019, Revised 22 Feb. 2020, Accepted 23 Feb. 2020, Published 01 Mar. 2020

Abstract: In this paper, we proposed n-gram MCSC. This method extracts n-gram opcode from execution file and use Simhash to

make image of them. We measured and compared the performance metrics of n-gram MCSC and existing MCSC such as accuracy,

loss, precision and AUC value of PR curve and ROC curve. To verify whether the difference of accuracy is significant statistically or

not, we made experiments of it thirty times and did the ANOVA analysis. We found it was significant. As the result of post-hoc

analysis, n-gram MCSC showed better result than existing MCSC in accuracy. The 2-gram MCSC showed the better result than 3-

gram MCSC in terms of accuracy, precision, AUC value of PR curve and ROC curve.

Keywords: Malware classification, Malware detection, Malware visualization, Simhash, N-gram, Deep learning

1. INTRODUCTION

Malware is malicious program designed to disrupt and

damage a computer system. This malware has increased

significantly in recent years and even caused global

problems. Therefore, detecting malware is considered as

the critical factor in computer security and has achieved

remarkable improvement as the result of various studies.

However, it still requires a lot of research as malware

continues to be evolved by using technologies that create

variants and avoid detection.

For detecting malware, there are two main

technologies: static analysis and dynamic analysis [1].

First, static analysis is a method of detecting malware by

using the static characteristics of execution file without

running it. Next, dynamic analysis is a method of

analyzing and detecting malware by using the behavioral

characteristics of execution file while running it in a

limited environment. Both methods have recently been

combined with AI (artificial intelligence) algorithms.

 In section 2, we will present related works about the

two methods for malware detection, MCSC, n-gram and

performance metrics. In section 3, we propose N-gram

MCSC system for generating malware image and explain

details of the system at each step. In section 4, we explain

our experimental setting and result of our experiment. We

conclude the performance of proposed method according

to experimental results. In section 5, we summarize the

proposed system and experimental results.

2. RELATED WORKS

A. Static analysis and Dynamic analysis

To detect malware, we need to know whether file has
malicious activity or not. To do this, there are two main
approaches for analyzing execution file: static analysis
and dynamic analysis.

Static analysis is the method of analyzing executable
files without running them to determine whether they are
malware or not. This method uses their characteristics
such as string signature, byte sequence n-grams and
opcode or opcode distribution etc. However, the
disadvantage of this method is vulnerable to obfuscation
(hiding the original algorithm, data structures or the logic
of the code) because it does not run the program.

The dynamic analysis is the method of analyzing
behavioral characteristics of execution file while running
it. Because a file must be executed, we do it in a limited
environment like a virtual environment, simulator,
sandbox etc. It monitors behavior like API call or tainting
others. As malicious programmers recently use
obfuscation to avoid static methods, dynamic analysis is
getting interest because it can detect what execution files
actually do. However, the disadvantage of this method is
time-consuming, and it needs limited environments to do.

http://dx.doi.org/10.12785/ijcds/090204

180 Young-Man Kwon, et. al.: Efficient Algorithm for Malware Classification: n-gram MCSC

http://journals.uob.edu.bh

B. MCSC (Malware Classification using Simhash and

CNN algorithm)

In classification for detecting malware, there are
various methods to apply the method of natural language
processing or apply the method of image processing. To
utilize image processing, we need the binary execution
file must be converted to image.

There are several ways to make the execution file as
image. Nataraj [2] mapped the binary code of it to 8-bit
vector and convert the 8-bit vector to grayscale image.
Han [3] makes image using Simhash and dbj2. He
transformed the opcodes from a file into color image
matrices by locating with Simhash and giving color with
dbj2. Sang Ni [4] makes image by using Simhash and
called it MCSC.

MCSC uses Simhash algorithm to make image from
execution file. Simhash [5] is a method that represents
document as a value, which can be used to check whether
two documents are similar or not. This method can reduce
time-cost by comparing each value of documents rather
than comparing the texts in them one by one. Simhash
consists of tokenizing given data, hashing all tokenized
data and fiving weight, calculating weighted vectors into a
calculated value and converting the calculated value into a
binary value. For more details, we give a naïve example in
Fig. 1.

Figure 1. Simhash algorithm

First, tokenizing separates given data into each word.
Next, the words are hashed, and it gives us n-bit length of
binary value, regardless of the length of data. For hashing,
there are various hash method including md-5, sha-128,
sha-256 and so on [6]. Hashed n-bit binary values are
changed by weight, which can be any number. When
weighting, the number 1 changes to 1*w, 0 changes to -
1*w. After adding all weighted values, we get a calculated
value. Then, converting the value with following rule: The
1 if positive else the 0. Finally, we can get n-bit binary
value that represents given data, which can be converted
into decimal or hexadecimal.

