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Abstract: Very Large Scale Integration (VLSI) design is a technological advancement in electronics that has widely shortened the 

window from concept to a working prototype in any design. It has also made it possible to design and develop sophisticated and 

intelligent electronic systems which are easily adaptable to any field of human endeavor with relative ease. In this paper, the VLSI 

design of a processor system is presented, which implements two transforms i.e. the discrete wavelet packet, and the Hilbert 

transforms. The combination of these two transforms in a single processor makes it possible to have a system with enhanced sub-

band frequency edge detection in a wideband signal and other specialized areas, which is very useful in such specialized areas of 

application as spectrum sensing in cognitive radio networks. The results obtained from the simulation and design verification of the 

processor system showed the effectiveness of the design methodology presented in this paper. As a matter of fact, the arithmetic 

operators designed in this paper outperformed the arithmetic operators of the Xilinx IP CORE when compared in terms of speed. 

From the results obtained, it was clear that the processor design performed as expected, at a great speed. 
 

Keywords: Processor, Discrete Wavelet Packet Transform, Hilbert Transforms, FIR Filter, Lifting Steps 

1. INTRODUCTION  

Processor design is important in the electronics 

world; it makes it possible to design and develop 

electronic systems and devices, which have practical and 

viable applications in solving real-life problems. The 

design approach for processors varies based on the 

expected functionality of the processor. It could range 

from simple, medium, to complex processors. Also, 

depending on the level of complexity of the processor, 

the associated tools for the design vary in sophistication. 

Simple and medium range processors usually perform a 

limited number of tasks, and are thus said to be 

application-specific, while the complex range processors 

perform a large number of tasks, which spread across 

different applications, and are thus said to be non-

application-specific. This paper focuses on the design of 

a processor of the medium range category, which will be 

used to perform Discrete Wavelet Packet Transform 

(DWPT) function enhanced with a Hilbert transform 

(HT). The output of the DWPT stage of the design will 

be enhanced for better signal representation by passing it 

through a Hilbert transform stage. We refer to our work 

in [1] for exactly how this enhancement is achieved 

mathematically. 

To realize the objective of this paper, two design 

approach will be used. The first design approach is the 

lifting step, which will be used in the processor-design-

implementation of the DWPT transform. The second 

design approach is the Finite Impulse Response (FIR) 

filter design, which will be used to perform the 

processor-design-implementation of the Hilbert 

transform. As stated earlier, the tools employed in the 

design of processors vary in sophistication and level of 

complexity. For the design in this paper, the tool of 

choice is the VHSIC (Very High Speed Integrated 

Circuit) Hardware Description Language (VHDL). 

VHDL is a powerful, independent, portable, and reusable 

language, which is used in the design of medium to 

complex range processors [2]. It allows the description of 

the behavior of an electronic device from which the 

physical circuit can be realized. Further information on 

VHDL can be found in [3]–[5].  Once the circuit is 

realized, it can then be implemented on a Complex 

http://dx.doi.org/10.12785/ijcds/100109 
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Programmable Logic Device (CPLD) or Field 

Programmable Gate Array (FPGA). In this paper, the 

target device is an FPGA. 

A. Review of Related Works in Wavelet Processor 

Design 

Quite a number of research has been done in the 

development of processors for wavelet transforms; the 

authors in [6]  proposed a wavelet processor based on the 

lifting scheme that had no multipliers but with reduced 

complexity, it however has low efficiency in area 

requirements. An efficient dual mode Integer Haar 

Lifting Wavelet Transform (IHLWT) was proposed in 

[7],  which had reduced requirements by exploiting 

arithmetic operations redundancies involved with 

IHLWT computations; the architecture was also 

multiplier-free and performed IHLWT with a single 

adder and subtractor. In [8], the authors proposed a DWT 

architecture based on word serial pipeline and parallel 

filter processing in which high and low-pass filters were 

used concurrently at each level; this approach made the 

design work twice faster than most traditional designs. 

Using residue number system, the authors in [9] proposed 

the design of a 2-dimensional DWT processor. A 

symmetric extension scheme was employed by the design 

to reduce distortion at image boundaries. 

B. Review of Related Works in Hilbert Transform 

Processor Design 

In the design of Hilbert transform processors, authors 

have used different approaches to realize their objectives. 

As an example, the authors in [9] proposed a low power 

and fast reconfigurable Hilbert transform processor based 

on ripple carry adder and carry save adder thereby 

bypassing multipliers; power reduction was achieved by 

turning off adders when the multiplier operands were 

zero. Using fast Fourier transform (FFT), the authors in 

[10] designed a HT processor by multiplication with +j 

and –j in the frequency domain; an efficient signal flow 

graph was developed in the design by utilizing 

decimation-in-frequency and decimation-in-time 

approach. For approximations in image applications 

based on HT, the authors in [11] proposed a model that 

exploited the symmetry and alternating zero-valued 

coefficients of an HT-FIR filter in the generation of in-

phase and quadrature components that were essential for 

envelope computation. The target FPGA for their design 

was the Stratix IV FPGA on a Terasic DE4-230 board. 

