

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Jan-2021)

E-mail: 20112417@stu.uob.edu.bh, mhammad@uob.edu.bh

 http://journals.uob.edu.bh

Analyzing UML Use Cases to Generate Test Sequences

Zahra Abdulkarim Hamza

1
 and Mustafa Hammad

2

1,2 Department of computer science – College of IT, University of Bahrain, Sakheer, Kingdom of Bahrain

Received 4 Apr. 2020, Revised 15 Jul. 2020, Accepted 5 Aug. 2020, Published 1 Jan. 2021

Abstract: Software testing is a main phase in the software development life-cycle. Testing tasks are always heavy and

time-consuming due to their critical role and importance. Furthermore, testing requires several preparation steps, such

as the test sequences. There are many ways to generate the test sequences to perform software testing. In this paper,

UML use case diagrams are used to generate test sequences for software testing. The approach is proposed to make use

of the UML use case diagrams in more than translating the software requirements to software specifications. The

approach consists of several phases. Starting from converting the UML use case diagram into activity diagrams, going

through the simplification step, and ending with extracting the needed information to generate the test sequences. The

approach is evaluated using nine case studies from a business and systematic perspective. Moreover, the results are

compared with the prior work.

Keywords: Software Engineering, Testing, Test Sequences, UML, Use Case

1. INTRODUCTION

Software testing is the process of ensuring the
software conformance with its requirements. Such a
process is a mandatory phase in each process model of the
Software Development Life-Cycle (SDCL). Testing tasks
require several pre-steps to be done as testing preparation.
Testing preparation involves generating test strategies, test
plans, test sequences, test suites, and test cases. All the
testing preparation steps are important for successful
testing.

Testing preparation is done with consideration of
multiple points. Testing type is of the main points that
require special test preparation. Testing types could be a
black box, grey box, white box, or any other type.
Moreover, the testing goal, which is related also to the
testing type, should be considered in the testing
preparation. For example, when the goal is to test the
units’ integration, the testing preparation will be different
than testing a single unit of software.

In this research, the focus is on the test sequences that
are used in software testing. Test sequences are certain
actions that are ordered to be followed sequentially to test
software [1]. Software testers use test sequences to
prepare testing tasks and testing requirements. Generating
test sequences is a costly process in terms of time, effort,
and money.

UML diagrams are used in software testing for the test
sequences’ generation process. As the UML diagrams are
generated in the analysis phase to identify the software
specifications, developers can benefit from them to easily
generate the test sequences as well. Some of the UML
diagrams need to be pre-processed before using them in
the generation of the tests. For example, when a UML
diagram is used and its information is not enough, it can
be combined with other UML diagrams to extract more
information.

Test sequences generation can also support the process
of generating the test suites. The test suite is a collection
of test cases [2]. With consideration of test sequences, the
test cases can be generated easier and better. Test
sequences in the test cases’ generation helps in
understanding the flow of data and how the software parts
are related to each other.

Many points are considered as difficulties in
generating test sequences using UML use case diagrams.
In addition to the time and effort of the required analysis,
it is an expensive task. Moreover, such a process has a
high probability of conceptual and human errors.

In this paper, an approach is proposed to generate the
test sequences using UML use case diagrams. The
approach consists of several processes to be done to
generate the test sequences. As input, UML use case
diagrams will be used to be processed and converted into

http://dx.doi.org/10.12785/ijcds/100112

126 Z. A.Karim & M. Hammad: Analyzing UML Use Case to Generate Test Sequences And Test Suites

http://journals.uob.edu.bh

activity diagrams. Each of the activity diagrams will be
simplified and divided into small activity graphs, in such a
way that each activity graph is representing exactly one
test sequence. After that, the activity graphs are used as a
source to extract the information and generate the tests,
which is the last process in the approach.

The paper is organized in several sections. The next
section covers the reviewed literature and the main
differences between the prior work and the proposed
approach. After that, the section of the proposed approach
comes to explain in detail each step and sub-process to
generate the test sequences. Then, the results are
presented along with the related discussion. Finally, the
paper is concluded by stating what has been done,
limitations, and future work.

2. LITERATURE REVIEW

UML activity diagram is one of the used models in the
testing phase. The approaches in [3 and 4] are suggested
to automate the test cases’ generation from UML activity
diagrams. The approaches were proposed to automate the
test case generation. Other approaches in [5] and [6] are
also proposed to generate test cases from UML activity
diagrams. However, these approaches have been
developed with consideration of the Activity Path
Coverage (APC) criterion. APC criterion is involved to
help in detecting the faults of loops in software programs.
Linzhang et al. [7] proposed an approach of reusing the
UML activity diagrams models with a gray-box testing
method. Moreover, a prototype has been implemented to
support the approach and prove the concept. Bhukya [8]
suggested an approach to generate test cases from activity
diagrams. Such diagrams are used to describe the
behavior of the systems, which makes them useful in
generating test cases process. Also, there is another
approach developed in [9] to generate the test cases from
the UML activity diagrams. However, the approach is
based on graph transformation. Two graph grammars have
been proposed for the generation process. The first graph
grammar is to interpret the activity diagram into an
intermediate form, and the second one is to generate the
test cases. Kim et al. [10] proposed an approach for test
case generating using the information of the activity
diagrams. The activity diagrams are converted to directed
graphs with explicit input and output. Then, the test cases
are generated from the directed graphs. Another work [11]
proposed an approach to examine the errors that may
occur in deriving test cases from the activity diagram.
There is another approach that has been presented in [12]
that uses a genetic algorithm to generate test cases from
UML activity diagram. Using extension theory, Liping et
al. [13] proposed an approach also to generate test cases
using UML activity diagrams.

