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Abstract: This work proposes a framework to design, formulate and implement a path tracker for self-driving cars (SDC) 

based on nonlinear model-predictive-control (NMPC) approach. The presented methodology is developed to be used by 

designers in the industrial sector, practitioners and academics. Therefore, it is straight forward, flexible, and 

comprehensive as well. It allows the designer to easily integrate multiple objective terms in the cost function either 

opposing or correlating. The proposed design of the controller not only targets accurate tracking but also comfortable ride 

and fast travel time as well by introducing several sub-objective terms in the main cost function to satisfy these goals. 

These sub-objective terms are weighted according to their contribution to the optimization problem. The SDC-NMPC 

framework is developed using the high-performance language C++ and utilizes highly optimized math and optimization 

libraries for best real-time performance. This makes the SDC-MPC well suited for use in both ADAS and self-driving 

cars. Extensive simulation studies featuring complex tracks with many sharp turns have been carried out to evaluate the 

performance of the proposed SDC-NMPC at different speeds. The presented analysis shows that the proposed controller 

with its tuning technique outperforms that of the PID-based controller. 
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1. INTRODUCTION 

Increasing safety, reducing road accidents, improving 
energy efficiency and enhancing comfort and driving 
experience are the major motivations behind equipping 
modern cars with Advanced Driving Assistance Systems 
(ADAS) [1-2]. These motivations represent incremental 
steps toward a hypothetical future of safe fully autonomous 
vehicles [3-8]. 

Recent self-driving cars (SDCs) architectures include a 
dedicated module “the motion planner” that produces the 
path/trajectory the car has to follow to reach its designated 
destination [9]. The motion planner module generates 
desired trajectories for the next 5-10 seconds (in the future) 
and updates these trajectories at a 10 Hz rate [9]. The 
generated trajectory comes in the form of a series of 
waypoints measured on global-map coordinates. SDCs 
possess as well a Drive-by-Wire (DBW) system “the path 
tracker” that strives to follow the generated trajectory as 
precise and as efficient as possible [9]. “Precise” in terms 

of minimizing the aggregated Cross-Track Errors (CTEs) 
between the generated trajectories and the actual SDC 
driving trajectories. In addition, “Efficient” in terms of 
improving ride quality, minimizing travel time and 
reducing fuel consumption. 

The motivation of this paper is to facilitate for the SDC 
path tracker to achieve the previous kind-of-opposing 
objectives by proposing a sophisticated control 
methodology that takes into account all these objectives 
and provide a way to find a delicate balance among them 
based on the designer preferences. The proposed 
methodology is based on the Model Predictive Control 
(MPC) technique due to its flexibility and practicality [10]. 
The MPC technique is an optimal control method that has 
the advantage of tailoring its optimization strategy in a way 
that offers multiple options to reach the desired 
performance for strongly nonlinear systems with 
constraints [10], which are difficult to handle using 
traditional linear control approaches [11]. 

http://dx.doi.org/10.12785/ijcds/090511 
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Numerous thought-provoking MPC design 
methodologies exist in the literature, in [12] Ikeda et al 
proposed a new design of optimal control that takes only 
specified discrete values and applies finite-horizon sum-of-
absolute-values optimization. The work has been also 
extended to include infinite-horizon model predictive 
control with the presence of bounded noise and applied to 
altitude control of an aircraft showing how the MPC takes 
only discrete output values, which may not fit our problem 
as both SDC outputs (steering and speed) are continuous 
states.  

Moreover, Silva et al [13] proposed an iterative MPC 
that uses an iterative procedure to adjust a time-variant 
linearization of the nonlinear model of the system at each 
sampling time, which may allow controlling systems where 
a direct nonlinear MPC approach is not feasible. However, 
in the work considered in this paper, the used SDC model 
is time-invariant and the MPC optimization is solved using 
a primal-dual interior-point method [14] applied directly to 
the nonlinear model of the SDC.  

Furthermore, Vatankhah et al [15] proposed an 
adaptive nonlinear MPC approach based on a neural 
network model [16] that generates offset-free output even 
under external disturbances and parameters’ uncertainties. 
The adaptive structure for the model was provided by on-
line training of the neural network. However, this approach 
might be considered not practical for the SDC as it required 
an off-line training of the neural network with data 
collected from the controlled system while running under 
PID control. Additionally, online training for a controller is 
not desired in safety-critical systems like SDCs. 

Trajectory tracking is the process of designing a 
controller [10] that guides a vehicle (either ground [18], 
aerial [12] or marine [21]) and minimizes (or maximizes) 
some measure of performance while satisfying a set of 
constraints.  

