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Abstract: Gait abnormality is a common problem in humans after any lower limb injury or a stroke attack. The detection of 

abnormal gait is an important measure for designing and following appropriate rehabilitation protocol. This study presents a model 

for identifying the abnormal gait patterns for knee injured subjects based on a deep autoencoder neural network. The model 

employed micro-electro-mechanical motion sensors (MEMS) and electromyography (EMG) system to collect the joints motion and 

neuromuscular signals, respectively. The important kinematics and EMG features were extracted from the collected data and 

autoencoder models (single and multilayer) were trained using the features of normal gait data. Various parameters and 

hyperparameters for the models were explored and fine-tuned during the training phase. Later, the best trained models along with a 

thresholding method were used to detect the abnormal gait patterns. The performance of the single and multilayer (deep) autoencoder 

models have been compared and reported for the data sets. The deep autoencoder model was able to identify the abnormal gait 

patterns with higher accuracy (98.3%) and area under curve (99.2%) values as compared to existing models.  The proposed model 

can serve as a decision support system for clinicians, physiatrists and physiotherapists for detecting abnormal gait automatically. 

 

Keywords: Deep Learning, Abnormal Gait, Autoencoder, Knee Injury, Kinematics, Electromyography 

 

1. INTRODUCTION 

Human gait analysis has various applications in the 
fields of surveillance, biometrics and medicine [1-3].   For 
security applications, the purpose of gait analysis is to 
differentiate among individuals or identify a person based 
on his/her walking style. While for clinical applications, 
the focus of gait analysis is more on the recovery of the 
patients to the normal gait movements. Gait impairments 
are common in humans after lower limb or brain injuries 
[4,5]. These injuries result in kinematics and 
musculoskeletal changes which may persist and 
permanently alter the gait patterns if appropriate 
rehabilitation procedures are not followed. Before taking 
any action and suggesting relevant exercises by the 
physiatrists or physiotherapists, the detection of an 
abnormal gait is crucial for patients’ recuperation. In most 
of the cases the gait is adapted after lower limb injuries or 
surgeries [6]. However, in the absence of proper 
monitoring and rehabilitation, long term problems can be 
noticed in the subjects having these injuries or surgeries. 
Dynamic joint instability, neuromuscular impairments, 
cartilage degeneration, early onset of osteoarthritis and 

progressive arthritic changes have been observed in 
subjects having knee injuries and surgeries [3,6]. 

Automation of abnormal gait identification is very 
useful for developing a decision support system for 
clinicians, physiatrists and physiotherapists. Various 
statistical and machine learning based techniques have 
been proposed previously for identification of abnormal 
gait patterns in literature [7-12]. These techniques employ 
mainly either statistical comparison of normal and 
abnormal gait patterns or use supervised learning methods 
to train/test the model based on a collection of normal and 
abnormal gait patterns. The statistical and supervised 
learning models generally require a large amount of data 
from both classes (normal/abnormal) to train and validate 
the results. Moreover, most of the existing studies have 
used kinematics data (collected through optical cameras) 
for developing such models.  

In this study we propose an unsupervised non-linear 

model, namely autoencoder neural network to identify the 

abnormal gait patterns. Since, the lower limb injuries alter 

the joint kinematics as well as the muscle movements so 

the proposed model has been  developed  using  integrated  

http://dx.doi.org/10.12785/ijcds/100101 
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Figure 1.  Steps for abnormal gait identification using deep autoencoder and thresholding method  

kinematics and electromyography (EMG) signals as 

compared to only kinematics features used in the previous 

studies. This model is trained using the features from the 

normal gait data and later the trained model along with a 

thresholding method is used to detect the abnormal gait 

patterns. Experiments have been conducted on a dataset of 

healthy and knee injured subjects and the results show the 

effectiveness of the proposed method for identifying the 

abnormal gait patterns.  

The rest of the paper is organized as follows: Section 2 

presents a brief review of the previous works in the field. 