The sequence diagram is another UML model that is
used in the process of generating test cases. For example,
Sarma et al. [14] proposed an approach to automate the
test case generation from UML sequence diagrams. Such

an approach does not require any modification or manual
changes to be re-used. The First step is generating a
Sequence Diagram Graph (SDG) from the UML sequence
model. Then, the test cases are generated from the SDG,
which is the same as the work in [15]. A similar approach
is suggested by Nayak and Samanta [16] to automatically
generate test cases from UML sequence diagrams.
However, it requires some data to be retrieved from other
UML diagrams i.e. class diagrams, to completely generate
the test cases. Another work in [17] developed an
algorithm to derive tests from a sequence diagram using
NEG and ASSERT operators. The derived tests using
such an approach are also in the form of sequence
diagrams. Furthermore, another generation approach is
proposed in [18], which also uses the UML sequences
diagram. The approach is automating the test path
generation from the UML sequence diagram and has been
evaluated using a case study.

UML state diagram is also used in the test case
generation process. Kim et al. [19] proposed an approach
that uses UML state diagrams to generate test cases. The
approach is based on coverage criteria, which is
developed using the control and flow information of the
UML state diagram. Furthermore, the approach proposed
by Samuel et al. [20] is also using the UML state diagram
to generate test cases. The approach is fully automated
and no manual steps to be done. The generation process
uses the logic of the data flow as basic information.
Moreover, control information is also used in the
approach. Another work in [21] and [22] proposed
approaches that use the UML state diagram in test cases’
generation. These approaches are depending on genetic
algorithms in the generation processes.

Generating test cases can be done also from UML use
case diagrams. An approach presented in [23] shows a
way for generating test cases from the UML use case
diagrams. The approach has been implemented and tested
using a real project. The testing results show that the
majority of the generated test cases using the proposed
approach are the same as the actual ones. Another work in
[24] presented a new approach that uses the UML use
case specifications. The first step in the approach is to
generate activity diagrams for each actor from the use
case specifications. After that, the test generation process
started to generate the test sequences.

There is another way of generating the test cases from
UML models, which is combining the UML diagrams
information. As an example, the approach in [25] is
proposed in which it combines class, object, and state
diagrams’ information to generate test cases. The
extracted information from the diagrams is compiled
using Intermediate Format (IF). Then, the test cases are
generated from the IF output. Moreover, the suggested
approach in [26] shows that the collaboration of UML
diagrams could assist in generating the test cases. The
approach has been tested and the results proved that there
is a possibility to generate the test cases from the software

 Int. J. Com. Dig. Sys. 10, No.1, 125-134 (Jan-2021) 127

http://journals.uob.edu.bh

design and not from code. Over and above, another work
in [27] represented a technique, which is based on
combining UML sequence and state diagrams to generate
the test cases. The technique is used to generate test cases
to perform class and integration testing for object-oriented
programs. Besides, there is another approach [28], which
is combining a UML use case and sequence diagrams to
generate the test cases. First of all, two graphs are
constructed from use cases and sequence diagrams. Use
case Dependency Graph (UDG) is created from the use
case diagrams and Concurrent Control Flow Graph
(CCFG) from the sequence diagram. Those graphs help in
generating test cases when combining their information.
Furthermore, Ghose et al. [29] proposed an approach that
uses UML class and sequence diagrams for test case
generation. The information from both class and sequence
diagrams is integrated into the Variable Assignment
Graph (VAG). Then, the test cases are generated from the
VAG.

The UML behavioral models combination is a way of
generating test cases. For example, the work in [30]
represented an approach to generate test cases by
combining UML sequence and activity diagrams. Both
activity and sequence diagrams are of the behavioral
UML models. The main feature of the approach is that the
number of test cases is reduced and achieves at the same
time the test coverage criteria.

Generating a UML use case diagram from the
requirements is already resolved by many proposed
approaches. For example, the work in [31] proposed an
approach to generate the UML use case from
requirements using natural language processing.

 In this paper, the UML use case diagram is used to
generate the test sequences but with different
considerations. The first point that the proposed approach
overcomes the complicated process of generating the test
sequences of the prior work. Moreover, the test sequences
that the proposed approach is generating are straight
forward without going deep into the sub-tests, because
they are already covered by the main one. Furthermore,
path coverage is considered in the proposed approach.

3. PROPOSED APPROACH

The proposed approach consists of several processes,
as shown in Figure 1. The input is the UML use case
diagram, which is a basis in the approach. Each of the
UML use case diagrams of software is analyzed in the
first process to extract the needed information to create
customized activity diagrams. The activity diagrams will
be generated based on a set of rules. In the next process,
an activity graph will contain a set of nodes that are
represented sequentially according to the extracted
information from the previously generated activity
diagram. Then, the tests will be generated from the
activity graphs. The next sections explain in detail each
process of the approach with examples.

