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Abstract: In this paper, we proposed n-gram MCSC. This method extracts n-gram opcode from execution file and use Simhash to 

make image of them. We measured and compared the performance metrics of n-gram MCSC and existing MCSC such as accuracy, 

loss, precision and AUC value of PR curve and ROC curve. To verify whether the difference of accuracy is significant statistically or 

not, we made experiments of it thirty times and did the ANOVA analysis. We found it was significant. As the result of post-hoc 

analysis, n-gram MCSC showed better result than existing MCSC in accuracy. The 2-gram MCSC showed the better result than 3-

gram MCSC in terms of accuracy, precision, AUC value of PR curve and ROC curve. 
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1. INTRODUCTION 

Malware is malicious program designed to disrupt and 

damage a computer system. This malware has increased 

significantly in recent years and even caused global 

problems. Therefore, detecting malware is considered as 

the critical factor in computer security and has achieved 

remarkable improvement as the result of various studies. 

However, it still requires a lot of research as malware 

continues to be evolved by using technologies that create 

variants and avoid detection. 

For detecting malware, there are two main 

technologies: static analysis and dynamic analysis [1]. 

First, static analysis is a method of detecting malware by 

using the static characteristics of execution file without 

running it. Next, dynamic analysis is a method of 

analyzing and detecting malware by using the behavioral 

characteristics of execution file while running it in a 

limited environment. Both methods have recently been 

combined with AI (artificial intelligence) algorithms. 

 In section 2, we will present related works about the 

two methods for malware detection, MCSC, n-gram and 

performance metrics. In section 3, we propose N-gram 

MCSC system for generating malware image and explain 

details of the system at each step. In section 4, we explain 

our experimental setting and result of our experiment. We 

conclude the performance of proposed method according 

to experimental results. In section 5, we summarize the 

proposed system and experimental results. 

2. RELATED WORKS 

A. Static analysis and Dynamic analysis 

To detect malware, we need to know whether file has 
malicious activity or not. To do this, there are two main 
approaches for analyzing execution file: static analysis 
and dynamic analysis.  

Static analysis is the method of analyzing executable 
files without running them to determine whether they are 
malware or not. This method uses their characteristics 
such as string signature, byte sequence n-grams and 
opcode or opcode distribution etc. However, the 
disadvantage of this method is vulnerable to obfuscation 
(hiding the original algorithm, data structures or the logic 
of the code) because it does not run the program. 

The dynamic analysis is the method of analyzing 
behavioral characteristics of execution file while running 
it. Because a file must be executed, we do it in a limited 
environment like a virtual environment, simulator, 
sandbox etc. It monitors behavior like API call or tainting 
others. As malicious programmers recently use 
obfuscation to avoid static methods, dynamic analysis is 
getting interest because it can detect what execution files 
actually do. However, the disadvantage of this method is 
time-consuming, and it needs limited environments to do. 

http://dx.doi.org/10.12785/ijcds/090204 
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B. MCSC (Malware Classification using Simhash and 

CNN algorithm) 

In classification for detecting malware, there are 
various methods to apply the method of natural language 
processing or apply the method of image processing. To 
utilize image processing, we need the binary execution 
file must be converted to image. 

There are several ways to make the execution file as 
image. Nataraj [2] mapped the binary code of it to 8-bit 
vector and convert the 8-bit vector to grayscale image. 
Han [3] makes image using Simhash and dbj2. He 
transformed the opcodes from a file into color image 
matrices by locating with Simhash and giving color with 
dbj2. Sang Ni [4] makes image by using Simhash and 
called it MCSC. 

MCSC uses Simhash algorithm to make image from 
execution file. Simhash [5] is a method that represents 
document as a value, which can be used to check whether 
two documents are similar or not. This method can reduce 
time-cost by comparing each value of documents rather 
than comparing the texts in them one by one. Simhash 
consists of tokenizing given data, hashing all tokenized 
data and fiving weight, calculating weighted vectors into a 
calculated value and converting the calculated value into a 
binary value. For more details, we give a naïve example in 
Fig. 1. 