The novelties of this paper can be enumerated as 
follows: 

1) Proposing a framework for constructing a Nonlinear 
MPC path tracker (SDC-NMPC) that provides a way of 
easily integrating several driving objectives through 
compounding a multi-term cost function. The proposed 
framework is meant to be easy to comprehend and 
straight forward to employ by the designers. Moreover, 
it allows multiple state variables to be combined 
together in one cost term if they are correlated or to be 
inserted separately in individual cost terms if their effect 
is required to be decoupled from other state variables. 

2) Emphasizing the development and implementation 
stages and highlighting the real-time performance in 
detail to bridge the gap between theory and practice, and 
to address the industrial audience as well. The SDC-
NMPC has been developed using C++ [25] with 
advanced math libraries to optimize real-time 
performance. Thus, it is taking into account the 

throughput (execution time) of affordable CPUs to 
handle the limited computational resources of 
embedded automotive hardware, and to prove that it is 
well suited for use in Advanced Driving Assistance 
Systems (ADAS) or self-driving cars. 

3) Most of the cited work for the design of path trackers 
using MPC approach use only two terms in the cost 
function [10], which are the aggregated cross-track 
errors and the vehicle-orientation errors. However, in 
this work, several sub-objective terms are included to 
improve ride quality, fuel efficiency, and safety. 
Examples of such terms are speed-regulation term, 
steering-smoothening term, acceleration-management 
term, speed-steering term, and control-effort 
minimization term. 

4) The MPC’s nonlinear convex optimization problem is 
solved iteratively using the efficient primal-dual 
interior-point technique [14] with the direct 
incorporation of the vehicle nonlinear model (without 
linearization) aiming for highest accuracy [10]. 
Therefore, both IPOPT optimization [26] and the 
CppAD differentiation [27] efficient C++ libraries are 
employed seeking the best execution time. 

2. NMPC PROBLEM FORMULATION 

The general discrete-time nonlinear system in (1) is 
considered as the vehicle model 

    𝑥𝑘+1 = 𝑓(𝑥𝑓 , 𝑢𝑘), 𝑥𝑘 ∈ 𝕏,  𝑢𝑘 ∈ 𝕌, (1) 

where 𝑥𝑘 ∈ ℝ𝑛𝑥  and 𝑢𝑘 ∈ ℝ𝑛𝑢  are the vehicle state and 
control action at time step k. Accordingly, a general MPC 
formulation can be expressed as follows 

min ∑ 𝑙(�̂�𝑖 , �̂�𝑖)

𝑁−1

𝑖=0

 

(2) 𝑠. 𝑡.     �̂�𝑖+1 = 𝑓(̅�̂�𝑖 , �̂�𝑖),   𝑖 = 0, … , 𝑁 − 1 

�̂�0 = 𝑥𝑘 , 

�̂�𝑖 ∈ 𝕏, �̂�𝑖 ∈ 𝕌 

where N is the horizon length, 𝑥𝑘  is the initial condition 
which is the vehicle state at time step k, 𝑥 ̂𝑎𝑛𝑑 𝑢 ̂are the 

predicted state and control action respectively, 𝑓(̅. , . ) is the 
nonlinear model equation representing the vehicle, 𝑙(. , . ) is 
the objective function. For tracking NMPC, 𝑙(. , . )  has 
usually a quadratic form (|�̂�𝑖 − 𝑥𝑠|2) that minimizes the 
difference between the predicted state and the set-point 𝑥𝑠. 

Equation (2) is solved using the Primal-Dual Interior-
Point (PDIP) method [15] as a constrained nonlinear 
optimization problem. To illustrate how the PDIP works, 
simply consider the all-inequality version of a nonlinear 
optimization problem 

min 𝑓(𝑥) 𝑠. 𝑡.  𝑐𝑖 (𝑥) ≥ 0 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 (3) 
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𝑥 ∈  ℝ𝑛 

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 →  ℝ, 𝑐𝑖: ℝ𝑛 →  ℝ 

The logarithmic barrier function [28] associated with 
(3) is 

𝐵(𝑥, 𝜇) = 𝑓(𝑥) − 𝜇 ∑ 𝑙𝑜𝑔(𝑐𝑖(𝑥))

𝑚

𝑖=1

 (4) 

Here 𝜇 is a small positive scalar, called the “barrier 
parameter”. As 𝜇 converges to zero, the minimum of 
𝐵(𝑥, 𝜇) should converge to a solution of (3). Consequently, 
the barrier function gradient is required and can be 
calculated as  

𝑔𝑏 = 𝑔 − 𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚

𝑖=1

∇𝑐𝑖(𝑥) (5) 

where 𝑔 is the gradient of the main function 𝑓(𝑥), and 
∇𝑐𝑖(𝑥) is the gradient of 𝑐𝑖(𝑥). 