We displayed MCSC algorithm in Fig.2. This consists
of three procedures (steps): feature extraction, making
image (visualization) and training composed of feature
extraction of neural net and classification. In this system,
we use the execution file instead of plain text file. In the

window system, the main format of execution file is the

PE (portable execution).

Figure 2. The overall procedure of MCSC

In the step of feature extraction, it disassembles
execution file to get PE format by disassembler like IDA
pro. In addition, it extracts only opcodes in the PE format.
In the step of visualization, the extracted opcodes are
encoded by Simhash function to get the fixed length of
Simhash binary value. As it has fixed length of binary
value regardless of the number of the opcodes, MCSC has
advantage in using all information of the opcodes. In the
step of training, it converts the fixed length of binary
value into X*Y image, where X*Y is depending on the
types of Simhash. Classifier uses CNN model, learns
features of each malware image and classifies it to classes
where it belong.

C. N-gram

N-gram [7] is a method of grouping data into N-size
chunks when there is a given data. An n-gram of size 1 is
referred to as a "unigram", size 2 is a "bigram" or
"digram" and size 3 is a "trigram". N-gram is not only
used in natural language processing, but also used
effectively malware detection area. N-gram tokenizes
given data into several words. Then, it made new word
composed of n-size consecutive words to get context
information. For example, 2-gram example is shown in
Fig. 3.

Figure 3. 2-gram example

Igor Santos [8] used a method to get file signatures
that are made up of the set of n-grams for every file in
author's dataset. It got the best result 74.37% when n-size
is 4 and false positive ratio is 0%. In this paper, we apply
n-gram to opcode sequence of each file and use the n-
gram opcode sequence.

 Int. J. Com. Dig. Sys. 9, No.2, 179-185 (Mar-2020) 181

http://journals.uob.edu.bh

D. Performance metrics

For measuring the performance of classification task,
confusion matrix is typical method for this. Confusion
matrix has negative and positive predictions on x-axis and
negative and positive actual labels on y-axis, we divide
each corresponding section as TN, FP, FN, TP. TN (true
negative) means classifier predicted negative label for
given data, and the actual label of the data was negative.
FN (false negative) means classifier predicted negative
label for given data, in fact, the actual label of the data
was positive. Again, FP (false positive) means that
prediction was positive label, but the actual label was
negative. TP (true positive) means that prediction was
positive label, and the actual label was positive.

Figure 4. Confusion Matrix

To get the more concise metrics, we use precision and
recall. Through confusion metrics, the method of
obtaining precision and recall is as follows.

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1)

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

Equation (1) is precision that is actual positive class
rate of total positive predictions. For example, when high
precision, if weather forecast predicts tomorrow's weather
is sunny, the probability of sunny weather is high.
Equation (2) is positive prediction rate of actual positive.

We can draw PR curve [9] with them. PR curve is
consisted of recall on x-axis and precision on y-axis. PR
curve is very useful when the dataset is highly imbalanced.

ROC curve is drawn True positive rate (TPR) and
false positive rate (FPR). TPR is same with recall, and
FPR is calculated dividing FP with TN + FP. ROC curve
is not accurate in the case of imbalanced dataset. However,
it can be used as convenient performance measurement
for comparing several models at once.

Area under the curve (AUC) is the bottom area of the
PR or ROC curve. The more AUC is close to 1.0, the
more classifier classifies well.

3. PROPOSED METHOD

In this paper, we propose the N-gram MCSC
algorithm for malware classification based on the existing
MCSC algorithm. The proposed system looks like as Fig.
5.

Figure 5. Proposed system: N-gram MCSC

As we know in Fig. 5, it extracts opcodes from ASM
files. After that, we make n-gram opcode. It is a method
for grouping the opcode sequence into N size chunk
sequence using N-gram as explained in Simhash
encoding. This is the key idea of our system. The overall
procedure of making image from one ASM file is in the
following Algorithm. 1 (written by pseudo python code).

Algorithm 1 Making image from ASM file

input: ASM file

output: 32 x 32 image

 1. Begin

 2. make opcode_instruction_set

 3. opcode_list = []

 4. for token in ASM file:

 5. if token in opcode_instruction_set :

 6. opcode_list.append(token)

 7. intialize n for n-gram

 8. ngram_list = []

 9. list_size = length(opcode_list)

10. for i in range (0, (list_size - n)+1):

11. out = opcode_list[i]

12. for j in range (1, n):

13. out= out + opcode_list[i+j]

14. ngram_list.append(out)

15. apply Simhash (refer to reference [7])

16. reshape the result with bilinear interpolation

In the step of Simhash, we used Simhash function that
is in hashlib library in Python. Especially, we used
Simhash-768 (SHA-768) that is proposed in MCSC paper
because SHA-768 got the best result. The result image of
Simhash is 32 x 24, so we used bilinear interpolation in
openCV to make them square (32 x 32).