Figure 1. The proposed approach for generating test sequences from

UML use case diagrams

A. Convert UML use case into activity diagrams

Each UML use case is converted to a customized
activity diagram. Such an activity diagram contains
sequential activities that should be done to perform a task,
which is represented by the use cases in the UML use case
model.

Figure 2. Pseudocode of the proposed approach for converting a UML

use case into an activity diagram

Figure 2 shows how the task of UML use case
conversion into an activity diagram is performed using
pseudocode and the definitions:

Ai = {Ai: A is actor and i is actor number}

UCj = {UCj: UC is use-case and j is use case number}

R = {r: r is a relationship between UC and another UC,

and r ∈ {“extends”, “includes”}}

RAi, j = {RA is a relationship between Ai and UCj}

As shown in Figure 2, for each actor, there is a
customized activity diagram. The actor is represented by a
starting point in the activity diagram. For each RAi, j,
which is a relationship between the actor (i) and a use case
(j), there is a line that connects the starting point (Ai) and
the use case (UCj). However, for each R, which is either

UML use case

 Converter

Activity diagram

Activity diagram

simplifier

Simplified activity

diagrams

Tests

information
extractor

Test sequences

1 For each Ai
2 { create activity diagram
3 make Ai a starting point
4 For each RAi, j
5 { convert UCj into an activity
6 connect Ai to the activity }
7 For each R
8 {IF R is equal to “includes”
9 {convert the included UC into an activity
10 connect the previous activity to the included activity }
11 ELSEIF R is equal to “extends”
12 {convert the extended UC into an activity
13 connect the previous activity to the extended activity
14 connect the previous activity to the endpoint}
15 }
16 }
17 Connect all the activities to the endpoint.

128 Z. A.Karim & M. Hammad: Analyzing UML Use Case to Generate Test Sequences And Test Suites

http://journals.uob.edu.bh

an “extends” or “includes” relationship, there is a different
process. If R equals to “includes”, the previous activity
will be connected to the included one. If R equals to
“extends”, there will be a fork and join. In other words,
the activity will be duplicated. One of the duplicated
activities will be connected to the other activity that
represents the extended use case.

Figure 3. “extends” and “includes” relationships of UML use case

diagrams

Determining the UML use case elements is the first
step in the process. For each actor of the UML use case
diagram, there is a customized activity diagram and the
actors are converted to starting points. All the use cases,
which are connected to the actor directly are converted to
activities and connected to the starting point. For the
relationships between the use cases, the process is
different, as shown in Figure 3. If there is an “includes”
relationship between two cases, the included use case is
converted to activity and connected to the activity that
includes it. For the “extends” relationship, the extended
use case that is already depicted as activity in a previous
step will be connected to the endpoint, as well as, to the
use case that extends it after converting it into activity.
Finally, all the activities should be connected to the
endpoint.

Figure 4 and Figure 5 show an example of the
conversion process from the UML use case diagram into
an activity diagram. The use cases in the UML use case
and their corresponding nodes in the activity graph are
represented by (UC-#). All the possible situations of the
use cases are depicted in Figure 4. The Actor has
relationships with three use cases as shown in Figure 4.
The use cases are in a normal use, an “includes”
relationship, and the other one is in an “extends”
relationship. The various situations are used to show how
each of them is represented in the activity diagram, which
is Figure 5. In the activity diagram, the actor is considered
as a starting point and represents the first level. The
starting point is connected to three activities (UC-1, UC-2,
UC-5) through three edges. Those activities are

representing the three use cases that are connected to the
actor in Figure 4. As the use case (UC-1) in Figure 4 does
not have any relationship with other use cases, activity
(UC-1) in the activity diagram (Figure 5) is directly
connected to the endpoint.

Figure 4. Example of UML use case diagram

The use cases that are in relationships with others are
represented differently in the customized activity diagram
as shown in Figure 5. The use cases (UC-2 and UC-5), as
shown in Figure 4 are connected to other use cases
through “includes” and “extends” relationships, which
makes the representation of their corresponding activities
connected to other activities as shown in Figure 5. For the
“includes” relationship, the use case that includes the
other use case is depicted first as an activity in the activity
diagram, and connected directly through an edge to the
included use case activity. For the “extends” relationship,
the use case that extends the other one is depicted before
the extended one in the activity diagram.

Figure 5. Activity diagram resulted from the conversion process of the
UML use case diagram shown in Figure 4

UC-1

UC-5

UC-2

UC-3

UC-5

UC-4

UC-X
UC-Y

UC-Z
UC-Y UC-Z

UC-X

UC-X UC-Y
UC-Y

UC-Y

UC-X

<<includes>>

<<includes>>

<<extends>>

(a)UML use case (b)Activity diagram

UC-1

UC-2

UC-3

UC-4

UC-5

<<includes>>

<<extends>>

System

 Int. J. Com. Dig. Sys. 10, No.1, 125-134 (Jan-2021) 129

http://journals.uob.edu.bh

B. Simplifying the activity diagrams

The second process in the approach is to simplify the
activity diagram. The generated activity diagrams from
the UML use case might be complicated. The
complication appears because of certain reasons, such as
the relationships between the actors and the use cases, and
the relationships between the use cases themselves
through “includes” and “extends”. The simplification is
intended to have sub-activity diagrams, which are
represented by directed activity graphs. Each of the
activity graphs is representing exactly one path of the
previously generated activity diagram. As each of the
generated activity graphs is equivalent to one path, the
number of the activity graphs is the same as the number of
paths of the original activity diagrams.