3. THE VEHICLE MODEL 

In this paper, the kinematic bicycle model [29] is used 
to emulate the behavior of the self-driving car. The 
nonlinear continuous-time equations that describe the 
kinematic bicycle model shown in Error! Reference 
source not found. in an inertial frame are: 

�̇� = 𝑣 ∗ cos (𝜓 + 𝛽)   

(6) 

�̇� = 𝑣 ∗ sin (𝜓 + 𝛽) 

�̇� =
𝑣

𝑙𝑟

∗ sin (𝛽) 

�̇� = 𝑎 

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟

∗ 𝑡𝑎𝑛(𝛿𝑓)) 

𝛿�̇� = 𝜔     

where x and y are the coordinates of the center of mass 
in an inertial frame (X, Y ). 𝜓 is the inertial heading and 𝑣 
is the speed of the vehicle. lf and lr represent the distance 
from the center of the mass of the vehicle to the front and 
rear axles, respectively. 𝛽  is the angle of the current 
velocity of the center of mass with respect to the 
longitudinal axis of the car. a is the acceleration of the 
center of mass in the same direction as the velocity. The 
control inputs are the front and rear steering angles 𝛿𝑓, and 

𝛿𝑟 . Since in most vehicles the rear wheels cannot be 
steered, it is assumed that 𝛿𝑟 = 0. 𝜔 is the steering angular 
velocity. 

 

Figure 1.  The Kinematic Bicycle Model. 

Compared to higher fidelity vehicle models [29], the 
system identification on the kinematic bicycle model is 
easier because there are only two parameters to identify, lf 
and lr. This makes it simpler to port the same controller or 
path planner to other vehicles with differently sized 
wheelbases. 

The MPC employs the vehicle’s motion model to plan 
an optimized and realistic trajectory given a set of 
constraints. These constraints could be the limits of the 
vehicle’s motion, and a combination of costs that define 
how the vehicle should move (such as staying close to the 
best fit and the desired heading or preserving it from the 
excessive jerk of the steering wheel). 

4. THE PROPOSED SDC-NMPC TRACK FOLLOWER 

To design and implement the SDC-NMPC track 
follower, several measurements need to be collected 
periodically from the SDC sensors. The following is the list 
of these measurements: 

1) The “px” and “py” (the vehicle’s current x and y 
positions) measured in the global “map” coordinates. 
These values are received from the “SDC Localization 
Module” which used the fusion between Global 
Position Systems (GPS) [30], Inertial Measurement 
Units (IMU) [30], LiDAR, and Radar sensors [31] to 
produce accurate car positioning coordinates on the 
global map. 

2) The SDC velocity “VSDC” at the given instance 
measured in miles/hour (mph) and received from the car 
speedometer [32]. 

3) The SDC orientation angle (heading) “ψ” (-ve for left 
and +ve for right) in radians received from the IMU, 
Radar or the fusion between them [33]. 

4) The SDC orientation angle “Ψ-unity” in radians 
commonly used in navigation and simulations, it is 
calculated directly from “ψ” [34]. 

5) The current steering angle of the SDC “ 𝛿𝑓” measured 

in radians using the mounted vehicle steering angle 
sensor. 

https://en.wikipedia.org/wiki/Barrier_function
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6) The current throttle value mapped to the range [-1, 1] 
where (-ve for braking and +ve for speeding). 

7) The “PTsx” and “PTsy” arrays that include the 
waypoints (reference track) measured in global 
coordinates supplied by the path planner module of the 
SDC [35]. 

The SDC-NMPC tracker then uses some of the above 
information to produce a steer (angle) command as well as 
the throttle command (speed) to the SDC. The following 
are the steps used for the implementation of this controller: 

1) The received waypoints (“PTsx” and “PTsy”) are 
converted from global coordinates to vehicle 
coordinates using the following transformation 
equations: 

𝑉𝑃𝑇𝑠𝑥𝑖
= (𝑃𝑇𝑠𝑥𝑖

− 𝑝𝑥) cos 𝜓 − (𝑃𝑇𝑠𝑦𝑖
−

𝑝𝑦) sin 𝜓    

(7) 

𝑉𝑃𝑇𝑠𝑦𝑖
= (𝑃𝑇𝑠𝑦𝑖

− 𝑝𝑦) cos 𝜓

+ (𝑃𝑇𝑠𝑥𝑖
− 𝑝𝑥) sin 𝜓 

(8) 

where 𝑉𝑃𝑇𝑠𝑥𝑖
 and 𝑉𝑃𝑇𝑠𝑦𝑖

 are the ith waypoint of the 

reference track in vehicle coordinates, calculated using 
the received vehicle positions (“px” and “py”) and the 
vehicle orientation angle “ψ”. 

2) An nth order polynomial equation is then fitted using the 
transformed waypoints (in this implementation n is 
selected to be 3). This polynomial (Eq. (9)) now 
represents the “desired route/track” that the vehicle 
should follow precisely to find its way throughout the 
track. 

