

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.5 (Sep-2020)

E-mail: wael.farag@aum.edu.kw, wael.farag@cu.edu.eg

 http://journal.uob.edu.bh

 Complex Track Maneuvering using Real-Time MPC

Control for Autonomous Driving

Wael Farag 1, 2

1College of Eng. & Tech., American University of the Middle East, Kuwait.

2Electrical Eng. Dept., Cairo University, Egypt.

Received 8 Oct. 2019, Revised 31 Jan. 2020, Accepted 25 Aug. 2020, Published 1 Sep. 2020

Abstract: This work proposes a framework to design, formulate and implement a path tracker for self-driving cars (SDC)

based on nonlinear model-predictive-control (NMPC) approach. The presented methodology is developed to be used by

designers in the industrial sector, practitioners and academics. Therefore, it is straight forward, flexible, and

comprehensive as well. It allows the designer to easily integrate multiple objective terms in the cost function either

opposing or correlating. The proposed design of the controller not only targets accurate tracking but also comfortable ride

and fast travel time as well by introducing several sub-objective terms in the main cost function to satisfy these goals.

These sub-objective terms are weighted according to their contribution to the optimization problem. The SDC-NMPC

framework is developed using the high-performance language C++ and utilizes highly optimized math and optimization

libraries for best real-time performance. This makes the SDC-MPC well suited for use in both ADAS and self-driving

cars. Extensive simulation studies featuring complex tracks with many sharp turns have been carried out to evaluate the

performance of the proposed SDC-NMPC at different speeds. The presented analysis shows that the proposed controller

with its tuning technique outperforms that of the PID-based controller.

Keywords: MPC Control, Self-Driving Car, Autonomous Driving, Path Planning, Tracking.

1. INTRODUCTION

Increasing safety, reducing road accidents, improving
energy efficiency and enhancing comfort and driving
experience are the major motivations behind equipping
modern cars with Advanced Driving Assistance Systems
(ADAS) [1-2]. These motivations represent incremental
steps toward a hypothetical future of safe fully autonomous
vehicles [3-8].

Recent self-driving cars (SDCs) architectures include a
dedicated module “the motion planner” that produces the
path/trajectory the car has to follow to reach its designated
destination [9]. The motion planner module generates
desired trajectories for the next 5-10 seconds (in the future)
and updates these trajectories at a 10 Hz rate [9]. The
generated trajectory comes in the form of a series of
waypoints measured on global-map coordinates. SDCs
possess as well a Drive-by-Wire (DBW) system “the path
tracker” that strives to follow the generated trajectory as
precise and as efficient as possible [9]. “Precise” in terms

of minimizing the aggregated Cross-Track Errors (CTEs)
between the generated trajectories and the actual SDC
driving trajectories. In addition, “Efficient” in terms of
improving ride quality, minimizing travel time and
reducing fuel consumption.

The motivation of this paper is to facilitate for the SDC
path tracker to achieve the previous kind-of-opposing
objectives by proposing a sophisticated control
methodology that takes into account all these objectives
and provide a way to find a delicate balance among them
based on the designer preferences. The proposed
methodology is based on the Model Predictive Control
(MPC) technique due to its flexibility and practicality [10].
The MPC technique is an optimal control method that has
the advantage of tailoring its optimization strategy in a way
that offers multiple options to reach the desired
performance for strongly nonlinear systems with
constraints [10], which are difficult to handle using
traditional linear control approaches [11].

http://dx.doi.org/10.12785/ijcds/090511

910 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

Numerous thought-provoking MPC design
methodologies exist in the literature, in [12] Ikeda et al
proposed a new design of optimal control that takes only
specified discrete values and applies finite-horizon sum-of-
absolute-values optimization. The work has been also
extended to include infinite-horizon model predictive
control with the presence of bounded noise and applied to
altitude control of an aircraft showing how the MPC takes
only discrete output values, which may not fit our problem
as both SDC outputs (steering and speed) are continuous
states.

Moreover, Silva et al [13] proposed an iterative MPC
that uses an iterative procedure to adjust a time-variant
linearization of the nonlinear model of the system at each
sampling time, which may allow controlling systems where
a direct nonlinear MPC approach is not feasible. However,
in the work considered in this paper, the used SDC model
is time-invariant and the MPC optimization is solved using
a primal-dual interior-point method [14] applied directly to
the nonlinear model of the SDC.

Furthermore, Vatankhah et al [15] proposed an
adaptive nonlinear MPC approach based on a neural
network model [16] that generates offset-free output even
under external disturbances and parameters’ uncertainties.
The adaptive structure for the model was provided by on-
line training of the neural network. However, this approach
might be considered not practical for the SDC as it required
an off-line training of the neural network with data
collected from the controlled system while running under
PID control. Additionally, online training for a controller is
not desired in safety-critical systems like SDCs.

Trajectory tracking is the process of designing a
controller [10] that guides a vehicle (either ground [18],
aerial [12] or marine [21]) and minimizes (or maximizes)
some measure of performance while satisfying a set of
constraints.

The novelties of this paper can be enumerated as
follows:

1) Proposing a framework for constructing a Nonlinear
MPC path tracker (SDC-NMPC) that provides a way of
easily integrating several driving objectives through
compounding a multi-term cost function. The proposed
framework is meant to be easy to comprehend and
straight forward to employ by the designers. Moreover,
it allows multiple state variables to be combined
together in one cost term if they are correlated or to be
inserted separately in individual cost terms if their effect
is required to be decoupled from other state variables.

2) Emphasizing the development and implementation
stages and highlighting the real-time performance in
detail to bridge the gap between theory and practice, and
to address the industrial audience as well. The SDC-
NMPC has been developed using C++ [25] with
advanced math libraries to optimize real-time
performance. Thus, it is taking into account the

throughput (execution time) of affordable CPUs to
handle the limited computational resources of
embedded automotive hardware, and to prove that it is
well suited for use in Advanced Driving Assistance
Systems (ADAS) or self-driving cars.