The authors implemented a hardware for computing the 

instantaneous frequency of a phonocardiogram using 

discrete HT. Their design involved the use of a system 

level modeling tool for DSP, a System Generator 

provided by Xilinx in Simulink to achieve a faster design 

cycle. The results obtained from their design were similar 

to those computed using MATLAB.  

The rest of this paper is organized as follows: we 

review in section 2, the DWPT and the mechanism by 

which it decomposes a signal alongside an analysis of the 

DWPT lifting steps. Section 3 presents the 

implementation of the floating point arithmetic 

operations that will be used in the lifting steps; the 

implementation involves the use of logic gates and 

buffers. In section 4, the Hilbert transform is presented 

with its design using FIR filter technique; in section 5, a 

complex finite-state-machine (CFSM) design of the 

wavelet processor stage is shown; the design in this 

section is based on the lifting steps in section 2. Section 6 

presents the design of the Hilbert transformer stage of the 

processor; this section builds on section 4 and also 

utilizes a CFSM in the design, while section 7 presents 

the simulation of the designs made, the verification of the 

designs, and also performance measurement. Finally, a 

conclusion is presented in section 8. 
 

2. DISCRETE  WAVELET PACKET 

TRANSFORM (DWPT) 

In signal processing, DWPT belongs to the category 

of wavelet transforms. It operates by representing known 

and unknown signal features through wavelet basis. 

DWPT can be viewed as a generalization of the wavelet 

transform, and it uses filter banks arranged in a tree 

structure format when implementing a wavelet algorithm. 

A typical example of a DWPT tree is shown in Fig. 

1[12], where the decomposition of a signal is 

implemented by a low-pass (H) and high-pass filter (G) 

pairs i.e. H-G pairs. Each parent node decomposing an 

input signal in Fig. 1 is split into two subspaces jnW ,

which has the property of orthogonality, and is 

mathematically expressed as:  

, 2 , 1 2 1, 1n j n j n jW W W      (1) 

where n is a nonnegative integer, j is the decomposition 

level, and  is orthogonal addition. The wavelet packet 

coefficients
2

1
[ ]

p
l n


 are generated using the scaling filter, 

and the coefficients
2 1

1
[ ]

p
l n 


 are generated using the 

wavelet filter. The coefficients are mathematically 

expressed as [12]: 

   2
1 2 [ ] 2 , 0,1,..., 1
p p

l l
k

n h k n k n N          (2) 

     2 1
1 2 2 , 0,1,2,..., 1
p p

l l
k

n g k n k n N 
       (3) 

where  kh is the low-pass filter,  kg is the high-pass 

filter, and p is the position at level l. For the signal in 

each subband channel, the energy is calculated as [13]–

[15]: 
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where cj,k is scaling function coefficient, dj,k is the 

wavelet function coefficient. 

 
Figure 1. Analysis filter bank of a wavelet packet 

 
According to [16], the decomposition functions in (2) 

and (3) can be factored into lifting steps for an orthogonal 

Daubechies wavelet with 4 vanishing moments (Db4) as 

shown below in (6): 
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 (6) 

where  1js n is the updated value at the next iteration 

(H filter output of Fig. 1), and  1jd n is the predicted 

value at the next iteration (G filter output in Fig. 1). The 

lifting steps in (6) is the basis by which the DWPT stage 

of the processor will be designed, and its close inspection 

reveals that the incoming signal  js n is composed of 

several data points upon which the lifting steps act to 

achieve discrete wavelet packet transformation of the 

incoming signal.  

For the design in this paper, each of these data points 

will be represented using the IEEE-754 single precision 

floating point representation. The IEEE-754 single 

precision floating point representation of numbers is a 

32-bit format representation, consisting of 1-bit sign 

representation, 8-bit exponent representation, and 23-bit 

mantissa representation. The structure of the IEEE-754 

single precision floating point format is shown in Fig. 

2[17]. 

 
 

Figure 2. IEEE-754 floating point single precision data format 
 

As an example of this data format, we present in 

Table 1, the IEEE-754 single precision floating point 

representation for three samples of an input data. 

TABLE I.  IEEE-754 SINGLE PRECISION FLOATING POINT DATA 

REPRESENTATION 

S/N Input 

Data 

 IEEE-754 single precision floating point 

representation 

1 0.5377  00111111000010011010011010110101 
2 1.8339  00111111111010101011110100111100 
3 -2.2588  11000000000100001001000000101110 

 

A. Analysis of DWPT Lifting Steps 

A close inspection of (6) reveals that there are three 

fundamental arithmetic operations involved in the 

realization of the lifting steps. These are: multiplication, 

addition, and subtraction. Owing to the IEEE-754 single 

precision floating point representation of the data points 

in  js n , the arithmetic operations will be floating point 

in nature; thus the multiplication operation will be IEEE-

754 single precision floating point multiplication, the 

addition will be IEEE-754 single precision floating point 

addition, and the subtraction will be IEEE-754 single 

precision floating point subtraction.  

To perform floating point multiplication on a pair of 

32-bit numbers A and B using the structure shown in Fig. 