𝑦𝑡𝑟𝑎𝑐𝑘 = 𝑎𝑜 + 𝑎1𝑥𝑡𝑟𝑎𝑐𝑘 + 𝑎2𝑥𝑡𝑟𝑎𝑐𝑘
2  (9) 

3) The Cross Track Error “CTE” and the error in the 
vehicle orientation angle “eψ” are then calculated using 
the calculated coefficients of the fitted polynomial as 
follows: 

𝐶𝑇𝐸 =  𝑎𝑜 (10) 

𝑒𝜓 =  − tan−1 𝑎1 (11) 

Note that the SDC position “px” and “py” are always 
zeros in the vehicle coordinates. 

4) Six states (N_STATES = 6) are then selected to 
represent the SDC-MPC states as follows: 

𝑠𝑡𝑎𝑡𝑒1 = 𝑝𝑥 = 0 

(12) 
𝑠𝑡𝑎𝑡𝑒2 = 𝑝𝑦 = 0    

𝑠𝑡𝑎𝑡𝑒3 = 𝜓 = 0 

𝑠𝑡𝑎𝑡𝑒4 = 𝑉𝑆𝐷𝐶  

𝑠𝑡𝑎𝑡𝑒5 = 𝐶𝑇𝐸 

𝑠𝑡𝑎𝑡𝑒6 = 𝑒𝜓 

where px, py, and ψ are measured in vehicle coordinates. 
These states are then supplied to the NMPC solver 
(IPOPT [26]) to find the predicted sequence of the 
required “steering value” and “throttle value”. 

5) Within the NMPC solver, the MPC-control horizon is 
defined by the time step (i.e. Δt = 0.075 sec) and the 
duration in terms of the number of steps (i.e. N = 30).  

6) The number of controller outputs is defined as N-
OUTPUT = 2, and they are the steering (angle: δ) 
command as well as the throttle command 
(speed/brake). 

5. IMPLEMENTATION OF THE SDC-MPC ALGORITHM 

The following points shed the light on some details and 
specifics of the implementation of the proposed track 
follower: 

1) The algorithm is implemented using the high-
performance language GCC C++ [25] on Ubuntu Linux 
operating system [36]. This combination is fitting for 
the required real-time performance. 

2) A C++ Algorithmic Differentiation Package [27] is 
used to numerically solve the differential equations of 
the SDC model given by Eq. (6). 

3) The NMPC solver is implemented using the IPOPT 
package [26] which is used to solve the optimization 
problem of minimizing the objective function “𝑙(. , . )” 
as given by the example in Eq. (2) and will be detailed 
later in the next section.  

4) The number of NMPC solver variables is determined 
from the above information to be (n_vars = N-
STATES*N + N-OUTPUT*(N-1)). 

5) Moreover, the number of NMPC solver constraints is 
then determined from the above information to be 
(n_constraints = N-STATES * N). 

6) The controller variables and constraints are initialized 
and set to reinforce the boundary conditions for the 
optimization problem (e.g. the steering command (δ) is 
constrained between -25o to 25o, and the throttle 
command is also constrained between -1 to 1). 

7) Then the output of the controller (i.e. the solution of the 
optimization problem) is fed to the simulator or the 
actuators. 

6. THE NMPC OBJECTIVE FUNCTION 

The cost (objective) function of the SDC-NMPC is 
composed of several terms. Each term has its own sub-
objective within the core optimization problem. The main 
goal is to find a solution that can satisfy the purposes of 
these terms according to their weights (contribution) in the 
overall objective function. The final weights of all terms 
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that determine their contribution are given in TABLE I. 
The description of the terms and their sub-objectives are 
listed as follows: 

1) CTE term: The CTE (the cross-track error) represents 
the misalignment of the vehicle with respect to the 
center of the track at a given instance. The sub-objective 
of this term is to minimize the aggregation of the Cross 
Track Errors (CTE) for all prediction points (N=30) as 
given by Equations (13) and (14)  below: 

𝐶𝑇𝐸 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
− 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

(13) 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ 𝐶𝑇𝐸𝑖

2

𝑖=𝑁

𝑖=0

 

(14) 

2) eΨ term: The sub-objective of this term is to minimize 
the aggregation of the errors (eΨ) in the vehicle 
orientation angle, at a given instance, for all prediction 
points (N=30) as given by Equations (15) and (16) 
below: 

𝑒Ψ = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒
− 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑛𝑔𝑙𝑒 

(15) 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ 𝑒Ψ𝑖

2

𝑖=𝑁

𝑖=0

 

(16) 

3) V error term: The sub-objective of this term is to 
minimize the aggregation of the speed (VSDC) errors 
with respect with the reference speed received from the 
SDC path planner (e.g. Vref = 100 mph) for all prediction 
points (N=30) as given by Equations (17) and (18) 
below: 

𝑒𝑉 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑝𝑒𝑒𝑑 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 (17) 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ V𝑖