3) Most of the cited work for the design of path trackers
using MPC approach use only two terms in the cost
function [10], which are the aggregated cross-track
errors and the vehicle-orientation errors. However, in
this work, several sub-objective terms are included to
improve ride quality, fuel efficiency, and safety.
Examples of such terms are speed-regulation term,
steering-smoothening term, acceleration-management
term, speed-steering term, and control-effort
minimization term.

4) The MPC’s nonlinear convex optimization problem is
solved iteratively using the efficient primal-dual
interior-point technique [14] with the direct
incorporation of the vehicle nonlinear model (without
linearization) aiming for highest accuracy [10].
Therefore, both IPOPT optimization [26] and the
CppAD differentiation [27] efficient C++ libraries are
employed seeking the best execution time.

2. NMPC PROBLEM FORMULATION

The general discrete-time nonlinear system in (1) is
considered as the vehicle model

 𝑥𝑘+1 = 𝑓(𝑥𝑓 , 𝑢𝑘), 𝑥𝑘 ∈ 𝕏, 𝑢𝑘 ∈ 𝕌, (1)

where 𝑥𝑘 ∈ ℝ𝑛𝑥 and 𝑢𝑘 ∈ ℝ𝑛𝑢 are the vehicle state and
control action at time step k. Accordingly, a general MPC
formulation can be expressed as follows

min ∑ 𝑙(�̂�𝑖 , �̂�𝑖)

𝑁−1

𝑖=0

(2) 𝑠. 𝑡. �̂�𝑖+1 = 𝑓(̅�̂�𝑖 , �̂�𝑖), 𝑖 = 0, … , 𝑁 − 1

�̂�0 = 𝑥𝑘 ,

�̂�𝑖 ∈ 𝕏, �̂�𝑖 ∈ 𝕌

where N is the horizon length, 𝑥𝑘 is the initial condition
which is the vehicle state at time step k, 𝑥 ̂𝑎𝑛𝑑 𝑢 ̂are the

predicted state and control action respectively, 𝑓(̅. , .) is the
nonlinear model equation representing the vehicle, 𝑙(. , .) is
the objective function. For tracking NMPC, 𝑙(. , .) has
usually a quadratic form (|�̂�𝑖 − 𝑥𝑠|2) that minimizes the
difference between the predicted state and the set-point 𝑥𝑠.

Equation (2) is solved using the Primal-Dual Interior-
Point (PDIP) method [15] as a constrained nonlinear
optimization problem. To illustrate how the PDIP works,
simply consider the all-inequality version of a nonlinear
optimization problem

min 𝑓(𝑥) 𝑠. 𝑡. 𝑐𝑖 (𝑥) ≥ 0 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 (3)

 Int. J. Com. Dig. Sys. 9, No.5, 909-920 (Sep-2020) 911

http://journal.uob.edu.bh

𝑥 ∈ ℝ𝑛

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 → ℝ, 𝑐𝑖: ℝ𝑛 → ℝ

The logarithmic barrier function [28] associated with
(3) is

𝐵(𝑥, 𝜇) = 𝑓(𝑥) − 𝜇 ∑ 𝑙𝑜𝑔(𝑐𝑖(𝑥))

𝑚

𝑖=1

 (4)

Here 𝜇 is a small positive scalar, called the “barrier
parameter”. As 𝜇 converges to zero, the minimum of
𝐵(𝑥, 𝜇) should converge to a solution of (3). Consequently,
the barrier function gradient is required and can be
calculated as

𝑔𝑏 = 𝑔 − 𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚

𝑖=1

∇𝑐𝑖(𝑥) (5)

where 𝑔 is the gradient of the main function 𝑓(𝑥), and
∇𝑐𝑖(𝑥) is the gradient of 𝑐𝑖(𝑥).

3. THE VEHICLE MODEL

In this paper, the kinematic bicycle model [29] is used
to emulate the behavior of the self-driving car. The
nonlinear continuous-time equations that describe the
kinematic bicycle model shown in Error! Reference
source not found. in an inertial frame are:

�̇� = 𝑣 ∗ cos (𝜓 + 𝛽)

(6)

�̇� = 𝑣 ∗ sin (𝜓 + 𝛽)

�̇� =
𝑣

𝑙𝑟

∗ sin (𝛽)

�̇� = 𝑎

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟

∗ 𝑡𝑎𝑛(𝛿𝑓))

𝛿�̇� = 𝜔

where x and y are the coordinates of the center of mass
in an inertial frame (X, Y). 𝜓 is the inertial heading and 𝑣
is the speed of the vehicle. lf and lr represent the distance
from the center of the mass of the vehicle to the front and
rear axles, respectively. 𝛽 is the angle of the current
velocity of the center of mass with respect to the
longitudinal axis of the car. a is the acceleration of the
center of mass in the same direction as the velocity. The
control inputs are the front and rear steering angles 𝛿𝑓, and

𝛿𝑟 . Since in most vehicles the rear wheels cannot be
steered, it is assumed that 𝛿𝑟 = 0. 𝜔 is the steering angular
velocity.

Figure 1. The Kinematic Bicycle Model.

Compared to higher fidelity vehicle models [29], the
system identification on the kinematic bicycle model is
easier because there are only two parameters to identify, lf
and lr. This makes it simpler to port the same controller or
path planner to other vehicles with differently sized
wheelbases.

The MPC employs the vehicle’s motion model to plan
an optimized and realistic trajectory given a set of
constraints. These constraints could be the limits of the
vehicle’s motion, and a combination of costs that define
how the vehicle should move (such as staying close to the
best fit and the desired heading or preserving it from the
excessive jerk of the steering wheel).

4. THE PROPOSED SDC-NMPC TRACK FOLLOWER

To design and implement the SDC-NMPC track
follower, several measurements need to be collected
periodically from the SDC sensors. The following is the list
of these measurements:

1) The “px” and “py” (the vehicle’s current x and y
positions) measured in the global “map” coordinates.
These values are received from the “SDC Localization
Module” which used the fusion between Global
Position Systems (GPS) [30], Inertial Measurement
Units (IMU) [30], LiDAR, and Radar sensors [31] to
produce accurate car positioning coordinates on the
global map.