Figure 6. Pseudocode of simplifying the activity diagrams by

converting them into directed activity graphs

Figure 7. Activity graphs generated from simplifying the activity

diagram shown in Figure 5

As shown in Figure 6, the path extraction is done by
going through each edge of the activity diagram. For each

edge, each activity is captured and depicted as nodes in
the activity graph. Starting from the activities of the first
level, a checking process is done to count the outgoing
edges to decide the next step. If there is only one edge, a
checking process is done to find if the next level is an
endpoint or another activity. If there is more than one
edge, the previously captured path is duplicated, and the
activities of the next level (which are indicated by the
number of the edges) are connected distinctly to each one
of the duplicated paths. This process is repeated until the
next level becomes an endpoint.

Figure 7 shows an example of the simplification
process results. The activity diagram, which is represented
in Figure 5, has four paths. So, the simplification process
generates four directed activity graphs. In Figure 7, the
first and last sub-activity graphs contain three nodes
including the starting and endpoints. The second and third
sub-activity graphs contain more than three nodes as there
were “includes” and “extends” relationships between the
use cases in the UML use case diagram.

C. Generating test sequences

The last process in the proposed approach is to
generate the test sequences. The test sequences are
generated through information extraction from the
directed activity graphs. Each of the directed activity
graphs is considered as one test sequence, and the
software testers should go through all of the test
sequences even if they are duplicated in each activity
graph. Such information should be considered in the
testing because there might be other users that are sharing
a use case but taking different paths to the end. Moreover,
the use cases’ nodes (UC-#) should be extracted as
functions to be tested in the testing process. The order of
the functions is important and should be considered as
well because it is representing how the functions are
related to each other and some of them cannot be tested
before the other ones.

Figure 8 shows the tests that are generated from the
sub-activity graphs shown in Figure 6. All of the tests are
for the user type (A). The first test has only one function
to be tested, which is represented by (UC-1). The second
test contains two related functions that should be tested,
which are represented by (UC-2 and UC-3). The last test
has also two related functions (UC-5 and UC-4) to be
tested.

Figure 8. Generated test sequences from the UML use case diagram

shown in Figure 4

UC-2

UC-3

UC-5

UC-4

UC-1 UC-5

Test Sequences (TS#):
Actor A:
TS1: UC-1 → END
TS2: UC-2 → UC-3 → END

TS3: UC-5 → END

TS4: UC-5 → UC-4 → END

1 For each Activity_Diagram
2 For each Edge in First_level
3 Create Activity_Graph // Starting_point with an edge ONLY
4 For each Activity in First_level{
5 Connect the Activity to the Starting_point
6 IF (Activity has EXACTLY ONE Edge){
7 IF (Next_level == End_point)
8 Connect Activity to End_Point
9 ELSE{
10 Connect to Activity of Next_Level
11 First_level <- Next_level}
12 }ELSE IF (Activity has MORE THAN ONE Edge){
13 WHILE(Activity has Edges AND Edges>1){
14 Duplicate the previously generated path
15 // Based on no. of edges
16 For each Duplicated_path
17 Connect (distinctly) Activity from Next_level
18 First_level <- Next_level}
19 GO TO CHECKING EDGES POINT}
20 }

130 Z. A.Karim & M. Hammad: Analyzing UML Use Case to Generate Test Sequences And Test Suites

http://journals.uob.edu.bh

4. EXPERIMENTAL EVALUATION

This section explains how the proposed approach is
evaluated. The used case studies and the evaluation
procedure is described in the coming subsections.

A. Case studies

The proposed approach has been applied and
evaluated through nine projects as case studies. Two case
studies are business models, and the rest are system
models. The projects’ requirements of the case studies are
already converted into UML use case diagrams. They are
published in public as UML use case examples. Choosing
business models and system models in the evaluation are
proof that the proposed approach is useful in the IT
projects as well as the business projects, although the
focus of the research is on the IT projects and system
models.

TABLE I. DETAILS OF THE CASE STUDIES

Project
Use-

cases
Actors

Actor –

Use-case

relationships

Use-case –

use-case

relationship

ATM 11 3 12 9

POS 9 3 3 7

FRIEND 7 2 4 6

E-library 12 2 7 5

Online

shopping
20 5 9 11

Credit-card

processing
6 3 14 2

Hospital m

anagement

9 1 6 6

Restaurant 7 5 5 2

Check-in

(Airport)
7 2 3 6

There certain information that has been considered
from UML use case diagrams in the generation process.
As shown in Table 1, for each project, the number of
actors, use cases, relationships between actors and use
cases, and relationships between the use cases are
considered and counted. Such statistics are important to
study if there are relationships between these numbers,
which are shown in Table 1, and the number of the test
sequences. Moreover, these statistics are also an indicator
of the complexity level of the projects.