2, different operations are performed on the constituent 

parts of the numbers i.e. sign bit, exponent bits, and 

mantissa bits [18], [19]. We propose the algorithm to 

achieve this multiplication in Algorithm 1, where s1, e1, 

and m1 are the sign bit, exponential bits, and mantissa 

bits of the first number A, and s2, e2, and m2 are the sign 

bit, exponential bits, and mantissa bits of the second 

number B. 
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Algorithm 1: IEEE-754 Floating Point Unit Multiplier Algorithm 

1 Initialize s1, e1, m1, s2, e2, m2, overflow 
2 XOR [ s1, s2 ]  product_sign_bit 
3 Add [ e2,  (e1 – 127) ]   product_exponent 
4 Append [ 1 , m1 ]  intermediate_m1 
5 Append [1 , m2 ] intermediate_m2 
6 Multiply [ intermediate_m1, intermediate_m2 ]  product_mantissa 
7 If product_exponent > 255 

8  1 Assert overflow 

9  2 Product_sign_bit  final_sign_bit 
10  3 Assert final_product(30 down to 0) 

11  4 Append  [ final_sign_bit ,  final_product(30 down to 0) ] final_product(31 down to  0) 
12 End    

13 If product_mantissa(47) == 1 

14  1 product_mantissa(46 downto 24)   normalized_mantissa 
15  2 Add [ 1, product_exponent ]  final_exponent 
16  3 Append [ product_sign_bit, final_exponent, normalized_mantissa ]   final_product(31 down to  0) 
17 Else   

18  1 Product_mantissa( 45 downto 23 )    normalized_mantissa 
19  2 Append [ product_sign_bit, product_exponent, normalized_mantissa ]   final_product(31 down to  0) 
20 End    

 

For floating point addition and subtraction, operations 

will also be performed on the sign bit, exponential bits, 

and mantissa bits of both numbers A and B [19], [20].  

We propose the algorithm shown in Algorithm 2 which is 

used to achieve floating point addition and subtraction. 

 
Algorithm 2: IEEE754 - Floating Point Unit Addition and Subtraction Algorithm 

1 Initialize s1, e1, m1, s2, e2, m2  31 Begin: mantissaProcess  
2 If e1 == e2  32 If xor ( s1, s2 ) == 0  

3  1 Jump to mantissaProcess  33  1 Add ( m1, m2 )   Result_mantissa 
4 End   34  2 OR ( s1, s2 )   Result_sign 
5 If e1 > e2  35 Else if ( m1 >= m2 )  

6  1 Sub ( e1, e2 )   exp_diff  36  1 Sub ( m1, m2 )    Result_mantissa 
7  2 If exp_diff > 23  37  2 s1   Result_sign 
8  1 Result_mantissa   m1  38 Else if ( m1 < m2 )  

9  2 Result_sign   s1  39  1 Sub ( m2, m1 )    Result_mantissa 
10  3 Result_exponent   e1  40  2 s2   Result_sign 
11  4 Jump to exitProcess  41 End if  

12  3 Else   42 End: mantissaProcess  

13  1 m2 ( 24 downto exp_diff )   m2 

(exp_diff downto 0 ) 

43 If ( Result_mantissa == 0 )  

14  2 0   m2 ( 24: sub ( 25, exp_diff ) ) 44  1 0   Result_mantissa 
15  3 Jump to mantissaProcess  45  2 0   Result_exponent 
16  4 End if  46  3 Jump to exitProcess 

17 End if  47 Else if ( Result_mantissa(24) == 1 ) 

18 If e2 > e1  48  1 Append (0, Result_mantissa(24:1)   Result_mantissa 
19  1 Sub ( e2, e1 )  exp_diff  49  

20  2 If exp_diff > 23  50  2 Add ( exponent, 1 ) 

21  1 Result_mantissa   m2  51  3 Jump to exitProcess 

22  2 Result_sign   s2  52 Else if ( Result_mantissa(23) == 0 ) 

23  3 Result_exponent   e2  53  1 Begin loop for j from 0 to 22 

24  4 Jump to exitProcess  54  1  If Result_mantissa(j) == 1 

25  3 Else   55  1 Result_mantissa(j+1:0)   

Result_mantissa(24: sub(23, j) 26  1 m1 ( 24 downto exp_diff )   m1 

(exp_diff downto 0 ) 

56  

27  2 0   m2 ( 24: sub ( 25, exp_diff ) ) 57  2 0 Result_mantissa(22-j: 0) 
28  3 Jump to mantissaProcess  58  3 (Result_exponent – 23) + j 

Result_exponent    29  4 End if  59  

30 End if  60  2 End if 

   61  2 End loop 

   62 End if  

   63 Begin: exitProcess  
   64  1 Result_sign    final_result(31) 
   65  2 Result_exponent   final_result(30:23) 
   66  3 Result_mantissa(22:0)  final_result (22:0) 
   67 End: exitProcess  
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3. IMPLEMENTATION OF LIFTING STEPS USING 

FLOATING POINT ARITHMETIC  

The lifting steps in (6), consists of three fundamental 

arithmetic operations which are multiplication, addition, 

and subtraction. All these operations are floating point in 

nature due to the data representation of the incoming 

signal. To design the architecture of the processor based 

on this lifting steps, it is important to analyze the lifting 

steps in details, and this done as follows: 

 

 The first line in the lifting steps involves splitting 

the incoming signal values into even and odd 

components based on their index values. Each 

odd-indexed signal values are then multiplied by 

the square root of 3 and then added to the even 

values to get the first preliminary “update” value 

of the lifting step.  