2) The SDC velocity “VSDC” at the given instance
measured in miles/hour (mph) and received from the car
speedometer [32].

3) The SDC orientation angle (heading) “ψ” (-ve for left
and +ve for right) in radians received from the IMU,
Radar or the fusion between them [33].

4) The SDC orientation angle “Ψ-unity” in radians
commonly used in navigation and simulations, it is
calculated directly from “ψ” [34].

5) The current steering angle of the SDC “ 𝛿𝑓” measured

in radians using the mounted vehicle steering angle
sensor.

https://en.wikipedia.org/wiki/Barrier_function

912 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

6) The current throttle value mapped to the range [-1, 1]
where (-ve for braking and +ve for speeding).

7) The “PTsx” and “PTsy” arrays that include the
waypoints (reference track) measured in global
coordinates supplied by the path planner module of the
SDC [35].

The SDC-NMPC tracker then uses some of the above
information to produce a steer (angle) command as well as
the throttle command (speed) to the SDC. The following
are the steps used for the implementation of this controller:

1) The received waypoints (“PTsx” and “PTsy”) are
converted from global coordinates to vehicle
coordinates using the following transformation
equations:

𝑉𝑃𝑇𝑠𝑥𝑖
= (𝑃𝑇𝑠𝑥𝑖

− 𝑝𝑥) cos 𝜓 − (𝑃𝑇𝑠𝑦𝑖
−

𝑝𝑦) sin 𝜓

(7)

𝑉𝑃𝑇𝑠𝑦𝑖
= (𝑃𝑇𝑠𝑦𝑖

− 𝑝𝑦) cos 𝜓

+ (𝑃𝑇𝑠𝑥𝑖
− 𝑝𝑥) sin 𝜓

(8)

where 𝑉𝑃𝑇𝑠𝑥𝑖
 and 𝑉𝑃𝑇𝑠𝑦𝑖

 are the ith waypoint of the

reference track in vehicle coordinates, calculated using
the received vehicle positions (“px” and “py”) and the
vehicle orientation angle “ψ”.

2) An nth order polynomial equation is then fitted using the
transformed waypoints (in this implementation n is
selected to be 3). This polynomial (Eq. (9)) now
represents the “desired route/track” that the vehicle
should follow precisely to find its way throughout the
track.

𝑦𝑡𝑟𝑎𝑐𝑘 = 𝑎𝑜 + 𝑎1𝑥𝑡𝑟𝑎𝑐𝑘 + 𝑎2𝑥𝑡𝑟𝑎𝑐𝑘
2 (9)

3) The Cross Track Error “CTE” and the error in the
vehicle orientation angle “eψ” are then calculated using
the calculated coefficients of the fitted polynomial as
follows:

𝐶𝑇𝐸 = 𝑎𝑜 (10)

𝑒𝜓 = − tan−1 𝑎1 (11)

Note that the SDC position “px” and “py” are always
zeros in the vehicle coordinates.

4) Six states (N_STATES = 6) are then selected to
represent the SDC-MPC states as follows:

𝑠𝑡𝑎𝑡𝑒1 = 𝑝𝑥 = 0

(12)
𝑠𝑡𝑎𝑡𝑒2 = 𝑝𝑦 = 0

𝑠𝑡𝑎𝑡𝑒3 = 𝜓 = 0

𝑠𝑡𝑎𝑡𝑒4 = 𝑉𝑆𝐷𝐶

𝑠𝑡𝑎𝑡𝑒5 = 𝐶𝑇𝐸

𝑠𝑡𝑎𝑡𝑒6 = 𝑒𝜓

where px, py, and ψ are measured in vehicle coordinates.
These states are then supplied to the NMPC solver
(IPOPT [26]) to find the predicted sequence of the
required “steering value” and “throttle value”.

5) Within the NMPC solver, the MPC-control horizon is
defined by the time step (i.e. Δt = 0.075 sec) and the
duration in terms of the number of steps (i.e. N = 30).

6) The number of controller outputs is defined as N-
OUTPUT = 2, and they are the steering (angle: δ)
command as well as the throttle command
(speed/brake).

5. IMPLEMENTATION OF THE SDC-MPC ALGORITHM

The following points shed the light on some details and
specifics of the implementation of the proposed track
follower:

1) The algorithm is implemented using the high-
performance language GCC C++ [25] on Ubuntu Linux
operating system [36]. This combination is fitting for
the required real-time performance.

2) A C++ Algorithmic Differentiation Package [27] is
used to numerically solve the differential equations of
the SDC model given by Eq. (6).

3) The NMPC solver is implemented using the IPOPT
package [26] which is used to solve the optimization
problem of minimizing the objective function “𝑙(. , .)”
as given by the example in Eq. (2) and will be detailed
later in the next section.

4) The number of NMPC solver variables is determined
from the above information to be (n_vars = N-
STATES*N + N-OUTPUT*(N-1)).

5) Moreover, the number of NMPC solver constraints is
then determined from the above information to be
(n_constraints = N-STATES * N).

6) The controller variables and constraints are initialized
and set to reinforce the boundary conditions for the
optimization problem (e.g. the steering command (δ) is
constrained between -25o to 25o, and the throttle
command is also constrained between -1 to 1).

7) Then the output of the controller (i.e. the solution of the
optimization problem) is fed to the simulator or the
actuators.