The first set of case studies is system UML use case
diagrams. The Automated Teller Machine (ATM) system
[32] is the first case study that is chosen to test the
approach. The ATM system is designed and developed to
assist the customer-machine interaction. The second case
study is the Point-Of-Sale (POS) system [33]. Such a
system is required to manage and record the sales

transactions and handle the payment processes. Another
used case study is First Responder Interactive Emergency
Navigation Database (FRIEND) system [34]. The
FRIEND system is one of the accident management
systems. Furthermore, E-library [35] is also a case study
that is used in the evaluation. E-library is a system that
enables the readers to borrow books and return them at a
specific time. Whenever there is a delay, the reader should
pay a specific amount of money. Another case study is
online shopping [35]. Through the online shopping
system, customers can view items, add to cart, checkout,
and pay. Credit card processing [35] is a subsystem of the
online shopping system. Such a project is describing the
process of credit card payments. Another system that is
chosen as a case study is hospital management [35]. Such
a system is used by the hospital receptionist to manage the
patients’ appointments and admissions. The other two
case studies, which are restaurant and Check-in (Airport)
[35] are business models. The Restaurant business model
is created to manage the processes of buying meals and
the related payments. However, the Check-in business
model is to describe the check-in process at the airports.

As shown in Table 1, different numbers are varying
between the nine projects for the actors, use cases, and
relationships. The online shopping system has the highest
number of use cases, actors, and relationships. However,
the check-in has the least number of use cases and actors
among the case studies. The case studies have been
selected with consideration to the different complexity
levels and sizes. Those differences are important to
evaluate the proposed approach and how it will work in
different situations.

B. Experimental procedure

To evaluate the proposed approach, the selected case
studies are used to apply the approach. All the projects
(case studies) have been processed by each process of the
approach. In the beginning, for each project, the UML use
case diagrams are converted into customized activity
diagrams as a first step. Then the simplification process is
done to generate directed activity graphs. Finally, the
needed information is being extracted to generate the test
sequences.

As an evaluation of the proposed approach, the results
after applying the approach to the case studies are
compared with the other approaches’ results. The other
approaches were considering also UML diagrams in
generating the test sequences, which makes the
comparison applicable to our approach.

C. Results

The approach has been evaluated by applying the
proposed approach to the case studies. First of all, the
functional requirements have been processed to generate
the UML use case. Then, the UML use case diagrams
have been converted to activity graphs using a set of rules.
The activity diagrams are simplified before using them by

 Int. J. Com. Dig. Sys. 10, No.1, 125-134 (Jan-2021) 131

http://journals.uob.edu.bh

generating directed activity graphs. In the end, the
information has been extracted to generate the test
sequences.

TABLE II. GENERATED TEST SEQUENCES

Project
Business/

System

No. of generated

test sequences

ATM System 24

POS System 8

FRIEND System 15

E-library System 11

Online shopping System 25

Credit-card

processing
System 15

Hospital

management
System 10

Restaurant Business 7

Check-in
(Airport)

Business 9

TABLE III. COMPARING THE PROPOSED APPROACH WITH THE

PRIOR WORK

The results after applying the approach on the nine
projects are shown in Table 2. The highest number of test
sequences was for the online shopping system. Such a

high number was expected because online shopping has
high numbers for actors, use cases, and relationships
between actors and use cases, and between the use cases
themselves. The opposite is also right and expected for the
system that has the least number of test sequences, which
is the restaurant. Therefore, we can notice that there is a
relationship between the numbers of actors, use cases,
relationships, and the number of test sequences. Since we
have a high number for the UML use case elements, the
high number, we will get a high number of test sequences.

Certain case studies have been used in the prior work
for the same problem. Table 3 shows the results of the
proposed approach in comparison with other previously
proposed approaches. The generated test sequences of the
proposed approach are 24, 8, and 15 for ATM, POS, and
FRIEND system, respectively

D. Discussion

By observation, there are important points that
resulted from the experimental evaluation. First of all,
although the number of actors and use cases affecting the
number of the test sequences, the number of the between
the use cases themselves are playing the main role in
increasing the test sequences, especially the “extends”
relationship is always increasing the generated test
sequences. In each occurrence, the “extends” relationship
is always adding one more test sequence, due to the
optional feature of performing the extended use case. In
general, the number of actors, use cases, and the
relationships are related to the number of test sequences
positively.

The approach that has been proposed in this paper,
generated the least number of test sequences compared
with the prior work as shown in Table 3. The other
approaches, in general, have different numbers of test
sequences, because of the different UML models they
used and combined. The approach of Braind et al. [28]
generated the highest number of test sequences. However,
despite our proposed approach, Hartmann et al. [31]
proposed an approach, which produced the lowest number
of the test sequences. However, the number of the
generated test sequences cannot be an indication of the
approach's correctness, because of the different UML
models. Different UML models can generate different test
sequences, because of the coverage differences of the
paths. Sometimes, an approach generates, for example, 10
test sequences, and another approach generates 15 test
sequences. Such results do not mean that the second
approach is better because of the higher number of test
sequences, but it might be an indicator that the first
approach is covering more functions under a single test
sequence.

The proposed approach, as stated in Table 3, generated
the lowest number of test sequences compared with the
other approaches. Comparing the different approaches
that are proposed with different UML models is important
because we need to know the results of each of them to

P
r
io

r
w

o
r
k

B
ra

in
d

 e
t

a
l.

 [
3
6

]

F
r¨

o
h

li
ch

 e
t

a
l.

 [
3
7

]

R
y

se
r

e
t

a
l.

 [
3

8
]

H
a

r
tm

a
n

n
 e

t
a

l.
 [

3
9

]

T
iw

a
r
i

e
t

a
l.