 In the second line of the lifting steps, we multiply 

the updated values in (i) above by a factor of 

3 4 and subtract the product from the odd-

indexed signal values in the original signal. We 

also multiply the unit delayed values of the 

updated values in (i) above by a factor of 

 3 2 4 and then subtract the product from 

the odd-indexed signal values in the original 

signal. The final result is the first preliminary 

“predict” value of the lifting step.  

 In the third line of the lifting step, we compute 

the difference between the first preliminary 

updated values and the first preliminary predicted 

values to obtain the second preliminary updated 

values. 

 The fourth line of the lifting step involves the 

multiplication of the second preliminary “update” 

values by a factor of  3 1 2 to obtain the 

final “update” values for the current level of 

iteration.  

 In the fifth line of the lifting scheme, the first 

preliminary “predict” value is multiplied by a 

factor of  3 1 2  to obtain the final 

“predict” values for the current level of iteration. 

To efficiently implement the lifting steps using 

floating point arithmetic based on the analysis above, it is 

imperative to split all the operations in (6) into what we 

call distinct atomic operations, and associate each atomic 

operation with an atomic instruction. Each atomic 

instruction would thus cause a specific atomic operation 

to be executed by the processor, and then the wavelet 

transform of the input signal will be computed by gluing 

the atomic operations together at different levels during 

the progressive computation of the transform as defined 

in the relationship in (6). 

From the foregoing therefore, the following atomic 

instructions are proposed as shown in Table 2, alongside 

the arithmetic operations they perform. Table 2 actually 

shows the relationship between the control unit and the 

data path of the processor to be designed. The atomic 

instructions will be handled by the control unit of the 

processor while the atomic operations will be handled by 

the datapath of the processor. Each of the atomic 

instructions actually represents a control signal issued 

from the control unit of the processor, and for each 

atomic instruction, there will be a corresponding status 

signal from the datapath which will tell the control unit 

that a particular operation has been executed. The control 

unit will then issue the next atomic instruction for the 

next atomic operation to be executed. This will continue 

till the control unit issues all the atomic instructions.  

TABLE II.  ATOMIC INSTRUCTIONS WITH CORRESPONDING ATOMIC OPERATIONS 

SN Atomic Instruction Atomic Operation SN Atomic 
Instruction 

Atomic Operation 

1 Ld_reg_2n x2n_reg ← x_input(2n) 8 Ld_diff_one diff_one_reg ← x2np1_reg - rt3b4_sjp1_1_reg 

2 Ld_reg_2np1 x2np1_reg ← x_input(2n+1) 9 Ld_djp1_1 djp1_1_reg ← diff_one_reg - 
rt3m2b4_sjp1_1_lsh_reg 

3 Ld_reg_rt3_2np1 
rt3_2np1_reg ←  3   x2np1_reg 

10 
Rsh_djp1_1 

djp1_1_rsh_reg(n) ← djp1_1_reg(n+1) 
djp1_1_rsh_reg ← 0 & djp1_1_rsh_reg 

4 Ld_reg_sjp1_1 sjp1_1_reg ← x2n_reg + rt3_2np1_reg 11 Ld_sjp1_2 sjp1_2_reg ← sjp1_1_reg + djp1_1_rsh_reg 

5 Ld_reg_rt3b4_sjp1_1 
rt3b4_sjp1_1_reg ←  3 4   sjp1_1_reg 

12 Ld_update 
update_reg ←  3 1 2 

  
  sjp1_2_reg 

6 
Lsh_sjp1_1 

sjp1_1_lsh_reg(n) ← sjp1_1_reg(n-1) 
sjp1_1_lsh_reg ← sjp1_1_lsh_reg & 0 

13 Ld_predict 
predict_reg ←  3 1 2 

  
   djp1_1_reg 
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7 Ld_rt3m2b4_sjp1_1_lsh 
rt3m2b4_sjp1_1_lsh_reg ←  3 2 / 4 

  
   

sjp1_1_lsh_reg 

   

 
From Table 2, there will be 13 atomic instructions or 

control signals, and for each of these, there will 13 status 

signals indicating the completion of an atomic operation 

by the datapath. With such a large number of 

information-exchange between the control unit and the 

datapath, it is clear an RT (register transfer)-level 

approach will not be powerful in designing the processor. 

The reason is because an RT-level design requires the 

direct connection of standard components like memories, 

registers, and counters to obtain desired system 

functionality; this approach is ideal for small designs 

characterized by standard functionalities. The design in 

this paper is a custom design and has non-standard 

functionality; hence it is imperative to use a complex 

finite state machine (CFSM). The design of the processor 

using CFSM will be discussed in Section 6 after an 

analysis of the design of the Hilbert transformer in 

Section 4. 