2

𝑖=𝑁

𝑖=0

 

(18) 

4) Speed regulation term: The objective of this term, given 
by Equation (19), is to help the controller manage the 
speed throughout the track. The main purpose of this 
term is to speed up when the road is straight (increase 
VSDC while Ψ is small) and to slow down when there is 
a turn ahead (reduce VSDC when Ψ is relatively large). 
The amount of slowing down is proportional to how 
sharp is the turn ahead. 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ V𝑆𝐷𝐶𝑖 

2 𝛹2

𝑖=𝑁

𝑖=0

 (19) 

 

 

 

5) Steer control term: The objective of this term, given by 
Equation (20), is to help the controller to optimize the 
control effort by not taking unnecessary sharp steering 
commands. 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ 𝛿𝑖

2

𝑖=𝑁

𝑖=0

 (20) 

6) Acceleration control term: The objective of this term, 
given by Equation (16), is to help the controller to 
optimize the control effort by not taking unnecessary 
accelerating/braking (acc) commands.  

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ 𝑎𝑐𝑐𝑖

2

𝑖=𝑁

𝑖=0

 (21) 

7) Speed-steering term: The objective of this term, given 
by Equation (22), is to correlate between the steering 
command (δ) and the actual speed (VSDC) of the SDC. 
The idea is to allow the controller, when issues a 
relatively big steering command, to reduce the speed 
and vice versa. 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ V𝑆𝐷𝐶𝑖 

2 𝛿𝑖
2

𝑖=𝑁

𝑖=0

 (22) 

8) Change of steering command term: The objective of 
this term, given by Equation (23), is to minimize the 
value gap between sequential steering actuation. In 
other words, reduce the sudden change in the 
subsequent steering commands. 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ (𝛿𝑖+1 − 𝛿𝑖)

2

𝑖=𝑁−1

𝑖=0

 
(23) 

9) Change of acceleration command term: The objective 
of this term, given by Equation (24), is to minimize the 
value gap between sequential acceleration actuations. In 
other words, reduce the sudden change in the 
subsequent acceleration commands. 

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ (𝑎𝑐𝑐𝑖+1 − 𝑎𝑐𝑐𝑖)2

𝑖=𝑁−1

𝑖=0

 
(24) 
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TABLE I.  THE CONTRIBUTION OF OBJECTIVE FUNCTION TERMS. 

SDC-MPC Objective Function 

Term Type Weight 
Value 

Comment 

CTE (w_cte) 15.0 Follow path accurately 

eΨ (w_espsi) 2.75 Follow path accurately 

V-error (W_v_err) 0.65 Try to reach max speed 

Speed regulation 

(W_psi_des_v) 
0.50 Avoid high speed in turns 

Steer control (W_delta) 50000.0 Avoid sudden steering 

Acceleration control 

(W_acc) 
10.0 Avoid aggreesive acceleration 

Speed-steering (W_delta_v) 50.0 Avoid steering at high speed 

Change of steering 
command (W_d_delta) 

150.0 Avoid aggressive steering 

Change of acceleration 

command (W_d_acc) 
0.0 Avoid aggressive acceleration 

Moreover, the constraints in the NMPC objective 
function are set as follows: 

1) The initial points (point ‘0’) of each controller state are 
initialized by the incoming state values from the SDC 
hardware or the simulator at this specific instance. 

2) The rest of the points (from 1 => (N-1)) are constrained 
by the vehicle model which is given by Equation (25) 
that is used to update the six states (Xk+1, Yk+1, Ψk+1, 
Vk+1, CTEk+1 & eΨk+1): 

𝑋𝑘+1 − (𝑋𝑘 + 𝑉𝑘𝑐𝑜𝑠(Ψ𝑘)∆𝑡)  = 0 

(25) 

𝑌𝑘+1 − (𝑌𝑘 + 𝑉𝑘𝑠𝑖𝑛(Ψ𝑘)∆𝑡)    = 0 

Ψ𝑘+1 − (Ψ𝑘 − (
𝑉𝑘

𝐿𝑓

) δ𝑘∆𝑡)    = 0 

𝑉𝑘+1 − (𝑉𝑘 + 𝑎𝑐𝑐𝑘∆𝑡)              = 0 

𝐶𝑇𝐸𝑘+1 − ((𝑓(𝑥𝑜) − 𝑌𝑘) + 𝑉𝑘𝑠𝑖𝑛(eΨ𝑘)∆𝑡)
= 0 

eΨ𝑘+1 − ((Ψ𝑘 − 𝑓′(𝑥𝑜)) − (
𝑉𝑘

𝐿𝑓

) δ𝑘∆𝑡)  

= 0 

where 𝑓(𝑥𝑜) and 𝑓′(𝑥𝑜) are the waypoints polynomial 
and its slope values at the point ‘0’. 