Section 3 describes the proposed model along with the 

details of data acquisition, feature extraction and 

autoencoder neural network. The results and discussion of 

are elaborated in section 4 followed by conclusions in 

section 5. 

2. LITERATURE REVIEW 

The design of an abnormal gait identification system 
depends on the type of equipment used for data 
acquisition, selection of signals/data to be monitored and 
the techniques applied for differentiating normal and 
abnormal gaits. A common practice for human activity 
monitoring is to use either an optical/camera system or 
wearable micro-electro-mechanical motion sensors 
(MEMS). Optical motion capture systems (e.g. Vicon, 
Qualisys etc.) have been found very reliable and accurate 
in providing joints motion but these systems are light 
sensitive, expensive and as well as require longer setup 
time [13]. As a low cost alternative to these systems, 
Kinect has been used in many recent studies which 
provides quite reliable information about the joint 
movements for gait classification [7]. Further, the RGB 
image based gait classification system has also been 
proposed previously [8]. In contrast to optical/camera 
systems, wearable wireless MEMS have also gained a lot 
of attention for human activity analysis due to their small 
size and easy setup in any kind of environment [3]. 
Multiple sensors’ integration in wearable systems provide 
different signals at the same time which makes such a 
low-cost system very suitable for gait monitoring [5,9].     

In recent studies, mostly kinematics, kinetics and/or 
spatio-temporal data have been collected during the 
walking activity and models have been proposed based on 
the features extracted from these signals [9-12]. Further, 

since the lower limb injuries cause muscle atrophy and 
neuromuscular disorders so the electromyography signals 
have also been evaluated to monitor the changes in the 
gait patterns in few studies [14]. However, most of the 
existing studies focus on individual kinematics or sptio-
temporal or electromyography signals and there exists 
only few studies which have integrated these biosignals to 
analyze the gait patterns in subjects [3,5,15]. 

Based on the selected signals and extracted features 
the gait analysis is performed either by statically 
comparing the parameters or some machine learning 
techniques are used to train/test the model. In statistical 
models, mostly the abnormality in the gait is detected by 
comparing the spatio-temporal and kinematics parameters 
or leg movement symmetry of healthy and injured 
subjects [9-12]. On the other hand, the machine learning 
model uses the selected features (e.g. joint 
angles/positions) to build a classification model for 
normal and abnormal gaits. Supervised machine learning 
techniques such as support vector machine (SVM), k-
nearest neighbor (KNN) and artificial neural network 
(ANN) have been used previously for identifying 
abnormal gait [7,8,12,16,17]. The supervised learning 
techniques generally require ample training data for both 
classes (normal/abnormal) which may not be readily 
available for patients having specific type of injuries or 
surgeries. In most of the previous studies, the training data 
have been collected through pretended abnormality in the 
gait; for example by attaching a load to one of the feet or 
simulating the restricted movements of joints, which do 
not truly represent the changes in gait patterns after 
injuries [7-12]. Recently, the recognition of human 
activities and gait analysis through unsupervised learning 
have gained attention by few researchers [7,18,19]. The 
use of deep learning based unsupervised models such as 
auto-encoder and generative adversarial network have 
been applied on the image or video data to recognize 
human activities or perform gait analysis. However, these 
studies do not take into consideration the multimodal 
kinematics and EMG data. Hence, this study proposes the 
use of unsupervised machine learning technique along 
with multimodal kinematics and EMG data which can be 
useful in situations where less amount of abnormal gait 
data are available from the real subjects having knee data 
are available from the real subjects having knee injury or 
surgery. 
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Figure 2.  Seven phase of a human gait cycle 

Figure 3.  Autoencoder architecture with one hidden layer (code) 

 

3. PROPOSED METHODOLOGY 

Fig. 1 shows the flow of the proposed model for 
identifying the abnormal gait patterns based on the 
kinematics and neuromuscular signals using the 
autoencoder architecture. The details of the each step are 
provided below. 