182 Young-Man Kwon, et. al.: Efficient Algorithm for Malware Classification: n-gram MCSC

http://journals.uob.edu.bh

In the final step, neural network of MCSC paper
consists of three convolutional layers with tangent
hyperbolic activation function and two Maxpoolling
layers with dropout layer. After that, it flattens the output
of convolution layers and used the fully connected layers.
Those consist of 1568, 512, 256 and 9 nodes sequentially.

4. EXPERIMENTAL RESULTS

For dataset, we used Microsoft Challenge dataset [10]
that has nine classes, total 10,868 asm files. Among them,
we can use 10,734 files during extracting opcode.

At first, for comparing feature image of n-gram
opcode to the method of MCSC (1-gram), we generated
images of each malware family by using algorithm 1 for
1-gram, 2-gram and 3-gram opcode. Some result of them
is in the Fig. 6. As you can see, feature images maintained
distinct features compared with other families and similar
feature compared within same family according to n-gram.

We implemented the proposed method with Python
3.6 and Pytorch 1.1.0 version. We used parameters of
neural network, batch size as 128, epoch as 1500, learning
rate as 0.009, dropout rate as 0.7 and used weighted-cross
entropy loss that give high weight to low number of class
[11] because Microsoft challenge dataset is highly
imbalanced.

We run our method for the 1-gram, 2-gram and 3-
gram thirty times and measured accuracy, loss and max
accuracy. The mean of them are in the table 1. The
boxplot of accuracy is in the left side of Fig. 7. We also
show the accuracy curve per epoch is in the right side of
Fig. 7.

As we can see, the accuracy of MCSC is 0.954 and

the 2-gram and 3-gram methods are 0.983 and 0.981 each.

Standard deviation of them are similar. For loss, MCSC

recorded mean loss over 7, while the others under 1.3.

According to the loss, MCSC show unstable standard

deviation than others. The max accuracy is 0.988 for 2-

gram MCSC.

TABLE I. ACCURACY & LOSS

Name
Accuracy Loss Max

accuracy mean std mean std

MCSC 0.954 0.0016 7.740 0.466 0.961

2-gram

MCSC
0.983 0.0019 1.230 0.021 0.988

3-gram

MCSC
0.981 0.0017 0.950 0.018 0.986

As we can see the boxplot in the left side of Fig. 7, N-

gram MCSCs (2-gram and 3-gram MCSC) have better

accuracy than MCSC. For three methods to have

difference statistically, we made analysis of variance

(ANOVA). As the result of it, there is a significant

difference (p value = 7205e-90 < 0.01). Therefore, we did

post-hoc-analysis. In the case between 2-gram MCSC

and 3-gram MCSC, the result showed significant

difference (p = 0.000089 < 0.01). The mean accuracy per

epoch in the right side of Fig. 7, it shows N-gram MCSCs

can learn faster than MCSC.

Figure 6. Image of n-gram opcode for malware family

Figure 7. Boxplot and mean accuracy per epoch

 Int. J. Com. Dig. Sys. 9, No.2, 179-185 (Mar-2020) 183

http://journals.uob.edu.bh

We presented the performance of precisions in Fig. 8

for each malware family. MCSC showed good precision

for most of classes except Obfuscator.ACY class. On the

other hand, 2-gram and 3-gram MCSCs show huge

improvement at Obfucator. In addition, 2-gram MCSC

show good precision for each class. However, 3-gram

MCSC got the lowest precision at Simda class, though it

can detect most of classes well. Therefore, we can

conclude the 2-gram method get the best precision among

them.

Whenever the positive class is rare, the PR curve is

important. Therefore, we presented PR curves for each

method in Fig. 9. They are the result when we treat each

malware as binary class. MCSC shows more unstable

curves at most of the classes than 2-gram and 3-gram

MCSC, which means that MCSC cannot detect malware

properly. However, 2-gram and 3-gram MCSC show

stable curve, which means they can detect malware,

properly when even thresholds are high.

To quantify the performance of PR curve, we

measured the AUC (area under curve) value of them and

showed them within Fig. 9. The mean of PR-AUC value

for MCSC is 0.942, for 2-gram is 0.984 and for 3-gram is

0.979. Therefore, we can conclude 2-gram MCSC got the

best performance among them according to AUC value

of PR curve.

The ROC curves for each malware family according

to n-gram is shown in Fig. 10. They are also the result

when we treat each malware as binary class. In the case

of Lollipop, Kelihos series, Vundo and Gatak, 3 methods

showed very stable curve. However, in the case of

Ramnit, Simda and Obfuscator.ACY, MCSC showed

unstable curve, while others still showed stable curve.