7. THE SDC-NMPC DESIGN HIGHLIGHTS 

The following points have to be highlighted throughout 
the design process of the NMPC: 

1) Waypoints Polynomial: The calculated waypoints 
polynomial coefficients are not used directly in the 
NMPC state equations, but instead they go through a 
pre-processing step by taking the weighted averaged of 
their current and previous values as shown in Equation 
(26). This step helps to smooth out the transition 
between frames and makes the waypoints polynomial 
more stable. The value of K is set to be “0.9” after 
several trials. 

𝐶𝑖 = 𝐾 ∗ 𝑛𝑒𝑤_𝐶𝑖 + (1 − 𝐾) ∗ 𝑝𝑟𝑒𝑣_𝐶𝑖 (26) 

2) Speed and the Objective function: The reference speed 
(Vref) is set at 100 mph which makes tuning the 
controller more challenging and the need for speed 
regulation around corners and at sharp turns is highly 
desirable. Therefore, two objective function terms are 
incorporated into the overall NMPC objective function: 
the “Speed regulation term” (#4) and the “Speed-
steering term” (#7). The “Speed regulation term” 
specifically proved to be very effective as it makes the 
speed inversely proportional to the desired steering 
angle (which is large at sharp turns and makes the car 
slower). 

3) Actuator Latency: The actuator latency is estimated to 
be at least 100 msec. This has been compensated for by 
simply using future actuator commands instead of the 
first one calculated. For example, the SDC-NMPC 
solver produces ((N-1)=29) predicted steering angle 
commands (δk+1 → δk+29). Instead of using δk as usual, 
for example, δk+3  is used as 3*Δt = 225 msec > 100 
msec. δk+1, δk+2, and δk+3  have been tried and the latter 
proved to be more effective. 

4) N and Δt selection: several trials and errors are used to 
determine the most appropriate values for both 
parameters. Values from 0.05→0.2 are tried for Δt, 
while values from 5→30 are tried for N. A conclusion 
is reached, that a long sight for the controller is a good 
feature that improves its performance, therefore, N = 30 
is selected. In other words, if good predicted points in 
the near future (i.e. k = 1, 2 … 5) are required, the 
controller must be allowed to solve for a long stride (i.e. 
N > 20). Moreover, Δt needs to be small enough in order 
to allow, for the NMPC, not to lose track of changes, 
and big enough to allow for longer prediction strides. 
Finally, Δt=0.075 sec is selected as it is smaller than the 
actuator latency but big enough to have a good 
prediction horizon. 

8. TESTING AND EVALUATION RESULTS 

Extensive trials-and-errors attempts are used to tune the 
many hyper-parameters of the SDC-NMPC. However, to 
be more consistent and accurate, a numerical Key 
Performance Indicator (KPI) need to be constructed and 
coded as in Equation (27) to evaluate the performance of 
the controller under the given set of hyper-parameters: 

𝐾𝑃𝐼 =  ∑ 𝐶𝑇𝐸𝑖
2 + 100 𝑒𝛹𝑖

2

𝑁_𝐶𝑦𝑐𝑙𝑒

𝑖=0

 (27) 

The indicator is calculated by aggregating and 
averaging the CTE2 and the eΨ2 over a period of N_Cycle 
samples (e.g. N_Cycle = 3000, enough to let the car drive 
for at least one lap around the track shown in Figure 1). The 
eΨ2 term is multiplied by 100, to have a comparable weight 
with the CTE2 term. This method helped a lot to have a 
more deterministic comparison between the different trials.  
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Several test tracks have been used to evaluate the 
performance of the SDC-NMPC under different sets of 
hyper-parameters in an iterative tuning process. Examples 
of these test tracks are shown in Figure 1 and Figure 2. 
Figure 1 shows “the 1st track” that represents a kind of rural 
road of 3.7 miles long, two-lane, 8.2 m wide, slightly hilly, 
max 4.5% incline, designed for max. 80 mph speed. The 
test track contains several straight and curved segments, as 
well as sharp turns. The sharpest turn has a radius of 
curvature of 50 meters. Likewise, Figure 2 shows “the 2nd 
track” of 1.122 miles long mostly curved with 4 sharp 
turns. The simulation test results of the 2nd track are shown 
in Figure 3 to  

Figure 9 for convenience. The figures depict the profile 
of CTE, eΨ, Speed, Steering command, Throttle command, 
acceleration and jerk during a single revolution of SDC on 
the 2nd Track. These profiles show that the SDC was able 
to reach 80 mph while preserving an acceleration range of 
[0.84, -1.70] m/sec2 as well as jerk range of [1.86, -1.88] 
m/sec3, which are safe enough by automotive industry 
standards to provide comfortable ride [37].  