4. HILBERT TRANSFORM  

The Hilbert transform in signal analysis is a technique 

that is applied in diverse fields of engineering and 

science including diagnosis and detection of faults in gear 

boxes, communication systems, and QRS-wave detection 

in biomedical engineering [21]–[23]. Hilbert transform 

has a major advantage over other transforms in the sense 

that it does not require a change of domain for its 

operation [24]. 

Given a real valued signal  x t , the Hilbert transform 

of such a signal is defined as the convolution of  x t  

with1 t . The parameter 1 t  is defined as the kernel of 

the Hilbert transformer. Mathematically, the Hilbert 

transform of x(t) can be expressed as [24]: 

1
( ) ( )* ( ) ( )y t h t x t x t

t
     (7) 

1 1 1 1
( ) ( ) ( )y t x d x d

t t
   

   

 

 

  
     (8) 

where h(t) is the Hilbert transformer. The coupling at 

t   is possible owing to the Cauchy principal value of 

the integral. The summation of  x t  and its Hilbert 

transform forms an analytic signal, which is expressed as: 

( ) ( ) ( )z t x t iy t      (9) 

For the Hilbert transform of  x t in (8) to be 

implemented on an FPGA, it will have to be expressed in 

terms of a Finite Impulse Response (FIR) filter. The 

exact means by which this is achieved is discussed in the 

following subsection. 

A. Finite Impulse Response Filter Design of a Hilbert 

Transformer 

Hilbert transforms can be designed using Finite 

Impulse Response (FIR) filters or Infinite Impulse 

Response (IIR) filters. However, the FIR filter approach 

is preferred over IIR filter because it guarantees that the 

stability and phase response of the filter are less sensitive 

to effects of rounding coefficients [25]. 

To design the FIR Hilbert transformer, consider the 

conceptual representation of the expression in (9) in Fig. 

3 with the real output as  rx t  and imaginary output as 

 iy t . 

 
Figure 3. Conceptual Hilbert Transformer 

 

In Fig. 3,  iy t  is the convolution of  rx t  and  h t

. This is mathematically expressed as [26]: 

     i r
k

y n h k x n k




    (10) 

The expression in (10) makes it possible to implement a 

Hilbert transformer as a discrete non-recursive FIR filter 

according to the structure shown in Fig. 4[26] where 

 rx n is the input signal,  iy n the output signal, and 

 h n the coefficients of the filter. 

 
Figure 4. FIR implementation of a k-tap Hilbert Transformer 

 
To design the Hilbert FIR transformer according to 

the structure shown in Fig. 4, we will utilize the FIR 

technique having anti-symmetric coefficients with an 

even number of taps (type III system) [27]. The reason is 

because even-tap FIR Hilbert transformer is 

computationally efficient, has low complexity and 

latency. It should be noted that for the type III Hilbert 

transformer structure shown in Fig. 4, the  h k

coefficients have alternate zeros. 
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For an ideal lowpass filter with cut-off frequency 

2c c sw f f , the impulse response is [28]: 

   sin ,cb n w n n n      (11) 

The expression in (11) is not realizable in hardware 

owing to the fact that  b n  spans  to . To make it 

hardware-realizable, we must truncate  b n  in such a 

manner that it will give an acceptable approximation of 

the impulse response. To achieve this, we will truncate 

 b n to 1N   samples and then apply a window 

technique. Using a halfband filter approach [27], we 

define cw as: 

2 4 2cw       (12) 

Substituting (12) into (11) yields: 

   sin / 2 ,
2 2

N Nb n n n n      

Applying a window function  w n having a length 

of 1N  , we obtain the filter coefficients for  h n in Fig. 

4 as:  

      , 2 2
N Nh n b n w n n            (13) 

 
 

 
sin / 2

,
2 2

n
N Nh n w n n

n




          (14)            

The window function  w n could be Rectangular 

window, Barlett window, Hanning window, Hamming 

window, or Blackman window etc. [29], [30]. In this 

paper, the choice of our window will be Blackman 

window because it has a cosine term which reduces side 

lobes in a signal being processed [31]. This ensures less 

power wastage and increased efficiency. The Blackman 

window[29] is presented in (15). 

 
2 4

0.42 0.5cos 0.08cos ,0 1
1 1

0,

n n
n M

w n N N

otherwise

     
              




 

(15) 

where 2M N  for N even and  1 2N  for N odd. 

Exploiting the coefficient symmetry of the FIR filter 

[32], the FIR filter is designed as shown in Fig. 5a with 

negative symmetry and an even number of taps [32]. For 

the FIR filter structure shown in Fig. 5a to perform 

Hilbert transformation of  rx n , the  h k coefficients 

must have alternating zeros. Hence, the FIR filter 

structure is redesigned as shown in Fig. 5b, where the 

alternating zeros can be seen in the coefficients. The 

impulse response of the FIR Hilbert transform is also 

shown in Fig. 6a [32]. 

Using the relationship in (14) and (15), we compute 

values for  0h to  6h . These values are shown in 

Table 3. Fig. 6b shows the impulse response of the FIR 

Hilbert transformer designed in this paper based on the 

computed coefficients in Table 3. The reader is referred 

to [32] for the analysis of signals in an FIR filter. 