 
Figure 1. Simhash algorithm 

First, tokenizing separates given data into each word. 
Next, the words are hashed, and it gives us n-bit length of 
binary value, regardless of the length of data. For hashing, 
there are various hash method including md-5, sha-128, 
sha-256 and so on [6]. Hashed n-bit binary values are 
changed by weight, which can be any number. When 
weighting, the number 1 changes to 1*w, 0 changes to -
1*w. After adding all weighted values, we get a calculated 
value. Then, converting the value with following rule: The 
1 if positive else the 0. Finally, we can get n-bit binary 
value that represents given data, which can be converted 
into decimal or hexadecimal. 

We displayed MCSC algorithm in Fig.2. This consists 
of three procedures (steps): feature extraction, making 
image (visualization) and training composed of feature 
extraction of neural net and classification. In this system, 
we use the execution file instead of plain text file. In the 

window system, the main format of execution file is the 

PE (portable execution).  

Figure 2. The overall procedure of MCSC 

In the step of feature extraction, it disassembles 
execution file to get PE format by disassembler like IDA 
pro. In addition, it extracts only opcodes in the PE format. 
In the step of visualization, the extracted opcodes are 
encoded by Simhash function to get the fixed length of 
Simhash binary value. As it has fixed length of binary 
value regardless of the number of the opcodes, MCSC has 
advantage in using all information of the opcodes. In the 
step of training, it converts the fixed length of binary 
value into X*Y image, where X*Y is depending on the 
types of Simhash. Classifier uses CNN model, learns 
features of each malware image and classifies it to classes 
where it belong. 

C. N-gram 

N-gram [7] is a method of grouping data into N-size 
chunks when there is a given data. An n-gram of size 1 is 
referred to as a "unigram", size 2 is a "bigram" or 
"digram" and size 3 is a "trigram". N-gram is not only 
used in natural language processing, but also used 
effectively malware detection area. N-gram tokenizes 
given data into several words. Then, it made new word 
composed of n-size consecutive words to get context 
information. For example, 2-gram example is shown in 
Fig. 3. 

Figure 3. 2-gram example 

Igor Santos [8] used a method to get file signatures 
that are made up of the set of n-grams for every file in 
author's dataset. It got the best result 74.37% when n-size 
is 4 and false positive ratio is 0%. In this paper, we apply 
n-gram to opcode sequence of each file and use the n-
gram opcode sequence. 
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D. Performance metrics 

For measuring the performance of classification task, 
confusion matrix is typical method for this. Confusion 
matrix has negative and positive predictions on x-axis and 
negative and positive actual labels on y-axis, we divide 
each corresponding section as TN, FP, FN, TP. TN (true 
negative) means classifier predicted negative label for 
given data, and the actual label of the data was negative. 
FN (false negative) means classifier predicted negative 
label for given data, in fact, the actual label of the data 
was positive. Again, FP (false positive) means that 
prediction was positive label, but the actual label was 
negative. TP (true positive) means that prediction was 
positive label, and the actual label was positive. 

Figure 4. Confusion Matrix 

To get the more concise metrics, we use precision and 
recall. Through confusion metrics, the method of 
obtaining precision and recall is as follows. 

                            Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

                            Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

Equation (1) is precision that is actual positive class 
rate of total positive predictions. For example, when high 
precision, if weather forecast predicts tomorrow's weather 
is sunny, the probability of sunny weather is high. 
Equation (2) is positive prediction rate of actual positive. 

We can draw PR curve [9] with them. PR curve is 
consisted of recall on x-axis and precision on y-axis. PR 
curve is very useful when the dataset is highly imbalanced.  

ROC curve is drawn True positive rate (TPR) and 
false positive rate (FPR). TPR is same with recall, and 
FPR is calculated dividing FP with TN + FP. ROC curve 
is not accurate in the case of imbalanced dataset. However, 
it can be used as convenient performance measurement 
for comparing several models at once.  