The hyper-parameters have to be tuned manually using 
a dedicated simulation tool that incorporates the vehicle 
dynamic model explained in Section 3. This tool is 
developed specifically for this purpose using Unity [38] 
with an optimized object-oriented structured code [39] and 
interfaced with the SDC-NMPC (C++ code) using 
μWebSocket messaging [40]. The values of the used vehicle 
model parameters are listed in TABLE II.  

TABLE II.  THE VEHICLE MODEL PARAMETERS. 

Parameter Value 

𝑙𝑓 2.67 meter 

𝑙𝑟 2.10 meter 

The process of manual tuning of the parameters 
includes fixing the whole parameters and only changes one 
while measuring the KPI results after adequate simulation 
runs as shown in Figure 10. It is necessary to complete at 
least a full lap with each change in parameter because it 
was the only way to get a decent "score" (total error) for the 
parameter set. Figure 10 shows an example of one of this 
tuning method, Vref = 100 mph is selected as the design 
parameter value for the SDC-NMPC. Moreover, Figure 11 
gives another example of how the weighting coefficient of 
the CTE term in the NMPC cost function is determined. 

The performance of the SDC-MPC is compared to that 
of the carefully tuned PID controller that has been 
developed in [19] and tested on the “2nd track”. TABLE III. 
summaries these comparisons as well as  

Figure 12 depicts the resultant speed profiles. The 
results show a wonderful improvement in the peak reached 
speed in the track (131% higher) and average speed 
(53.6%). It is clear from the profiles in  

Figure 12 that the NMPC is able to manage and 
maximize the speed throughout the track much better than 
the PID which only acts on lowering the speed to avoid 
large CTEs even on road segments that can accommodate 
higher speeds Error! Reference source not found.. 
Moreover, the NMPC shows more precision in tracking the 
path planner waypoints as clearly shown from the highest 
and the lowest KPI values.  

TABLE III.  NMPC/PID PERFORMANCE COMPARISON. 

KPI SDC-NMPC SDC-PID % Change 

Highest Speed 79.5 mph 34.4 mph +131% 

Average Speed 50.1 mph 32.6 mph +53.6% 

Lowest MSE 0.6425 0.8288 -28.99% 

Highest MSE 1.0411 1.4575 -39.99% 

Moreover, for the purpose of better evaluation of the 
performance of the designed SDC-NMPC, the framework 
presented in the paper is used to design a conventional-
NMPC (cNMPC) track follower. “Conventional” in the 
sense of only using the tracking errors (CTE and eΨ) in its 
cost function and eliminating the other terms (e.g. only 
using the 1st and 2nd terms in Section 6). Then, this cNMPC 
is tested on the 2nd track using the same reference speed 
(100 mph). However, the cNMPC failed to complete a 
single lap without getting out of the road boundaries.  Then, 
the cNMPC is redesigned by adding the 3rd term (the speed-
error term), however the controller still fails to complete a 
single lap without getting out of the boundaries of the road. 
The process gets iterated and each time adding a new term, 
till reaching the 7th term where the controller was able to 
complete the laps without breaching the boundaries. The 
resultant cNMPC controller contains all the proposed SDC-
NMPC cost terms except the 8th term, which is “the change 
of the steering command term”. The performance of the 
resultant cNMPC is then compared to that of the full SDC-
NMPC, the results are listed in TABLE IV. and shown in  

Figure 13,  

Figure 14, and  

Figure 15. 

TABLE IV.  NMPC/CNMPC PERFORMANCE COMPARISON. 

KPI SDC-NMPC cNMPC % Change 

Highest Speed 79.5 mph 78.1 mph +1.8% 

Average Speed 50.1 mph 50.9 mph -1.5% 

Lowest MSE 0.6425 1.4842 -56.71% 

Highest MSE 1.0411 1.9797 -47.41% 

The above results show that there is no major difference 
in speed metrics between the two controllers as shown in  

Figure 15 as well, or in other words, the travel time 
almost did not change. However, the cNMPC ride quality 
is much worse than that of the originally proposed SDC-
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NMPC. This has been revealed by the reported MSE scores 
in TABLE IV.   

Figure 13 and  

Figure 14.   

 

Figure 1. The 1st Test Track. 

 

 

Figure 2. The 2nd Test Track. 

 

 
Figure 3. Both CTE and eΨ for one revolution in the 2nd Track. 

 

 

 

Figure 4. CTE and Speed for one revolution in the 2nd Track. 

 

 
Figure 5. eΨ and Speed for one revolution in the 2nd Track. 

 

 
Figure 6. Throttle and Steering commands for one revolution in the 2nd 

Track. 

 

 
Figure 7. Throttle and Speed commands for one revolution in the 2nd 

Track. 

 

 
Figure 8 Throttle and Acceleration for one revolution in the 2nd Track. 
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Figure 9. Steering and Jerk for one revolution in the 2nd Track. 

 
Figure 10. Performance of the SDC-MPC with respect to the speed 

reference. 