 

 
Figure 5. FIR filter coefficient symmetry – even number of taps 

 

 
Figure. 6. Impulse response of Hilbert transformer based on FIR filter 

TABLE III.  FIR HILBERT  TRANFORMER COEFFICIENTS 

5. WAVELET PROCESSOR STAGE DESIGN 

USING COMPLEX FINITE STATE MACHINE 

(CFSM) 

In the design of both the wavelet processor stage and 

the FIR Hilbert transform stage, a CFSM will be used 

because of the large number of control and potential 

status signals involved in the design as shown in Table 2. 

Using either a Moore or Mealy FSM for the entire design 

becomes impractical because of the presence of circuit 

components like memory and shift operators. Hence, the 

use of CFSM is inevitable.  

In a processor design, a CFSM is a design approach in 

which the control unit is designed as an FSM, while the 

datapath is designed as an RT-level circuit [33]. The 

control unit design and the datapath design are then 

integrated together to implement complex processor 

behavior and functionalities. Table 4 shows the 

differences between the control unit and the datapath in 

the context of CFSM [33]. 

S/N 1 2 3 4 5 6 7 

Filter 

Coefficients h(0) h(1) h(2) h(3) h(4) h(5) h(6) 

Values -0.8276 0 -1.3163 0 1.3163 0 0.8276 
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TABLE IV.  CFSM-CONTEXT BASED DIFFERENCES 

BETWEEN CONTROL UNIT AND DATA PATH 

S/N Control unit Datapath 

1 Modeled using FSM 

models 

Modeled using RT-level models 

2 Defines clock-based 

sequencing of actions in 
datapath 

Defines synchronous and 

asynchronous transformation of 
data moving through the 

datapath blocks The control unit operates on the basis of the values of 

the present state of the processor which includes the 

control inputs, and the incoming conditioning signals 

from the datapath. In each state, the control unit 

determines the next state to branch to, and the set of 

control signals necessary to enable the next set of 

concurrent operations to be performed by the datapath on 

the next rising edge of the clock. 

The datapath is essentially an interconnection of 

system resources as shown in Table 5, and the execution 

of operations in the datapath is enabled by the control 

signals from the control unit. The status signals from the 

datapath, gives the control unit the precise information to 

make the appropriate transition through states. 

TABLE V.  DATAPATH SYSTEM RESOURCE 

CATEGORIZATION 

S/N Resource category Resource type 

1 Functional resources Adders, multipliers, 
subtractors, dividers etc. 2 Memory resources Registers, RAM, ROM, D-flip 
flops etc. 3 Interface resources Bus, steering logic, I/O pad 

etc. 
 

For proper coordination between the control unit and 
the datapath, synchronization is very important and this is 
achieved using clock signals. A good synchronization 
between the control unit and the datapath eliminates the 
negative effects of timing skew which causes 
unpredictability in output. Based on the atomic 
instructions and the atomic operations in Table 2, we 
propose the design of the wavelet processor stage as 
shown in Fig. 7 where the interconnection between the 
datapath and the control based on the atomic instructions 
and atomic operations of Table 2 can be seen.  

6. HILBERT TRANSFORM PROCESSOR STAGE 

DESIGN USING CFSM  

Similar to the design of the wavelet stage of the 

processor, the Hilbert transform stage is also designed 

using CFSM, where the control unit is implemented 

using FSM, and the datapath is implemented using RT-

level circuit. The complete design is shown in Fig. 8; the 

design is such that the output from the wavelet processor 

state is stored in a 16x32 bit RAM called hRAM. At each 

rising edge of the clock, the contents of hRAM are 

transferred one-by-one to a 1x32 bit register sequentially. 

Thus when the control unit is in state S0, the first content 

of hRAM is transferred to the first 1x32 bit register; 

when the control unit transits to state S1, the content of 

the first 1x32 register is transferred to the second 1x32 bit 

register and so on. 

The transfer in this order is possible because unlike 

the load signal of a current state in the wavelet processor 

stage which is turned OFF when the control unit makes a 

transition to the next state, the load signal of the current 

in the Hilbert transform control unit is not turned OFF 

when there is a transition to the next state; this makes the 

register load the next data into the register associated 

with the previous state, while the current state loads the 

previous data coming from the previous state. 

By this mechanism, the Hilbert transform is able to 

perform data transfer according to the structure shown in 

Fig. 5b. As the data is transferred from one 1x32 bit 

register to the next 1x32 bit register, the necessary 

computations are performed by the floating point 

subtractors, multipliers, and adders. When the Hilbert 

transform stage of the processor completes the 

computation, it triggers the ld_reg2n_2np1 signal in the 

wavelet processor stage which begins another round of 

computation for another data set. 

7. DESIGN SIMULATION, VERIFICATION, AND 

PERFORMANCE MEASUREMENT 

In this section, the simulation of the design will be 

performed, alongside verification of the design. This 

section will also present the performance of the design 

starting with the floating point multiplier, 

adder/subtractor, the wavelet transform stage of the 

processor, and then the Hilbert transform stage. 