Therefore, we can conclude 2-gram and 3-gram MCSC

are better method than MCSC.

To quantify the performance of ROC curve, we

measured the AUC value of them and showed them

within Fig. 10. The mean of ROC-AUC value for MCSC

is 0.987, for 2-gram is 0.997 and for 3-gram is 0.995.

Therefore, we can conclude 2-gram MCSC got the best

performance among them according to AUC value of

ROC curve.

5. CONCLUSION

In this paper, we proposed efficient algorithm that is

N-gram MCSC. This algorithm applied N-gram method

to opcode sequence and encode the result to make image

by using Simhash algorithm. For feature extraction and

classification, we used the same neural network of

MCSC.

To prove the performance of proposed method, we

compared the result of MCSC, 2-gram MCSC and 3-

gram MCSC through accuracy, loss, precision, AUC

value of PR curve and ROC curve. In the view of

accuracy and loss, we concluded the difference of three

methods is significant by using ANOVA and post-hoc

analysis. The 2-gram MCSC got the best result among

three methods. In the view of precision, we concluded 2-

gram MCSC showed the best performance. In the view of

the PR-AUC value, we concluded the 2-gram MCSC got

the best result among them. In the view of the ROC-AUC

value, we concluded the 2-gram MCSC got the best result.

In the all kinds of view, we concluded that 2-gram

method showed best performance among the N-gram.

Figure 8. Precision of each methods for malware family

Figure 9. PR curve of compared methods

184 Young-Man Kwon, et. al.: Efficient Algorithm for Malware Classification: n-gram MCSC

http://journals.uob.edu.bh

ACKNOWLEDGEMENT

This work was supported by R.O.K. National

Research Foundation under grant NRF-

2017R1D1A1B03036372 in 2019.

REFERENCES

[1] E. Gandotra, D. Bansal and S. Sofat, "Malware Analysis and
Classification: A Survey", Journal of Information Security, vol.
05, no. 02, pp. 56-64, 2014.

[2] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang. A
comparative assessment of malware classification using binary
texture analysis and dynamic analysis. In Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence, pages 21–
30. ACM, 2011.

[3] K. Han, J. H. Lim, and E. G. Im. Malware analysis method using
visualization of binary files. In Proceedings of the 2013 Research
in Adaptive and Convergent Systems, pages 317–321. ACM,
2013.

[4] S. Ni, Q. Qian, and R. Zhang, ‘‘Malware identification using
visualiza-tion images and deep learning,’’Comput. Secur., vol. 77,
pp. 871–885,Aug. 2018.

[5] M. Charikar. Similarity estimation techniques from
roundingalgorithms. InSTOC, 2002.

[6] P. Gallagher, (2008). Secure Hash Standard (SHS).

[7] I.H. Witten and E. Frank, Data Mining-Pracitcal Machine
Learning Tools and Techniques with JAVA Implementations.
Morgan Kaufmann, 2000

[8] Igor Santos, Yoseba K. Penya, Jaime Devesa and Pablo G.
Bringas. “N-GRAMS-BASED FILE SIGNATURES FOR
MALWARE DETECTION”,S3Lab, Deusto Technological
Foundation, Bilbao, Basque Country fisantos, ypenya, jdevesa,
pgbg@tecnologico.deusto.es

[9] M. Buckland and F. Gey, “The Relationship between Recall and
Precision,” J. Am. Soc. for Information Science, vol. 45, no. 1, pp.
12-19, 1994.

[10] "Microsoft Malware Prediction | Kaggle", Kaggle.com, 2019.

[11] Yue, S., 2017. Imbalanced Malware Images Classification: a CNN
based Approach.arXiv preprint arXiv:1708.08042.[6]LeCun, Y.,
2015. LeNet-5, con

Figure 10. ROC curve for each malware family

 Int. J. Com. Dig. Sys. 9, No.2, 179-185 (Mar-2020) 185

http://journals.uob.edu.bh

Myung-Jae Lim
1998.2 Ph.D. in Department of Computer

science, Chung Ang university, Korea.

1992.3 ~ Professor in Eulji university,

Korea.

Jae-Ju An
2014.3 ~ Junior in Department of Medical

IT, Eulji university, Korea.

So-Hee Jun
2015.3 ~ Senior in Department of Medical

IT, Eulji university, Korea

Young-Man Kwon
1985.2 M.S. in Department of Electric and

Electronic engineering, KAIST, Korea.

1998.3 Doctor course completion, in

Department of information and

communication engineering, KAIST,

Korea.

2007.2 Ph.D. in Department of Electronic

engineering, Kwangwoon university,

Korea

1993.3 ~ Professor in Eulji university, Korea.