 [
2

4
]

P
r
o

p
o

se
d

 a
p

p
r
o
a

c
h

U
se

d
 m

o
d

el

U
se

 c
as

e,
 c

la
ss

,
an

d
 s

eq
.

S
ta

te
-c

h
ar

t

S
ta

te
-c

h
ar

t
an

d

d
ep

en
d
en

cy
-c

h
ar

t

A
ct

iv
it

y
 d

ia
g

ra
m

U
se

 c
as

e
te

x
tu

al

d
es

cr
ip

ti
o
n

 a
n
d

 d
ia

g
ra

m

u
se

 c
as

e
d

ia
g

ra
m

C
a

se

S
tu

d
y

No. of generated test sequences

ATM 43 30 32 30 32 24

POS 39 26 30 26 30 8

FRIE-

ND
39 30 32 30 32 15

132 Z. A.Karim & M. Hammad: Analyzing UML Use Case to Generate Test Sequences And Test Suites

http://journals.uob.edu.bh

combine some UML models to get better results. The
main reason for getting the small number of test
sequences is depending on the information that is only
shown in the UML use case diagram without the textual
description. Diagrams are always kept in hands because
they are used to explain the requirements specifications
more than their textual description. Hence, the textual
description sometimes is not being updated as much as the
diagram itself. For such reason, only the UML use case
diagram has been considered in the proposed approach.
Another reason is that when testing the use cases, which
shown in the diagram, all the possibilities should be
covered, whether it is mentioned in test sequence notation
or not. The relationships in the UML use case diagrams
are also one of the factors that affect the results. Due to
the relationships between the use cases, there might be
some situations that need to be depicted well in the UML
use case diagrams to avoid any errors in generating the
test sequences. Moreover, the relationships are being
analyzed in different ways from many points of view,
which makes the UML use cases for the same system
different from an organization to another.

Figure 9. Activity diagram generated from the ATM UML use case
diagram

 The test sequences that have been generated using the
proposed approach, are generated with consideration of
path coverage. Path coverage is achieved from the UML
use case point of view, which is covering the different
situations that are caused by the relationships between the
actors and the use cases and between the use cases
themselves. Figure 9 shows one of the activity diagrams
that has been generated from the UML use case of the
ATM system. The activity diagram is for the actor “ATM
Technician”. The “ATM Technician” has two activities,
“Repair” and “Maintenance”, based on the UML use case
diagram of the ATM system. The two activities are
including the “Diagnostics” activity. However, only the
“Maintenance” activity includes two activities,
“Upgrades” and “Replenishing”. The activity diagram has
been simplified by converting it into an activity graph, as
shown in Figure 10. Each of the activity graphs is
corresponding to exactly one test sequence. The nodes
“A1, A2” are respectively representing “Repair,
Maintenance” activities, and “A3, A4, A5” are
representing “Diagnostics, Upgrades, Replenishing”,

respectively. The activity graph is used to extract the
information to generate the test sequences shown in
Figure 11. Figure 11 shows that there are four test
sequences for the actor “ATM Technician” generated
from the UML use case diagram. Such an example shows
that there is no relationship between the number of the use
cases of the UML use case diagram and the number of the
generated test sequences.

Figure 10. Generated activity graphs from the activity diagram shown

in Figure 9

Figure 11. Generated test sequences from the activity graphs shown in

Figure 10

5. TEST SEQUENCES, TEST CASES & TEST SUITES

Generating test sequences is also assisting in creating
the test suites. Test suites are a collection of test cases. To
create test suites, the test cases should be created and
grouped based on the testing requirements. Using the test
sequences, which are sequentially ordered software
functions, the test cases can be grouped. Moreover,
creating the test cases with consideration of the test
sequences will assist in making relationships between the
test cases’ groups. Hence, the test cases’ generation will
be easier and better in terms of understanding the data
flow between the software parts.

Figure 12 explains our proposed approach from the
angle of how the test sequences are related to the test
cases and the test suites. Assuming that the use cases in
the UML use case diagrams are the functions to be tested,
and named with “UC#”, the test cases with “TC#” and the
test sequences with “TS#”, as shown in Figure 12. To
create a test suite, we have to create a collection of test
cases. In the process of generating the collection of test
cases, the test sequences should be considered to
understand how the data flows from a software part to

Test Sequences (TS#):
Actor: ATM Technician
TS1: Repair → Diagnostics →END

TS2: Maintenance → Diagnostics → END
TS3: Maintenance → Upgrades → END

TS4: Maintenance → Replenishing → END

Replenishing Upgrades
Diagnostics

Repair

Maintenance

A2

A3

A2

A5

A1

A3 A4

A2

 Int. J. Com. Dig. Sys. 10, No.1, 125-134 (Jan-2021) 133

http://journals.uob.edu.bh

another. Sometimes, the test sequences are about testing
only one part, and sometimes they are generated to test
multiple parts sequentially.

Figure 12. The relationships between the test sequences, test cases, and

test suites

The proposed approach can provide the software
engineers the ability to automate the SDLC processes. An
approach has been proposed in [31] to study the process
of generating the UML use case from the software
requirements, which can be considered as a pre-step for
the approach in [40] that we extended the work of it in
this paper. Moreover, some surveys categorize the testing
tools, such as the work in [41 and 42], which is also a
helpful step to support the software testers’ decisions.
Such endeavors can assist the researchers in providing a
complete automated process.