 

 
Figure 11. Performance of the SDC-MPC with respect to CTE error 

weight. 

 

 

 

Figure 12. PID and NMPC Speed Profiles for one revolution in the 
2nd Track. 

 

 

 
 

Figure 13. SDC-NMPC and cNMPC CTE scores for one revolution in 

the 2nd Track. 

 

 
 

Figure 14. SDC-NMPC and cNMPC eΨ scores for one revolution in the 
2nd Track. 

 

 
 

Figure 15. SDC-NMPC and cNMPC speed Profiles for one 

revolution in the 2nd Track. 

9. DISCUSSION 

The paper presents a method to satisfy the requirements 
of an efficient and comfortable ride for self-driving car 
while driving through complex tracks. The idea is that for 
an efficient ride the requirements are: 

1) To follow the required trajectory (usually generated by 
the path planner) as precise as possible (with the lowest 
deviation) in other words, the lowest aggregated cross-
track errors (CTEs). 

2) To reach the destination as fast as possible (more 
efficient). 
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3) This should be done without violating the comfort 
requirements of the ride, which can be evaluated by 
monitoring the acceleration and jerk measurements. 
The acceleration should be maintained within (±0.2g 
m/sec2) and the jerk within (±10 m/sec3) [37]. 

4) This should be done as well while respecting the vehicle 
dynamics (constraints). 

The paper formulates the above requirements by 
proposing a framework for constructing a Nonlinear MPC 
path tracker (SDC-NMPC) that provides a way of easily 
integrating several driving objectives through 
compounding a multi-term cost function as presented in 
Section 6 and TABLE I. Each term contributes to the 
overall objective according to its corresponding weight. 
Optimizing this objective function using the primal-dual 
interior-point algorithm, allows the controller to produce 
steering, throttle (gas/brake) commands that satisfy the 
above requirements and constraints. Another contribution 
of the paper is the detailed description of the real-time 
implementation of the NMPC and its objective function in 
C++. 

The following conclusive points shed the light on some 
technical aspects that have been tried or implemented in the 
described approach: 

1) The NMPC controller has a much more complex 
structure compared to that of the PID. However, it is 
more effective, especially at higher speeds. It can 
handle issues like actuator latency and external 
disturbances much better. 

2) One of the main issues with the NMPC is its tuning. 
There is no theory or criteria that prove that the optimal 
value for the many used hyper-parameters has been 
selected. Most methods of tuning are mainly based on 
extensive search augmented with intuition and 
experience. 

3) From the author’s point of view, using transparent 
methods based on extensive “trial-and-error” endeavors 
guided by numerical performance indicators is the most 
convenient approach. This approach allows one to 
understand the problem at hand much deeper. 
Furthermore, it allows the incorporation of one’s 
intuition and experience, which reduces a lot of the 
search space; and consequently, shows more 
effectiveness at the end. 

4) The most powerful aspect of the design of the NMPC is 
the ability to tailor the cost function [41]. It gives great 
flexibility to the designer to balance between 
conflicting requirements and make a better-educated 
trade-off. 

Future research and endeavors are encouraged to 
enhance this work, and the following are some of the 
suggested improvements: 

1) Experimenting with other terms that may be added to 
the SDC-NMPC cost function such as “maintain δf*acc 
=> reasonable value”. The idea at big steering angles 
the car is going to a sharp turn and needs to avoid large 
acceleration and vice versa. 

2) One set of hyper-parameters may not be enough for all 
the range of speed. Therefore, a kind of adaptive MPC 
where it can have several sets of parameters for each 
speed range (similar to gain scheduling in PID) is 
desirable in this case. 

3) Need to add or invent several other performance 
indicators, like a one to track the time in which the car 
is able to complete one lap. Another suggested one is to 
track overshoots and undershoots from the road center, 
etc. 

10. CONCLUSION 

In this paper, a framework for designing a non-linear 
model-predictive-control path follower for autonomous 
vehicles is proposed and described in detail. The 
framework uses the primal-dual interior-point technique to 
iteratively solve the NMPC optimization problem. 
Consequently, the whole framework is developed using 
C++ in addition to advanced math libraries to optimize 
real-time performance. Furthermore, the framework is used 
to design and implement an SDC-NMPC with tailored cost 
function that handles several objectives simultaneously 
(either opposing or correlating) to emphasize precision, 
comfort, and efficiency. The designed SDC-NMPC 
receives waypoints of the reference trajectory from the path 
planner, the actual location of the SDC in global 
coordinates from the localization module, the 
instantaneous speed and steering angle measurements from 
the SDC associated sensors. The output is then the steering 
and the gas/brake (throttle) commands. The performance of 
the SDC-MPC track follower is evaluated through 
extensive simulations in complex tracks with sharp turns. 
The performance is also compared to that of the classical 
PID controller showing superior performance. 
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