Area under the curve (AUC) is the bottom area of the 
PR or ROC curve. The more AUC is close to 1.0, the 
more classifier classifies well.  

3. PROPOSED METHOD 

In this paper, we propose the N-gram MCSC 
algorithm for malware classification based on the existing 
MCSC algorithm. The proposed system looks like as Fig. 
5. 

Figure 5. Proposed system: N-gram MCSC 

As we know in Fig. 5, it extracts opcodes from ASM 
files. After that, we make n-gram opcode. It is a method 
for grouping the opcode sequence into N size chunk 
sequence using N-gram as explained in Simhash 
encoding. This is the key idea of our system. The overall 
procedure of making image from one ASM file is in the 
following Algorithm. 1 (written by pseudo python code).  

 

Algorithm 1 Making image from ASM file 

input: ASM file 

output: 32 x 32 image 

 1. Begin 

 2. make opcode_instruction_set  

 3. opcode_list = []  

 4. for token in ASM file: 

 5.     if token in opcode_instruction_set : 

 6.         opcode_list.append(token) 

 7. intialize n for n-gram 

 8. ngram_list = [] 

 9. list_size = length(opcode_list) 

10. for i in range (0, (list_size - n)+1): 

11.     out = opcode_list[i] 

12.     for j in range (1, n): 

13.         out= out + opcode_list[i+j] 

14.     ngram_list.append(out) 

15. apply Simhash (refer to reference [7]) 

16. reshape the result with bilinear interpolation 

 

In the step of Simhash, we used Simhash function that 
is in hashlib library in Python. Especially, we used 
Simhash-768 (SHA-768) that is proposed in MCSC paper 
because SHA-768 got the best result. The result image of 
Simhash is 32 x 24, so we used bilinear interpolation in 
openCV to make them square (32 x 32).  
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In the final step, neural network of MCSC paper 
consists of three convolutional layers with tangent 
hyperbolic activation function and two Maxpoolling 
layers with dropout layer. After that, it flattens the output 
of convolution layers and used the fully connected layers. 
Those consist of 1568, 512, 256 and 9 nodes sequentially. 

4. EXPERIMENTAL RESULTS 

For dataset, we used Microsoft Challenge dataset [10] 
that has nine classes, total 10,868 asm files. Among them, 
we can use 10,734 files during extracting opcode. 

At first, for comparing feature image of n-gram 
opcode to the method of MCSC (1-gram), we generated 
images of each malware family by using algorithm 1 for 
1-gram, 2-gram and 3-gram opcode. Some result of them 
is in the Fig. 6. As you can see, feature images maintained 
distinct features compared with other families and similar 
feature compared within same family according to n-gram. 

We implemented the proposed method with Python 
3.6 and Pytorch 1.1.0 version. We used parameters of 
neural network, batch size as 128, epoch as 1500, learning 
rate as 0.009, dropout rate as 0.7 and used weighted-cross 
entropy loss that give high weight to low number of class 
[11] because Microsoft challenge dataset is highly 
imbalanced. 

We run our method for the 1-gram, 2-gram and 3-
gram thirty times and measured accuracy, loss and max 
accuracy. The mean of them are in the table 1. The 
boxplot of accuracy is in the left side of Fig. 7. We also 
show the accuracy curve per epoch is in the right side of 
Fig. 7. 

As we can see, the accuracy of MCSC is 0.954 and 

the 2-gram and 3-gram methods are 0.983 and 0.981 each. 

Standard deviation of them are similar. For loss, MCSC 

recorded mean loss over 7, while the others under 1.3. 

According to the loss, MCSC show unstable standard 

deviation than others. The max accuracy is 0.988 for 2-

gram MCSC. 