6. THE NMPC OBJECTIVE FUNCTION

The cost (objective) function of the SDC-NMPC is
composed of several terms. Each term has its own sub-
objective within the core optimization problem. The main
goal is to find a solution that can satisfy the purposes of
these terms according to their weights (contribution) in the
overall objective function. The final weights of all terms

 Int. J. Com. Dig. Sys. 9, No.5, 909-920 (Sep-2020) 913

http://journal.uob.edu.bh

that determine their contribution are given in TABLE I.
The description of the terms and their sub-objectives are
listed as follows:

1) CTE term: The CTE (the cross-track error) represents
the misalignment of the vehicle with respect to the
center of the track at a given instance. The sub-objective
of this term is to minimize the aggregation of the Cross
Track Errors (CTE) for all prediction points (N=30) as
given by Equations (13) and (14) below:

𝐶𝑇𝐸 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
− 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(13)

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ 𝐶𝑇𝐸𝑖

2

𝑖=𝑁

𝑖=0

(14)

2) eΨ term: The sub-objective of this term is to minimize
the aggregation of the errors (eΨ) in the vehicle
orientation angle, at a given instance, for all prediction
points (N=30) as given by Equations (15) and (16)
below:

𝑒Ψ = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒
− 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑛𝑔𝑙𝑒

(15)

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ 𝑒Ψ𝑖

2

𝑖=𝑁

𝑖=0

(16)

3) V error term: The sub-objective of this term is to
minimize the aggregation of the speed (VSDC) errors
with respect with the reference speed received from the
SDC path planner (e.g. Vref = 100 mph) for all prediction
points (N=30) as given by Equations (17) and (18)
below:

𝑒𝑉 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑝𝑒𝑒𝑑 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 (17)

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ V𝑖

2

𝑖=𝑁

𝑖=0

(18)

4) Speed regulation term: The objective of this term, given
by Equation (19), is to help the controller manage the
speed throughout the track. The main purpose of this
term is to speed up when the road is straight (increase
VSDC while Ψ is small) and to slow down when there is
a turn ahead (reduce VSDC when Ψ is relatively large).
The amount of slowing down is proportional to how
sharp is the turn ahead.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ V𝑆𝐷𝐶𝑖

2 𝛹2

𝑖=𝑁

𝑖=0

 (19)

5) Steer control term: The objective of this term, given by
Equation (20), is to help the controller to optimize the
control effort by not taking unnecessary sharp steering
commands.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ 𝛿𝑖

2

𝑖=𝑁

𝑖=0

 (20)

6) Acceleration control term: The objective of this term,
given by Equation (16), is to help the controller to
optimize the control effort by not taking unnecessary
accelerating/braking (acc) commands.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ 𝑎𝑐𝑐𝑖

2

𝑖=𝑁

𝑖=0

 (21)

7) Speed-steering term: The objective of this term, given
by Equation (22), is to correlate between the steering
command (δ) and the actual speed (VSDC) of the SDC.
The idea is to allow the controller, when issues a
relatively big steering command, to reduce the speed
and vice versa.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = 𝑚𝑖𝑛
1

𝑁
∑ V𝑆𝐷𝐶𝑖

2 𝛿𝑖
2

𝑖=𝑁

𝑖=0

 (22)

8) Change of steering command term: The objective of
this term, given by Equation (23), is to minimize the
value gap between sequential steering actuation. In
other words, reduce the sudden change in the
subsequent steering commands.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ (𝛿𝑖+1 − 𝛿𝑖)

2

𝑖=𝑁−1

𝑖=0

(23)

9) Change of acceleration command term: The objective
of this term, given by Equation (24), is to minimize the
value gap between sequential acceleration actuations. In
other words, reduce the sudden change in the
subsequent acceleration commands.

𝑆𝑢𝑏_𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚 = minimize{𝑀𝑆𝐸}

= 𝑚𝑖𝑛
1

𝑁
∑ (𝑎𝑐𝑐𝑖+1 − 𝑎𝑐𝑐𝑖)2

𝑖=𝑁−1

𝑖=0

(24)

914 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

TABLE I. THE CONTRIBUTION OF OBJECTIVE FUNCTION TERMS.

SDC-MPC Objective Function

Term Type Weight
Value

Comment

CTE (w_cte) 15.0 Follow path accurately

eΨ (w_espsi) 2.75 Follow path accurately

V-error (W_v_err) 0.65 Try to reach max speed

Speed regulation

(W_psi_des_v)
0.50 Avoid high speed in turns

Steer control (W_delta) 50000.0 Avoid sudden steering

Acceleration control

(W_acc)
10.0 Avoid aggreesive acceleration

Speed-steering (W_delta_v) 50.0 Avoid steering at high speed

Change of steering
command (W_d_delta)

150.0 Avoid aggressive steering

Change of acceleration

command (W_d_acc)
0.0 Avoid aggressive acceleration

Moreover, the constraints in the NMPC objective
function are set as follows:

1) The initial points (point ‘0’) of each controller state are
initialized by the incoming state values from the SDC
hardware or the simulator at this specific instance.

2) The rest of the points (from 1 => (N-1)) are constrained
by the vehicle model which is given by Equation (25)
that is used to update the six states (Xk+1, Yk+1, Ψk+1,
Vk+1, CTEk+1 & eΨk+1):

𝑋𝑘+1 − (𝑋𝑘 + 𝑉𝑘𝑐𝑜𝑠(Ψ𝑘)∆𝑡) = 0

(25)

𝑌𝑘+1 − (𝑌𝑘 + 𝑉𝑘𝑠𝑖𝑛(Ψ𝑘)∆𝑡) = 0

Ψ𝑘+1 − (Ψ𝑘 − (
𝑉𝑘

𝐿𝑓

) δ𝑘∆𝑡) = 0

𝑉𝑘+1 − (𝑉𝑘 + 𝑎𝑐𝑐𝑘∆𝑡) = 0

𝐶𝑇𝐸𝑘+1 − ((𝑓(𝑥𝑜) − 𝑌𝑘) + 𝑉𝑘𝑠𝑖𝑛(eΨ𝑘)∆𝑡)
= 0

eΨ𝑘+1 − ((Ψ𝑘 − 𝑓′(𝑥𝑜)) − (
𝑉𝑘

𝐿𝑓

) δ𝑘∆𝑡)

= 0

where 𝑓(𝑥𝑜) and 𝑓′(𝑥𝑜) are the waypoints polynomial
and its slope values at the point ‘0’.

7. THE SDC-NMPC DESIGN HIGHLIGHTS

The following points have to be highlighted throughout
the design process of the NMPC:

1) Waypoints Polynomial: The calculated waypoints
polynomial coefficients are not used directly in the
NMPC state equations, but instead they go through a
pre-processing step by taking the weighted averaged of
their current and previous values as shown in Equation
(26). This step helps to smooth out the transition
between frames and makes the waypoints polynomial
more stable. The value of K is set to be “0.9” after
several trials.