A. Data Acquisition and Pre-processing 

Since the knee injuries result in changes in both 
kinematics and neuromuscular signals so both type of data 
were simultaneously recorded during walking activity for 
this study. The wireless MEMS were attached to the 
shank on halfway up the surface of the tibia and thigh at 
two thirds up the tensor fascia latae for each subject in 
order to collect 3-D angular rates (in x, y and z planes) 
and 3-D linear acceleration data (in x, y and z planes) 
from knee joint movements. The motion sensor data were 
sampled at 128Hz with 12 bit Analog/Digital resolution 
within a frequency range 0-20Hz. These signals were 
captured and wirelessly transferred to the laptop where the 
KinetiSense software stored all the data as a comma 
separated value (CSV) file for filtering and extracting 
required features for the 3-D knee joint rotational 
movements. The neuromuscular data were recorded using 
a physiological monitoring system (BioCapture) from the 
four relevant muscles around knee joint i.e. (1) vastus 
lateralis, (2) vastus medialis, (3) biceps femoris and (4) 
semitendinosus. The changes in these muscles have been 
reported in previous studies after knee injuries [3]. The 
EMG data were recorded at a sampling rate of 960Hz with 
12 bit Analog/Digital conversion. The EMG signals 
captured through surface electrodes were wirelessly 
transmitted to the laptop using USB receiver and stored in 

CSV file format for further processing. Both kinematics 
and EMG systems were synchronized and data were 
segmented by detecting the heel strike event during the 
gait cycles [3,5]. 

The angular rate and acceleration measurements 
obtained from the MEMS were filtered using 6th order 
Butterworth filter before computing the joint orientations 
in order to minimize noise due to human movements and 
external sources. Moreover, the raw EMG data with zero 
mean were band-pass filtered (20-450Hz) using 4th order 
Butterworth filter. More details about the hardware setup, 
synchronization of MEMS and EMG data, coordinate 
transformation and preparation of subjects were followed 
as mentioned in [3,5]. 

B. Data Acquisition and Pre-processing 

During the feature engineering phase, the important 
features were extracted from kinematics and EMG data 
based on the knowledge about the gait patterns changes 
after knee injuries. Each gait cycle consists of seven 
phases namely load response, mid-stance, terminal stance, 
pre-swing, initial swing, mid swing and terminal swing 
(Fig. 2). The kinematics and EMG features were extracted 
for each of these seven phases.  

In order to generate the kinematics feature set, first the 
trapezoidal integration was applied on the angular rate 
data for the seven gait phases and the flexion/extension, 
internal/external rotations and abduction/adduction knee 
joint movements were computed [5]. Then the mean, 
standard deviation and maximum values for these 3-D 
movements were calculated and thus a kinematics feature 
set consisting of a total of 63 values (3 knee joint 
movements × 7 gait phases × 3 statistics) was formed. 

KIN = ⋃ 𝑘𝑖
63
𝑖=1    (1) 

The EMG features were extracted by employing the 
multilevel discrete wavelet transform (DWT). Daubechies 
05 (db05) wavelet was applied to the EMG signals from 
four muscles and six coefficients (5 detailed and one 
approximate) were extracted with a five level 
decomposition of these signals. The mean value and 
power of the six wavelet coefficients were computed for 
each gait cycle for each muscle. Thus, an EMG feature set 
consisting of 336 values (4 muscles × 6 coefficients × 7 
gait phases × 2 statistics) was formed. 

 EMG = ⋃ 𝑒𝑖
336
𝑖=1    (2) 

A total of 512 gait cycles data were collected from a 
group of 10 healthy and 6 knee injured/operated subjects. 
The distribution of normal and abnormal gait patterns was 
87.5% and 12.5%, respectively. Two sets from this data 
were formed as follows: the first data set consisted of only 
kinematics features (512 × 63) while the second data set 
combined the kinematics and EMG features having a 
dimension of 512 × 399 (3). 
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TABLE I.  PARAMETERS/HYPERPARAMETERS INVESTIGATED 