6. CONCLUSION AND FUTURE WORK

In this paper, the proposed approach is aimed to
generate the test sequences from the software UML use
case diagrams. Such an approach helps the software
engineers to make use of the UML diagrams not only for
the requirements analysis but also for other SDLC phases.
The proposed approach consists of several processes
starting from converting the UML use case into
customized activity diagrams. Then, the second process
came to simplify the activity diagrams by converting them
into directed activity graphs. In the end, the needed
information is extracted from the directed activity graphs
to generate the test sequences. The approach has been
evaluated through nine case studies. The results have been
compared with other approaches from the prior work that
use UML models to generate the test sequences.
Moreover, in this paper, the relationship between the test
sequences, test cases, and test suites has been explained.
Considering the test sequences while creating the test
suites will ease the testing process in terms of

understanding the data flow between the software
artifacts.

Some issues limit the work of the proposed approach.
The main issue is the order of the use cases. Such a point
affects the number of the test sequences because
sometimes some use cases should be tested before and
after a certain event. Furthermore, some use cases should
be tested before or after the occurrences of the event(s).

To improve the approach, there are several points to
be considered. As for future work, the order of the use
cases should be involved in the approach to cover all the
situations. Moreover, more ways of generating the test
sequences from the UML models are to be discovered to
make use of the UML in the different phases of the
SDLC.

REFERENCES

[1] Matlab, "Introduction to test sequences," Mathworks, 2020.
[Online]. Available:
https://www.mathworks.com/help/sltest/ug/introduction-to-test-
sequences.html. [Accessed 15 April 2020]

[2] IBM, "Test case and test suite overview," IBM, 2020. [Online].
Available:
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.1/c
om.ibm.rational.test.qm.doc/topics/c_testcase_overview.html.
[Accessed 15 April 2020]

[3] Mingsong, Xiaokang and Xuandong, "Automatic test case
generation for UML activity diagrams," in Proceedings of the
2006 international workshop on Automation of software test -
ACM, 2006.

[4] D-Xu, H-Li and CP-Lam, "sing adaptive agents to automatically
generate test scenarios from the UML activity diagrams," in 12th
Asia-Pacific Software Engineering Conference (APSEC'05) -
IEEE, 2005.I. S. Jacobs and C. P. Bean, “Fine particles, thin films
and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and
H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[5] Thanakorncharuwit, Kamonsantiroj and Pipanmaekaporn,
"Generating test cases from uml activity diagram based on
business flow constraints.," in Proceedings of the Fifth
International Conference on Network, Communication and
Computing - ACM., 2016.

[6] Kundu and Samanta, "A novel approach to generate test cases
from UML activity diagrams," Journal of Object Technology, vol.
8, no. 3, pp. 65-83, 2009.

[7] Linzhang, Jiesong, Xiaofeng, Jun, Xuandong and Guoliang,
"Generating test cases from UML activity diagram based on gray-
box method," in 11th Asia-Pacific software engineering
conference - IEEE, 2004.

[8] Bhukya, "Test Case Generation using UML Activity Diagram &
Composite Structure Diagram," in Doctoral dissertation, 2015.

[9] Hettab, Chaoui and Aldahoud, "Automatic test cases generation
from UML activity diagrams using graph transformation," in 6th
ICIT, 2013.

[10] Kim, Hyungchoul, S. Kang, J. Baik and Inyoung-Ko, "Test Cases
Generation from UML Activity Diagrams," in Eighth ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing
(SNPD 2007) - IEEE, 2007.

[11] Felderer and Herrmann, "Manual test case derivation from UML
activity diagrams and state machines: A controlled experiment," in
Information and Software Technology, 2015.

[12] Jena, Swain and Mohapatra, "A novel approach for test case
generation from UML activity diagram," in International

Test suite

TS#1

TS#2

TS#N

UC#1 UC#2 UC#3

UC#4 UC#5

UC#N-2 UC#N-1 UC#N

TC#1 TC#2 TC#3

TC#4 TC#5

TC#N-2 TC#N-1 TC#N

.

.

.

134 Z. A.Karim & M. Hammad: Analyzing UML Use Case to Generate Test Sequences And Test Suites

http://journals.uob.edu.bh

Conference on Issues and Challenges in Intelligent Computing
Techniques - IEEE, 2014.

[13] L. L, L. X, H. T and X. J, "Extenics-based test case generation for
UML activity diagram," in Procedia Computer Science, 2013

[14] Sarma, Kundu and Mall, "Automatic test case generation from
UML sequence diagram," in 15th International Conference on
Advanced Computing and Communications (ADCOM 2007) -
IEEE, 2007.

[15] Dhineshkumar, "An approach to generate test cases from sequence
diagram," in International Conference on Intelligent Computing
Applications - IEEE, 2014.

[16] Nayak and Samanta, "Automatic test data synthesis using uml
sequence diagrams," Journal of Object Technology, vol. 9, no. 2,
pp. 75-104, 2010.

[17] L.MS and S. K, "Deriving tests from UML 2.0 sequence diagrams
with neg and assert," in Proceedings of the 2006 international
workshop on Automation of software test - ACM, 2006.