Table 6 shows the performance of the floating point 

multiplier designed using Algorithm 1 where it can be 

seen that the same level of performance was obtained 

when compared with the Xilinx IPCORE. The root mean 

squared error (RMSE) between the Xilinx IPCORE and 

the proposed multiplier computed using the 

relationship[34]  
2

1
ˆ(1 )

n

i
RMSE n x x


  was 0; 

where n is the number of samples, x the value obtained 

from Xilinx IPCORE, and x̂ the value from the proposed 

multiplier. However, the proposed multiplier in this 

paper was faster in the computation of the product of its 

input at 650ns as shown in Fig. 9 than that of Xilinx 

IPCORE at 850ns. Similarly, the floating point 

adder/subtractor designed using Algorithm 2 gave the 

same level of accuracy in comparison with the Xilinx 

IPCORE with an RMSE = 0.000000xxx as shown in 

Table 7. This value xxx of RMSE i.e. quantization error 

caused by the difference in the internal representation of 

floating point numbers between the proposed algorithm 

and Xilinx IPCORE is insignificant to cause any 

distortion in computation because it is highly accurate 

and competes better than similar algorithms[34]–[37]. 

Fig. 10 shows that the proposed adder/subtractor gave the 

same level of performance at a lesser time 450ns than the 

Xilinx IPCORE adder/subtractor time of 1150ns. 
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Figure 7. Wavelet processor stage design using CFSM 
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Figure 8. Hilbert processor stage design using CFSM 

 

TABLE VI.  COMPARISON BETWEEN PROPOSED FLOATING POINT MULTIPLIER AND XILINX IPCORE FLOATING POINT 

MULTIPLIER  

Operation Decimal Number IEEE-754 Floating Point Representation RMSE 

 Input 1 

Input 2 

 

1.2915000 00111111101001010100111111011111   
 9.3453000 01000001000101011000011001011001 

sum - xilinx IP CORE adder 12.0694549 01000001010000010001110001111100 
0.000000000  

product - proposed adder 12.0694549 01000001010000010001110001111100 

 Input 1 

Input 2 

 

-2.3682000 11000000000101111001000010010111   

  6.4152000 01000000110011010100100101010010 

sum - xilinx IP CORE adder -15.1924766 11000001011100110001010001100011 
0.000000000 

product - proposed adder -15.1924766 11000001011100110001010001100011 
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TABLE VII.  COMPARISON BETWEEN PROPOSED FLOATING POINT ADDER/SUBTRACTOR AND XILINX IPCORE FLOATING 

POINT ADDER/SUBTRACTOR 

Operation Decimal Number IEEE-754 Floating Point Representation RMSE 

 Input 1 1.2915000 00111111101001010100111111011111   

  Input 2 

sum - xilinx IP CORE adder 

9.3453000 01000001000101011000011001011001 

10.6368000 01000001001010100011000001010101 
0.000000999 

sum - proposed adder 10.6367990 01000001001010100011000001010100 

 Input 1 -2.3682000 11000000000101111001000010010111   

  Input 2 6.4152000 01000000110011010100100101010010 

difference - xilinx IP CORE 

subtractor 

4.0470000 01000000100000011000000100000110 
0.000000400 

difference - proposed subtractor 4.0470004 01000000100000011000000100000111 

 

To test the performance of the wavelet stage of the 

processor, the 32x32 bit register was populated with 32 

data points each being 32bits wide. Simulation was 

performed as shown in Fig. 11, where the wavelet stage 

of the processor can be seen computing the first update 

and predict values at the rising edge of the clock at 

123250ns. The last or sixteenth values of the update and 

predict values were computed at 124750ns. Fig. 12 shows 

a zoomed-in view of some values computed by the 

wavelet processor stage; the values shown are for the first 

two and sixteenth values of both the update signal and 

predict signal. To get to these results, the wavelet stage 

performed all the computations in (6). 

Table 8 shows the data points that were used in 

testing the wavelet stage of the processor, alongside the 

complete computed update and predict values. To further 

validate the results obtained in Table 8, a model of the 

wavelet processor stage was developed using Simulink as 

shown in Fig. 13, and the results obtained confirm the 

accuracy of the wavelet processor stage. The update 

signal and the predict signal are fed concurrently into two 

versions of the Hilbert transform that was designed 

according to the architecture in Fig. 8. Simulation was 

performed as shown in Fig. 14, where it can be that the 

first Hilbert transform for the update and predict values 

were computed at 311550ns, and the last Hilbert 

transform for the update and predict values were 

computed at 313050ns. A comparison between Fig. 11 

and 14 shows that the Hilbert transform computations 

started after the completion of the wavelet processor 

stage computations. This is not unexpected based on the 

architecture proposed in Fig. 7 and 8. The results 

obtained from the simulation in Fig. 14 are shown in 

Table 9, where the Hilbert transform of the update and 

predict signals are presented. A zoomed-in view of some 

of the results obtained in Fig. 14 is shown in Fig. 15 for 

the first two values and the sixteenth value of the update 

signal and predict signal respectively. 