𝐶𝑖 = 𝐾 ∗ 𝑛𝑒𝑤_𝐶𝑖 + (1 − 𝐾) ∗ 𝑝𝑟𝑒𝑣_𝐶𝑖 (26)

2) Speed and the Objective function: The reference speed
(Vref) is set at 100 mph which makes tuning the
controller more challenging and the need for speed
regulation around corners and at sharp turns is highly
desirable. Therefore, two objective function terms are
incorporated into the overall NMPC objective function:
the “Speed regulation term” (#4) and the “Speed-
steering term” (#7). The “Speed regulation term”
specifically proved to be very effective as it makes the
speed inversely proportional to the desired steering
angle (which is large at sharp turns and makes the car
slower).

3) Actuator Latency: The actuator latency is estimated to
be at least 100 msec. This has been compensated for by
simply using future actuator commands instead of the
first one calculated. For example, the SDC-NMPC
solver produces ((N-1)=29) predicted steering angle
commands (δk+1 → δk+29). Instead of using δk as usual,
for example, δk+3 is used as 3*Δt = 225 msec > 100
msec. δk+1, δk+2, and δk+3 have been tried and the latter
proved to be more effective.

4) N and Δt selection: several trials and errors are used to
determine the most appropriate values for both
parameters. Values from 0.05→0.2 are tried for Δt,
while values from 5→30 are tried for N. A conclusion
is reached, that a long sight for the controller is a good
feature that improves its performance, therefore, N = 30
is selected. In other words, if good predicted points in
the near future (i.e. k = 1, 2 … 5) are required, the
controller must be allowed to solve for a long stride (i.e.
N > 20). Moreover, Δt needs to be small enough in order
to allow, for the NMPC, not to lose track of changes,
and big enough to allow for longer prediction strides.
Finally, Δt=0.075 sec is selected as it is smaller than the
actuator latency but big enough to have a good
prediction horizon.

8. TESTING AND EVALUATION RESULTS

Extensive trials-and-errors attempts are used to tune the
many hyper-parameters of the SDC-NMPC. However, to
be more consistent and accurate, a numerical Key
Performance Indicator (KPI) need to be constructed and
coded as in Equation (27) to evaluate the performance of
the controller under the given set of hyper-parameters:

𝐾𝑃𝐼 = ∑ 𝐶𝑇𝐸𝑖
2 + 100 𝑒𝛹𝑖

2

𝑁_𝐶𝑦𝑐𝑙𝑒

𝑖=0

 (27)

The indicator is calculated by aggregating and
averaging the CTE2 and the eΨ2 over a period of N_Cycle
samples (e.g. N_Cycle = 3000, enough to let the car drive
for at least one lap around the track shown in Figure 1). The
eΨ2 term is multiplied by 100, to have a comparable weight
with the CTE2 term. This method helped a lot to have a
more deterministic comparison between the different trials.

 Int. J. Com. Dig. Sys. 9, No.5, 909-920 (Sep-2020) 915

http://journal.uob.edu.bh

Several test tracks have been used to evaluate the
performance of the SDC-NMPC under different sets of
hyper-parameters in an iterative tuning process. Examples
of these test tracks are shown in Figure 1 and Figure 2.
Figure 1 shows “the 1st track” that represents a kind of rural
road of 3.7 miles long, two-lane, 8.2 m wide, slightly hilly,
max 4.5% incline, designed for max. 80 mph speed. The
test track contains several straight and curved segments, as
well as sharp turns. The sharpest turn has a radius of
curvature of 50 meters. Likewise, Figure 2 shows “the 2nd
track” of 1.122 miles long mostly curved with 4 sharp
turns. The simulation test results of the 2nd track are shown
in Figure 3 to

Figure 9 for convenience. The figures depict the profile
of CTE, eΨ, Speed, Steering command, Throttle command,
acceleration and jerk during a single revolution of SDC on
the 2nd Track. These profiles show that the SDC was able
to reach 80 mph while preserving an acceleration range of
[0.84, -1.70] m/sec2 as well as jerk range of [1.86, -1.88]
m/sec3, which are safe enough by automotive industry
standards to provide comfortable ride [37].

The hyper-parameters have to be tuned manually using
a dedicated simulation tool that incorporates the vehicle
dynamic model explained in Section 3. This tool is
developed specifically for this purpose using Unity [38]
with an optimized object-oriented structured code [39] and
interfaced with the SDC-NMPC (C++ code) using
μWebSocket messaging [40]. The values of the used vehicle
model parameters are listed in TABLE II.

TABLE II. THE VEHICLE MODEL PARAMETERS.

Parameter Value

𝑙𝑓 2.67 meter

𝑙𝑟 2.10 meter

The process of manual tuning of the parameters
includes fixing the whole parameters and only changes one
while measuring the KPI results after adequate simulation
runs as shown in Figure 10. It is necessary to complete at
least a full lap with each change in parameter because it
was the only way to get a decent "score" (total error) for the
parameter set. Figure 10 shows an example of one of this
tuning method, Vref = 100 mph is selected as the design
parameter value for the SDC-NMPC. Moreover, Figure 11
gives another example of how the weighting coefficient of
the CTE term in the NMPC cost function is determined.

The performance of the SDC-MPC is compared to that
of the carefully tuned PID controller that has been
developed in [19] and tested on the “2nd track”. TABLE III.
summaries these comparisons as well as

Figure 12 depicts the resultant speed profiles. The
results show a wonderful improvement in the peak reached
speed in the track (131% higher) and average speed
(53.6%). It is clear from the profiles in

Figure 12 that the NMPC is able to manage and
maximize the speed throughout the track much better than
the PID which only acts on lowering the speed to avoid
large CTEs even on road segments that can accommodate
higher speeds Error! Reference source not found..
Moreover, the NMPC shows more precision in tracking the
path planner waypoints as clearly shown from the highest
and the lowest KPI values.

TABLE III. NMPC/PID PERFORMANCE COMPARISON.