Parameters/Hyperparameters Value 

Type of autoencoder Single and Multilayer 

No. of middle hidden layer neurons 3 - 10 

Activation function relu, sigmoid, tanh   

Optimization algorithm Adam, RMSProp, Adadelta 

Loss function 
Mean squared error, L2 

regularization 

Weight initialization glorot_uniform, he_normal 

Number of epochs 500, 1000, 2000 

Learning rate 0.001, 0.0005, 0.0001 

Batch size 1, 2, and 5 

        

TABLE II.  EMPIRICALLY SELECTED HYPERPARAMETERS FOR 

KINEMATICS DATA SET 

Parameters/Hyperparameters Value 

Type of autoencoder Multilayer 

No. of middle hidden layer neurons 5 

Activation function relu for all layers   

Optimization algorithm Adam/RMSProp 

Loss function 
Mean squared error, L2 

regularization 

Weight initialization glorot_uniform 

Number of epochs 1000 

Learning rate 0.0001 

Batch size 5 

 

TABLE III.  EMPIRICALLY SELECTED HYPERPARAMETERS FOR 

MULTIMODAL DATA SET 

Parameters/Hyperparameters Value 

Type of autoencoder Single/Multilayer 

No. of middle hidden layer 

neurons 
6/8 

Activation function relu for all layers   

Optimization algorithm Adam 

Loss function 
Mean squared error, L2 

regularization 

Weight initialization glorot_uniform 

Number of epochs 500 

Learning rate 0.0001 

Batch size 5 

 

Multimodal_Dataset = { KIN, EMG }  (3) 

 The autoencoder networks were trained and tested for 
these two data sets separately and the results were 
compared. 

C. Autoencoder Neural Network and Thresholding 

An autoencoder is a type of neural network which can 
represent and reconstruct the input data with a reduced 
amount of information (coding) employing unsupervised 
learning mechanism. A simple autoencoder consists of 
three layers: input layer (encoder)  hidden layer (code) 
 output layer (decoder) as shown in Fig. 3. The number 
of input and output neurons are same while the neurons in 
the hidden layers are smaller in number to compress the 
data or reduce the input dimensions. The network receives 

input ‘I’ and tries to produce the output ‘𝐼 ’ as much 
similar to the input as possible by a compressed 
representation ‘C’ of data using the hidden layer ‘H’ as 
shown below in (4) and (5). 

H = C(I)   (4) 

𝐼 = f(C(I))  (5) 

The training of the network is performed using the 
feedforward backpropagation algorithm minimizing the 
loss function ‘L’ (6). 

L = Loss (I, f(C(I))) (6) 

For a deep autoencoder, the number of hidden layers 
can be more than one such that the middle layer (code) 
has the fewest neurons. 

Identifying an abnormal gait pattern using autoencoder 
can be considered as detecting an anomaly in the data. 
The autoencoder network learns the patterns of a normal 
gait and the gait data which do not follow this pattern is 
classified as abnormal gait. The steps to develop the 
model are as follows: 

 Divide the data set into normal and abnormal gait 
classes 

 Train the autoencoder network on only normal 
gait data with a very small reconstruction error 

 Determine the anomaly threshold by using the 
distribution of the reconstruction loss for normal 
gait data  

 Evaluate the trained model on test data 
(abnormal/normal gait data) by calculating the 
reconstruction loss 

 Mark all those gait pattern as abnormal for which 
the reconstruction loss is more than the threshold 
value 
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There are various parameters and hyperparameters 
(e.g. activation functions, optimization functions, number 
epochs, size of the network, number of hidden layers etc.) 
which can be optimized during the training phase to find 
the best possible combination for a given data set. In this 
study, both single and multilayer autoencoder networks 
were developed and evaluated for the data sets. The 
number of input and output layers neurons were 63 for the 
kinematics data set and 399 for multimodal data set. 
Different number of neurons (3 to 10) were tested for the 
middle hidden layer. Various activation functions and 
optimization algorithms were explored to find the optimal 
results. Table I summarizes the parameters and 
hyperparmeters investigated during this study for 
developing the abnormal gait patterns detection model. 
The final selection of the parameters and hyperparmeters 
was based on the best performance of the models as 
explained in the next section. 