TABLE I.  ACCURACY & LOSS 

Name 
Accuracy Loss Max 

accuracy mean std mean std 

MCSC 0.954 0.0016 7.740 0.466 0.961 

2-gram 

MCSC 
0.983 0.0019 1.230 0.021 0.988 

3-gram 

MCSC 
0.981 0.0017 0.950 0.018 0.986 

As we can see the boxplot in the left side of Fig. 7, N-

gram MCSCs (2-gram and 3-gram MCSC) have better 

accuracy than MCSC. For three methods to have 

difference statistically, we made analysis of variance 

(ANOVA). As the result of it, there is a significant 

difference (p value = 7205e-90 < 0.01). Therefore, we did 

post-hoc-analysis. In the case between 2-gram MCSC 

and 3-gram MCSC, the result showed significant 

difference (p = 0.000089 < 0.01). The mean accuracy per 

epoch in the right side of Fig. 7, it shows N-gram MCSCs 

can learn faster than MCSC. 

 

Figure 6. Image of n-gram opcode for malware family 

 

Figure 7. Boxplot and mean accuracy per epoch 
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We presented the performance of precisions in Fig. 8 

for each malware family. MCSC showed good precision 

for most of classes except Obfuscator.ACY class. On the 

other hand, 2-gram and 3-gram MCSCs show huge 

improvement at Obfucator. In addition, 2-gram MCSC 

show good precision for each class. However, 3-gram 

MCSC got the lowest precision at Simda class, though it 

can detect most of classes well. Therefore, we can 

conclude the 2-gram method get the best precision among 

them. 

Whenever the positive class is rare, the PR curve is 

important. Therefore, we presented PR curves for each 

method in Fig. 9. They are the result when we treat each 

malware as binary class. MCSC shows more unstable 

curves at most of the classes than 2-gram and 3-gram 

MCSC, which means that MCSC cannot detect malware 

properly. However, 2-gram and 3-gram MCSC show 

stable curve, which means they can detect malware, 

properly when even thresholds are high.  

To quantify the performance of PR curve, we 

measured the AUC (area under curve) value of them and 

showed them within Fig. 9. The mean of PR-AUC value 

for MCSC is 0.942, for 2-gram is 0.984 and for 3-gram is 

0.979. Therefore, we can conclude 2-gram MCSC got the 

best performance among them according to AUC value 

of PR curve. 

The ROC curves for each malware family according 

to n-gram is shown in Fig. 10. They are also the result 

when we treat each malware as binary class. In the case 

of Lollipop, Kelihos series, Vundo and Gatak, 3 methods 

showed very stable curve. However, in the case of 

Ramnit, Simda and Obfuscator.ACY, MCSC showed 

unstable curve, while others still showed stable curve. 

Therefore, we can conclude 2-gram and 3-gram MCSC 

are better method than MCSC. 

To quantify the performance of ROC curve, we 

measured the AUC value of them and showed them 

within Fig. 10. The mean of ROC-AUC value for MCSC 

is 0.987, for 2-gram is 0.997 and for 3-gram is 0.995. 

Therefore, we can conclude 2-gram MCSC got the best 

performance among them according to AUC value of 

ROC curve.  

5.  CONCLUSION 

In this paper, we proposed efficient algorithm that is 

N-gram MCSC. This algorithm applied N-gram method 

to opcode sequence and encode the result to make image 

by using Simhash algorithm. For feature extraction and 

classification, we used the same neural network of 

MCSC. 

To prove the performance of proposed method, we 

compared the result of MCSC, 2-gram MCSC and 3-

gram MCSC through accuracy, loss, precision, AUC 

value of PR curve and ROC curve. In the view of 

accuracy and loss, we concluded the difference of three 

methods is significant by using ANOVA and post-hoc 

analysis. The 2-gram MCSC got the best result among 

three methods. In the view of precision, we concluded 2-

gram MCSC showed the best performance. In the view of 

the PR-AUC value, we concluded the 2-gram MCSC got 

the best result among them. In the view of the ROC-AUC 

value, we concluded the 2-gram MCSC got the best result. 

In the all kinds of view, we concluded that 2-gram 

method showed best performance among the N-gram. 

 

Figure 8. Precision of each methods for malware family 

 

Figure 9. PR curve of compared methods 
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Figure 10. ROC curve for each malware family 
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