KPI SDC-NMPC SDC-PID % Change

Highest Speed 79.5 mph 34.4 mph +131%

Average Speed 50.1 mph 32.6 mph +53.6%

Lowest MSE 0.6425 0.8288 -28.99%

Highest MSE 1.0411 1.4575 -39.99%

Moreover, for the purpose of better evaluation of the
performance of the designed SDC-NMPC, the framework
presented in the paper is used to design a conventional-
NMPC (cNMPC) track follower. “Conventional” in the
sense of only using the tracking errors (CTE and eΨ) in its
cost function and eliminating the other terms (e.g. only
using the 1st and 2nd terms in Section 6). Then, this cNMPC
is tested on the 2nd track using the same reference speed
(100 mph). However, the cNMPC failed to complete a
single lap without getting out of the road boundaries. Then,
the cNMPC is redesigned by adding the 3rd term (the speed-
error term), however the controller still fails to complete a
single lap without getting out of the boundaries of the road.
The process gets iterated and each time adding a new term,
till reaching the 7th term where the controller was able to
complete the laps without breaching the boundaries. The
resultant cNMPC controller contains all the proposed SDC-
NMPC cost terms except the 8th term, which is “the change
of the steering command term”. The performance of the
resultant cNMPC is then compared to that of the full SDC-
NMPC, the results are listed in TABLE IV. and shown in

Figure 13,

Figure 14, and

Figure 15.

TABLE IV. NMPC/CNMPC PERFORMANCE COMPARISON.

KPI SDC-NMPC cNMPC % Change

Highest Speed 79.5 mph 78.1 mph +1.8%

Average Speed 50.1 mph 50.9 mph -1.5%

Lowest MSE 0.6425 1.4842 -56.71%

Highest MSE 1.0411 1.9797 -47.41%

The above results show that there is no major difference
in speed metrics between the two controllers as shown in

Figure 15 as well, or in other words, the travel time
almost did not change. However, the cNMPC ride quality
is much worse than that of the originally proposed SDC-

916 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

NMPC. This has been revealed by the reported MSE scores
in TABLE IV.

Figure 13 and

Figure 14.

Figure 1. The 1st Test Track.

Figure 2. The 2nd Test Track.

Figure 3. Both CTE and eΨ for one revolution in the 2nd Track.

Figure 4. CTE and Speed for one revolution in the 2nd Track.

Figure 5. eΨ and Speed for one revolution in the 2nd Track.

Figure 6. Throttle and Steering commands for one revolution in the 2nd

Track.

Figure 7. Throttle and Speed commands for one revolution in the 2nd

Track.

Figure 8 Throttle and Acceleration for one revolution in the 2nd Track.

 Int. J. Com. Dig. Sys. 9, No.5, 909-920 (Sep-2020) 917

http://journal.uob.edu.bh

Figure 9. Steering and Jerk for one revolution in the 2nd Track.

Figure 10. Performance of the SDC-MPC with respect to the speed

reference.

Figure 11. Performance of the SDC-MPC with respect to CTE error

weight.

Figure 12. PID and NMPC Speed Profiles for one revolution in the
2nd Track.

Figure 13. SDC-NMPC and cNMPC CTE scores for one revolution in

the 2nd Track.

Figure 14. SDC-NMPC and cNMPC eΨ scores for one revolution in the
2nd Track.

Figure 15. SDC-NMPC and cNMPC speed Profiles for one

revolution in the 2nd Track.

9. DISCUSSION

The paper presents a method to satisfy the requirements
of an efficient and comfortable ride for self-driving car
while driving through complex tracks. The idea is that for
an efficient ride the requirements are:

1) To follow the required trajectory (usually generated by
the path planner) as precise as possible (with the lowest
deviation) in other words, the lowest aggregated cross-
track errors (CTEs).

2) To reach the destination as fast as possible (more
efficient).

-6
-4
-2
0
2
4
6

1 21 41 61 81 101 121 141

C
TE

 (
Fe

et
)

Track Positions Full SDC-NMPC

-0.3

-0.2

-0.1

0

0.1

0.2

1 21 41 61 81 101 121 141
eΨ

(r
ad

)

Track Positions Full SDC-NMPC

0

20

40

60

80

100

1 21 41 61 81 101 121 141

Sp
e

e
d

 (
m

p
h

)

Track Positions FULL SDC-NMPC

918 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

3) This should be done without violating the comfort
requirements of the ride, which can be evaluated by
monitoring the acceleration and jerk measurements.
The acceleration should be maintained within (±0.2g
m/sec2) and the jerk within (±10 m/sec3) [37].

4) This should be done as well while respecting the vehicle
dynamics (constraints).

The paper formulates the above requirements by
proposing a framework for constructing a Nonlinear MPC
path tracker (SDC-NMPC) that provides a way of easily
integrating several driving objectives through
compounding a multi-term cost function as presented in
Section 6 and TABLE I. Each term contributes to the
overall objective according to its corresponding weight.
Optimizing this objective function using the primal-dual
interior-point algorithm, allows the controller to produce
steering, throttle (gas/brake) commands that satisfy the
above requirements and constraints. Another contribution
of the paper is the detailed description of the real-time
implementation of the NMPC and its objective function in
C++.

The following conclusive points shed the light on some
technical aspects that have been tried or implemented in the
described approach:

1) The NMPC controller has a much more complex
structure compared to that of the PID. However, it is
more effective, especially at higher speeds. It can
handle issues like actuator latency and external
disturbances much better.

2) One of the main issues with the NMPC is its tuning.
There is no theory or criteria that prove that the optimal
value for the many used hyper-parameters has been
selected. Most methods of tuning are mainly based on
extensive search augmented with intuition and
experience.

3) From the author’s point of view, using transparent
methods based on extensive “trial-and-error” endeavors
guided by numerical performance indicators is the most
convenient approach. This approach allows one to
understand the problem at hand much deeper.
Furthermore, it allows the incorporation of one’s
intuition and experience, which reduces a lot of the
search space; and consequently, shows more
effectiveness at the end.