4. RESULTS AND DISCUSSION 

In this section we’ll present and compare the results of 
autoencoder models for both kinematics and multimodal 
data sets. Before developing the models, normal and 
abnormal gait data were separated for each of the data set. 
The distribution of normal and abnormal gait patterns was 
87.5% and 12.5%, respectively. Further, around 60% of 
normal gait data were used to train the autoencoder and 
rest of the data (i.e. 40% of normal gait and all of the 
abnormal gait data) were used to test the models. The 
training and testing data were standardized with a zero 
mean and a standard deviation of one. 

For evaluation of the models, different performance 
metrics were computed namely Area Under Curve of the 
Receiver Operating Characteristics (ROC) curve, 
accuracy, sensitivity, specificity, precision and F1-score. 
The model having higher values of AUC and F1-score 
were preferred over the others as these metrics balance the 
performance of the model for both positive and negative 
classes. 

First, the single and multilayer autoencoder models 
were trained and tested for kinematics data set with 
various parameters/hyperparameters settings as presented 
in Table I. The best empirically selected values for these 
parameters/hyperparameters are shown in Table II for this 
data set. After performing various experiments, it was 
found that multilayer autoencoder model performed better 
in detecting the abnormal gait patterns as compared to 
single layer model (Table IV). The multilayer model was 
trained using the normal gait data and it converged with a 
loss (MSE) of around 0.6 using ‘relu’ activation function 
for all layers (Fig. 4). The threshold value of loss function 
for abnormal gait was determined as 0.8 based on the 
distribution of loss function (Fig. 5 and Fig. 6) and the 
model was evaluated using various performance metrics. 
Based on the AUC value, the multilayer model trained 
with ‘Adam’   optimization algorithm was found better 
while  the  model  trained  with  ‘RMSProp’  optimization  

Figure 4.  Training-Validation loss value for the multilayer 

autoencoder for kinematics data set 

Figure 5.  Distribution of the reconstruction loss for the multilayer 

autoencoder for kinematics data set 

Figure 6.  Abnormal gait detection with a threshold > 0.8 using the 

multilayer autoencoder for multimodal data set 

algorithm had higher accuracy and F1-score values (Fig. 
7). 

Next, the multimodal data set consisting of integrated 
kinematics and EMG features was used to train and test 
the single and multilayer autoencoder networks. Similar to 
the kinematics models, various parameters and 
hyperparameters were explored and their optimal values 
were determined empirically as shown in Table III. 
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Figure 7.  Comparison of single and multilayer autoencoder 

performance with different optimization algorithms for kinematics data 

set 

Figure 8.  Training-Validation loss for the multilayer autoencoder 

for multimodal data set 

Figure 9.  Distribution of the reconstruction loss for the multilayer 

autoencoder for kinematics data set 

The performance of both single and multilayer 
autoencoder networks was similar for this data set with a 
slightly higher value of AUC for the multilayer 
autoencoder (Table IV). Instead of just relying on the 
accuracy metric, the AUC with sensitivity and specificity 
were also considered to compare the models’ performance 
due to single-class classification problem. 

 

Figure 10.  Abnormal gait detection with a threshold > 0.8 using the 

multilayer autoencoder for multimodal data set 

Figure 11.  ROC curve for the multilayer autoencoder for multimodal 

data set 

Figure 12.  Effect of no. of neurons in the middle layer on the 

performance of multilayer autoencoder for multimodal data 

The multilayer model was trained using the normal 
gait data and it converged with a loss (MSE) of around 
0.01 using ‘relu’ activation function for all layers (Fig. 8) 
which was lower than the multilayer kinematics model. 
Based on the distribution of loss function (Fig. 9), the 
threshold value of loss function for abnormal gait was 
determined as 0.8 (Fig. 10) and the model was evaluated 
using various performance metrics. 
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TABLE IV.  EXPERIMENTAL RESULTS FOR THE PROPOSED MODELS