[18] P. S. S and M. P. S. K, "Test path generation using uml sequence
diagram," International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 4, 2013

[19] YG-Kim, HS-Hong, DH-Bae and SD-Cha, "Test cases generation
from UML state diagrams," in IEE Proceedings-Software, 1999.

[20] S. P, M. R and B. A. K, "Automatic test case generation using
unified modeling language (UML) state diagrams," IET Software,
vol. 2, no. 2, pp. 79-93, 2008

[21] S. M, S. A and K. R, "Generation of improved test cases from
UML state diagram using genetic algorithm," in Proceedings of
the 4th India Software Engineering Conference, 2011

[22] D.-a. C, D. K, H. A and S. T, "Test data generation from UML
state machine diagrams using gas," in International Conference on
Software Engineering Advances (ICSEA 2007) - IEEE, 2007

[23] Hasling, Goetz and Beetz, "Model based testing of system
requirements using UML use case models," in 1st International
Conference on Software Testing, Verification, and Validation -
IEEE, 2008.

[24] Tiwari and Gupta, "An Approach of Generating Test
Requirements for Agile Software Development," in Proceedings
of the 8th India Software Engineering Conference - ACM, 2015.

[25] Cavarra, Crichton, Davies, Hartman and Mounier, "Using UML
for automatic test generation," in Proceedings of ISSTA, 2012.

[26] Abdurazik and Offutt, "Using UML Collaboration Diagrams for
Static Checking and Test Generation," in International conference
on the unified modeling language - Springer, Berlin, 2000.

[27] Sokenou, "Generating Test Sequences from UML Sequence
Diagrams and State Diagrams," in GI Jahrestagung (2), 2006.

[28] Swain, Mohapatra and Mall, "Test Case Generation Based on Use
case and sequence diagrams," International Journal of Software
Engineering, vol. 3, no. 2, pp. 21-52, 2010.

[29] G. Sudipto, R. France, C. Braganza, N. Kawane, A. Andrews and
O. Pilskalns, "Test adequacy assessment for UML design model
testing," in 14th International Symposium on Software Reliability
Engineering - IEEE, 2003.

[30] Swain, S. Kumar and D. P. Mohapatra, "Test case generation from
Behavioral UML Models," International Journal of computer
applications, vol. 6, no. 8, pp. 5-11, 2010.

[31] Abdulkarim Hamza Z., Hammad M., “Generating UML Use Case
Models from Software Requirements Using Natural Language
Processing,” in Proceedings of International Conference on
Modeling Simulation and Applied Optimization (ICMSAO) –
IEEE, In press.

[32] IBM. Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler. IBM Corporation, 2006.

[33] C. Larman. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development,
3/e. Pearson Education India, 2012.

[34] B. Bruegge. Object-Oriented Software Engineering: Using Uml,
Patterns and Java, Pearson, Second Edition edition, 2009.

[35] UML diagrams, "uml-diagrams.org," 2020. [Online]. Available:
https://www.uml-diagrams.org/use-case-diagrams-examples.html.
[Accessed 15 April 2020]

[36] L. C. Briand and Y. Labiche. A uml-based approach to system
testing. In Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and
Tools, UML’01, pages 194–208, London, UK, Springer-Verlag,
2001.

[37] P. Fr¨ohlich and J. Link. Automated test case generation from
dynamic models. In Proceedings of the 14th European Conference
on Object-Oriented Programming, ECOOP ’00, pages 472–492,
London, UK, Springer-Verlag, 2000.

[38] J. Ryser and M. Glinz. A scenario-based approach to validating
and testing software systems using statecharts. In In 12th
International Conference on Software and Systems Engineering
and their Applications (ICSSEA’99), page 7, 1999.

[39] J. Hartmann, M. Vieira, H. Foster, and A. Ruder. A uml-based
approach to system testing. Innovations in Systems and Software
Engineering, 1(1):12–24, 2005.

[40] Hamza, Z. A., & Hammad, M., “Generating test sequences from
the UML use-case diagram”. In 2019 International Conference on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT), pp. 1-6. IEEE, 2019

[41] Hamza, Z. A., & Hammad, M., “Testing Approaches for Web and
Mobile Applications: An Overview”. International Journal of
Computing and Digital Systems, 9(4), 657-664. 2020.

[42] Hamza, Z. A., & Hammad, M. Web and Mobile Applications'
Testing using Black and White Box approaches - IET. 2019.

 Zahra Abdulkarim Hamza is

currently studying M.Sc. Software

engineering at University of Bahrain.

She is Graduated from University of

Bahrain, B.Sc. Computer Science and

got the best senior projects award - 3rd

place, 2017, for project titled:

"Automatic Diacritization for Arabic

Text using Voice Recognition

Technique". She Worked at Batelco for

two years in Business Intelligence, Corp. Apps and Enterprise

Data Warehouse.

Mustafa Hammad is an Associate

Professor in the Department of

Computer Science at the University of

Bahrain and Mutah University. He

received his Ph.D. in Computer

Science from New Mexico State

University, USA in 2010. He received

his M.Sc. degree in Computer Science

from Al-Balqa Applied University,

Jordan in 2005 and his B.Sc. in

Computer Science from The Hashemite University, Jordan in

2002. His research interests include machine learning, software

engineering with focus on software analysis and evolution.