4) The most powerful aspect of the design of the NMPC is
the ability to tailor the cost function [41]. It gives great
flexibility to the designer to balance between
conflicting requirements and make a better-educated
trade-off.

Future research and endeavors are encouraged to
enhance this work, and the following are some of the
suggested improvements:

1) Experimenting with other terms that may be added to
the SDC-NMPC cost function such as “maintain δf*acc
=> reasonable value”. The idea at big steering angles
the car is going to a sharp turn and needs to avoid large
acceleration and vice versa.

2) One set of hyper-parameters may not be enough for all
the range of speed. Therefore, a kind of adaptive MPC
where it can have several sets of parameters for each
speed range (similar to gain scheduling in PID) is
desirable in this case.

3) Need to add or invent several other performance
indicators, like a one to track the time in which the car
is able to complete one lap. Another suggested one is to
track overshoots and undershoots from the road center,
etc.

10. CONCLUSION

In this paper, a framework for designing a non-linear
model-predictive-control path follower for autonomous
vehicles is proposed and described in detail. The
framework uses the primal-dual interior-point technique to
iteratively solve the NMPC optimization problem.
Consequently, the whole framework is developed using
C++ in addition to advanced math libraries to optimize
real-time performance. Furthermore, the framework is used
to design and implement an SDC-NMPC with tailored cost
function that handles several objectives simultaneously
(either opposing or correlating) to emphasize precision,
comfort, and efficiency. The designed SDC-NMPC
receives waypoints of the reference trajectory from the path
planner, the actual location of the SDC in global
coordinates from the localization module, the
instantaneous speed and steering angle measurements from
the SDC associated sensors. The output is then the steering
and the gas/brake (throttle) commands. The performance of
the SDC-MPC track follower is evaluated through
extensive simulations in complex tracks with sharp turns.
The performance is also compared to that of the classical
PID controller showing superior performance.

ACKNOWLEDGMENT

This work used the High-Performance Computing
(HPC) facilities of the American University of the Middle
East, Kuwait.

REFERENCES

[1] Wael Farag, “Traffic signs classification by deep learning for
advanced driving assistance systems”, Intelligent Decision
Technologies, IOS Press, vol. 13, no. 3, pp. 215-231, (2019).

[2] Wael Farag, Zakaria Saleh, "Road Lane-Lines Detection in Real-
Time for Advanced Driving Assistance Systems", Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

[3] Wael Farag, Zakaria Saleh, "Behavior Cloning for Autonomous
Driving using Convolutional Neural Networks”, Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

 Int. J. Com. Dig. Sys. 9, No.5, 909-920 (Sep-2020) 919

http://journal.uob.edu.bh

[4] Wael Farag, “Recognition of traffic signs by convolutional neural
nets for self-driving vehicles”, International Journal of
Knowledge-based and Intelligent Engineering Systems, IOS Press,
vol. 22, no: 3, pp. 205 – 214, (2018).

[5] Wael Farag, Zakaria Saleh, "Tuning of PID Track Followers for
Autonomous Driving", Intern. Conf. on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT'18), Bahrain,
18-20 Nov., (2018).

[6] Wael Farag, “Safe-driving cloning by deep learning for
autonomous cars”, International Journal of Advanced Mechatronic
Systems, Inderscience Publishers, vol. 7, no. 6, pp. 390-397,
(2019).

[7] Wael Farag, "Cloning Safe Driving Behavior for Self-Driving Cars
using Convolutional Neural Networks", Recent Patents on
Computer Science, Bentham Science Publishers, The Netherlands,
Vol. 12, No. 2, pp. 120-127(8), (2019).

[8] Wael Farag and Zakaria Saleh, “An Advanced Vehicle Detection
and Tracking Scheme for Self-Driving Cars”, 2nd Smart Cities
Symposium (SCS’19), IET Digital Library, Bahrain, 24-26 March,
(2019).

[9] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar and B.
Litkouhi, “Towards a Viable Autonomous Driving Research
Platform”, IEEE Intelligent Vehicles Symposium (IV), Australia,
23-26 June, (2013).

[10] G. Bai, Y. Meng, L. Liu, W. Luo, Q. Gu, and L. Liu, “Review and
Comparison of Path Tracking Based on Model Predictive Control”,
electronics, MDPI, vol. 8, Sept., (2019).

[11] Wael Farag, “Track Maneuvering using PID Control for Self-
Driving Cars”, Recent Advances in Electrical & Electronic
Engineering, 13 (1), pp. 91-100, 2020.

[12] T. Ikeda and M. Nagahara, “Discrete-Valued Model Predictive
Control Using Sum-of-Absolute-Values Optimization”, Asian
Journal of Control, vol. 20, no. 2, pp. 1-11, March, (2018).

[13] N. F. Silva, C. E. T. Dórea and A. L. Maitelli, “An iterative model
predictive control algorithm for constrained nonlinear systems”,
Asian Journal of Control, vol. 21, no. 5, pp. 1–15, Sept., (2019).

[14] A. Wächter and L.T. Biegler, “On the Implementation of a Primal-
Dual Interior-Point Filter Line Search Algorithm for Large-Scale
Nonlinear Programming”, Mathematical Programming, vol. 106,
pp. 25-57, (2006).

[15] B. Vatankhah and M. Farrokhi, “Nonlinear Adaptive Model
Predictive Control of Constrained Systems with Offset‐Free
Tracking Behavior”, Asian Journal of Control, vol. 20, no. 1, pp.
1–13, January, (2018).

[16] Wael Farag, “Synthesis of intelligent hybrid systems for modeling
and control”, Ph.D. Thesis, Universty of Waterloo, Canada, 1998.

[17] Wael Farag, Ahmed Tawfik, “On fuzzy model identification and
the gas furnace data”, Proceedings of the IASTED International
Conference Intelligent Systems and Control, Honolulu, Hawaii,
USA, August 14-16, (2000).

[18] W. Farag, Z. Saleh, “MPC Track Follower for Self-Driving Cars”,
2nd Smart Cities Symposium (SCS’19), IET Digital Library,
Bahrain, 24-26 March, (2019).