Data Set 
Performance Metrics 

Hidden Layers AUC Accuracy Sensitivity Specificity Precision F1-Score 

Kinematics 

Single 0.785 0.685 0.712 0.661 0.661 0.685 

Multilayer 0.807 0.731 0.923 0.554 0.658 0.768 

Multimodal 
Single 0.990 0.983 0.984 0.983 0.955 0.969 

Multilayer 0.992 0.983 0.984 0.983 0.955 0.969 

 

TABLE V.  PERFORMANCE COMPARISON WITH EXISTING MODELS 

Study 

Reference 

Parameters and Performance 

Features Technique Avg. Accuracy  

[7] Joint positions 
Sparse deep 

autoencoder 
86.10% 

[8] 
Sptio-temporal, joint 

angles 

KNN, SVM 

and Bayesian 
96.67% 

[12] Kinematics KNN 84.00% 

[17] 
Plantar pressure 

image 

DBSACN, 

SVM 
91.40% 

[18] Kinematics 
Nonlinear 

ARX 
93.55% 

Proposed 

Model 

Integrated kinematics 

and EMG 

Deep 

autoencoder 
98.30% 

 

The single/multilayer model trained with ‘Adam’ 
optimization algorithm was found better than the models 
trained using other optimization algorithms based on the 
AUC and F1-score values (Fig. 11). Fig. 12 shows the 
impact of middle hidden layer neurons on the 
performance of both networks. There was not much 
improvement noticed in AUC and F1-score values after 6 
hidden neurons for single layer model. While for 
multilayer model, the best performance was with 8 middle 
layer hidden neurons and 50 neurons for second layer of 
encoder and decoder. 

The results presented in this study show that the 
autoencoder network is able to represent the original data 
set with a very small number of dimensions and it can 
provide an accurate prediction of gait abnormality patterns 
using these reduced features. The performance of 
proposed multimodal solution is superior to the 
kinematics model and the existing systems where only 
one type of data (e.g. joint positions) have been used for 
monitoring the gait patterns (Table V). 

The identification of abnormal gait patterns is an 
important measure for evaluating the success of 
rehabilitation regimen for knee injured or post-operated 
patients. Long-term problems such as knee joint stability, 
osteoarthritis and cartilage degeneration may be present in 
subjects having impaired gait patterns. The application of 
autoencoder neural network with integrated kinematics 

and EMG features has been found quite accurate in 
detecting the abnormal gait. Moreover, the use of 
unsupervised learning technique has been found suitable 
for this domain where the abnormal gait data are either 
not readily available or can be collected only from few 
subjects. So, instead of using the under-/over-sampling 
techniques for developing a classification model, better 
results can be achieved with the help of autoencoder 
neural networks. However, the development of an 
automated system for gait abnormality detection depends 
not only on the nature of data used to train the model but 
also on few other factors which need to be determined 
experimentally including the size of code (latent space) 
and threshold value. The number of available samples for 
normal and abnormal gait and the demographics of the 
subjects are few other issues which must also be 
considered while designing such system. 

5. CONCLUSIONS AND FUTURE WORK 

This study proposed a method for identification of 
abnormal gait patterns based on an unsupervised machine 
learning technique, namely deep autoencoder. The 
extracted kinematics and neuromuscular features were 
integrated and used as input to train the model. The new 
gait patterns can be classified as normal or abnormal 
based on the threshold value determined from the training 
model. The proposed model has been tested on a group of 
healthy and knee injured/post-operated (having abnormal 
gait) subjects. The multimodal multilayer model with high 
values of different evaluation metrics (99.2% AUC, 
98.3% accuracy and 96.9% F1-score) show the 
effectiveness of the system. This model can be used as a 
decision support system by the clinicians, physiatrists and 
physiotherapists to detect the abnormal gait patterns in 
subjects during screening or rehabilitation process. In 
future, more data will be collected to test the effects of 
age and gender on the classification of abnormal gait 
using the proposed model. Moreover, the use of 
generative adversarial networks will also be explored in 
future for identifying the gait abnormality and the results 
will be compared with the proposed model. 
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