[19] W. Farag, “Complex Trajectory Tracking Using PID Control for
Autonomous Driving”, International Journal of Intelligent
Transportation Systems Research, Springer, Sept., (2019).

[20] W. Farag, “Complex-Track Following in Real-Time Using Model-
Based Predictive Control”, International Journal of Intelligent
Transportation Systems Research, Springer, (2020).

[21] N. Wang, S.-F. Su, X. Pan, X. Yu, and G. Xie, “Yaw-Guided
Trajectory Tracking Control of an Asymmetric Underactuated
Surface Vehicle”, IEEE Trans. Industrial Informatics, Vol. 15, No.
6, June, (2019).

[22] N. Wang, G. Xie, X. Pan, X. Yu, and S.-F. Su, “Full-State
Regulation Control of Asymmetric Underactuated Surface
Vehicles”, IEEE Trans. Industrial Electronics, Vol. 66, No. 11,
Nov., (2019).

[23] N. Wang, H.R. Karimi, H. Li, and S.-F. Su, “Accurate Trajectory
Tracking of Disturbed Surface Vehicles: A Finite-Time Control
Approach”, IEEE/ASME Trans. Mechatronics, Vol. 24, No. 3,
June, (2019).

[24] N. Wang, H.R. Karimi, “Successive Waypoints Tracking of an
Underactuated Surface Vehicle”, IEEE Trans. Industrial
Informatics, June, (2019).

[25] GCC C++, https://gcc.gnu.org/, accessed on 11th Feb, (2019).

[26] IPOPT, https://en.wikipedia.org/wiki/IPOPT, accessed on 11th Feb,
(2019).

[27] A C++ Algorithmic Differentiation Package (CppAD), https://coin-
or.github.io/CppAD/doc/cppad.htm, accessed on 11th Feb, (2019).

[28] J. Robert Vanderbei, “Linear Programming: Foundations and
Extensions”, Kluwer, pp. 277–279, (2001).

[29] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, "Kinematic and
Dynamic Vehicle Models for Autonomous Driving", IEEE
Intelligent Vehicles Symposium (IV), Seoul, South Korea, 28 June,
(2015).

[30] W. Rahiman, and Z. Zainal, “An overview of development GPS
navigation for autonomous car”, 8th IEEE Conference on Industrial
Electronics and Applications (ICIEA), Melbourne, Australia, 19-21
June, (2013).

[31] D. Gohring, M. Wang, M. Schnurmacher, T. Ganjineh,
“Radar/Lidar Sensor Fusion for Car-Following on Highways”, 5th
Intern. Conf. on Automation, Robotics, and Applications, ICARA
2011, Wellington, New Zealand, 6-8 Dec., (2011).

[32] “Speedometer”, https://en.wikipedia.org/wiki/Speedometer,
Wikipedia, accessed on 9th Feb, (2019).

[33] M. Kok, J. D. Hol, and T. B. Schon, ”Using Inertial Sensors for
Position and Orientation Estimation”, Foundations and Trends in
Signal Processing, vol. 11, no. 1-2, pp 1-153, (2017).

[34] “Rotation and Orientation in Unity”,
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsIn
Unity.html, accessed on 9th Feb, (2019).

[35] S.G. Anavatti, S. LX Francis, M. Garratt, “Path-planning modules
for Autonomous Vehicles: Current status and challenges”, Inter.
Conf. on Advanced Mechatronics, Intelligent Manufacture, and
Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 15-17
Oct., (2015).

[36] Ubuntu Linux, https://www.ubuntu.com/, accessed on 11th Feb,
(2019).

[37] L.L. Hoberock, “A survey of longitudinal acceleration comfort
studies in ground transportation vehicles”, Dept. of Transportation,
Washington DC, USA, (1976).

[38] Unity, https://unity.com/solutions/automotive-
transportation?_ga=2.238996096.1822638216.1551163213-
250725045.1549710749, accessed on 26th Feb, (2019).

[39] M. Nagiub and W. Farag, “Automatic selection of compiler options
using genetic techniques for embedded software design”, IEEE 14th
Inter. Symposium on Comp. Intelligence and Informatics (CINTI),
Budapest, Hungary, Nov. 19, (2013).

[40] μWebSocket, https://github.com/uNetworking/uWebSockets,
accessed on 26th Feb, (2019).

[41] Wael A Farag, VH Quintana, G Lambert-Torres, “Genetic
algorithms and back-propagation: a comparative study”, IEEE
Canadian Conf. on Elec. and Comp. Eng., vol. 1, pp. 93-96,
Waterloo, Ontario, Canada, (1998).

https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318
https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/IPOPT
https://coin-or.github.io/CppAD/doc/cppad.htm
https://coin-or.github.io/CppAD/doc/cppad.htm
https://en.wikipedia.org/wiki/Speedometer
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
https://www.ubuntu.com/
https://unity.com/solutions/automotive-transportation?_ga=2.238996096.1822638216.1551163213-250725045.1549710749
https://unity.com/solutions/automotive-transportation?_ga=2.238996096.1822638216.1551163213-250725045.1549710749
https://unity.com/solutions/automotive-transportation?_ga=2.238996096.1822638216.1551163213-250725045.1549710749
https://github.com/uNetworking/uWebSockets

920 Wael Farag: Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving

http://journal.uob.edu.bh

Wael Farag earned his Ph.D. from
the University of Waterloo, Canada
in 1998; M.Sc. from the University
of Saskatchewan, Canada in 1994;
and B.Sc. from Cairo University,
Egypt in 1990. His research,
teaching and industrial experience
focus on embedded systems,
mechatronics, autonomous
vehicles, renewable energy, and
control systems. He has combined

17 years of industrial and senior management experience in
Automotive (Valeo), Oil & Gas (Schneider) and Construction
Machines (CNH) positioned in several countries including
Canada, USA & Egypt. Moreover, he has 10 Years of academic
experience at Wilfrid Laurier University, Cairo University, and
the American University of the Middle East. Spanning several
topics of electrical and computer engineering. He is the holder of
2 US patents; ISO9000 Lead Auditor Certified and Scrum Master
Certified.