 

 
 

Figure 9. Floating point multiplier product computing time 
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Figure 10. Floating point adder/subtractor computing time 

 

 

 
 

Figure 11. Computation of predict and update values by wavelet stage of processor 

 

 

 
 

Figure 12. Zoomed-in view of first two and sixteenth wavelet transform values 
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TABLE VIII.  TEST DATA AND COMPUTED RESULTS FOR PROCESSOR WAVELET STAGE 

S/N 
Input signal value   

S/N IEEE-754 format Decimal 
IEEE-754 format Decimal 

0 00111111000010011010011010110101 0.5377 

U
p

d
at

e
 s

ig
n

al
 

0 00111111100101101000001111011011 1.175898 
1 00111111111010101011110100111100 1.8339 1 10111110000001000001010010001111 -0.12898 
2 11000000000100001001000000101110 -2.2588 2 10111111100010100110110100111011 -1.08145 
3 00111111010111001011100100100100 0.8622 3 00111111000001010101011001000001 0.52084 
4 00111110101000110011100111000001 0.3188 4 01000000010101100101111011010010 3.34953 
5 10111111101001110110001010110111 -1.3077 5 01000000000000111010111010011001 2.05753 
6 10111110110111100000000011010010 -0.4336 6 00111110111101111111001100000110 0.48427 
7 00111110101011110110100101000100 0.3426 7 10111101010000000010011000111011 -0.04691 
8 01000000011001010000010010000001 3.5784 8 00111111101010001100100010101110 1.31862 
9 01000000001100010011110111011001 2.7694 9 01000000000010110000111010001000 2.17276 
10 10111111101011001100100110000110 -1.3499 10 10111111001111000110100111011011 -0.73598 
11 01000000010000100011101111001101 3.0349 11 00111111110101111100011000110110 1.68573 
12 00111111001110011011001111010000 0.7254 12 00111111101001101110010001011111 1.30384 
13 10111101100000010011101010010011 -0.0631 13 00111110100001111011000101010100 0.26502 
14 00111111001101101111011010010100 0.7147 14 10111110001011010010000011011010 -0.16907 
15 
16 

10111110010100011110101110000101 
10111101111111100010100000100100 

-0.2050 
-0.1241 

15 10111111000100011000111010100001 -0.56858 

P
re

d
ic

t 
si

gn
al

 

0 00111110110111110010111110011000 0.43591 
17 00111111101111101010111001111101 1.4897 1 01000000001100100101011001001101 2.78651 
18 00111111101101000101101000011101 1.4090 2 10111111011111110100111101101001 -0.99730 
19 00111111101101010110011011001111 1.4172 3 00111110100011010111110101111101 0.27634 
20 00111111001010111110011101101101 0.6715 4 10111111110100010100110010001100 -1.63514 
21 10111111100110101000111101011100 -1.2075 5 01000000011010110110111110001100 3.67868 
22 00111111001101111001101001101011 0.7172 6 10111110000001101110111100101111 -0.13177 
23 00111111110100001010101001100101 1.6302 7 10111111000111011111110100000111 -0.61714 
24 00111110111110100101000100011010 0.4889 8 00111111010111101010110100101001 0.86982 
25 00111111100001000111000100001101 1.0347 9 10111110001101001001100001011101 -0.17636 
26 00111111001110100001011000011110 0.7269 10 10111111001001010001110010000111 -0.64496 
27 10111110100110110101011100111111 -0.3034 11 00111011011011111111100101011000 0.00366 
28 00111110100101100111101000010000 0.2939 12 00111111000011001000011000111101 0.54892 
29 10111111010010011000110001111110 -0.7873 13 10111110111010110011101100110011 -0.45943 
30 00111111011000110110111000101111 0.8884 14 10111111000110011001101111101000 -0.60003 
31 10111111100100101101010000101100 -1.1471 15 10111111101101111100000110001001 -1.43559 

 
 

A verification model based on the Hilbert FIR 

structure in Fig. 8 was developed and tested as shown in 

Fig. 16. A comparison between the results shown in 

Table 10 and Fig. 16 confirms the accuracy of the Hilbert 

transform processor stage. 
A second comparison in the context of FPGA resource 

utilization was also made between the design of the 
Hilbert transform processor presented in this paper and 
similar other designs; this is shown in Table 10 where it 
can be seen the Hilbert processor in this paper performs 
well in comparison with similar designs. 

8. CONCLUSION 

In this paper, we undertook the design of a processor 

that computed the DWPT and then the Hilbert transform 

of the DWPT of an input signal. The design approach 

was based on the lifting steps of a Db4 wavelet for the 

DWPT, and FIR technique for the Hilbert transform. 

Using these approaches, an architecture was developed 

for the processor datapath, after which the processor unit 

was also developed. The arithmetic and logic unit (ALU) 

of the datapath in Figs 7 and 8 were designed to perform 

three basic primitive arithmetic operations: 

multiplication, addition, and subtraction. These 

operations are floating point in nature based on the IEEE-

754 single precision floating point arithmetic owing to 

the fact that the data representation in the VLSI design of 

the processor is also based on the IEEE-754 single 

precision floating point format. Simulation results were 

used to verify the performance of the processor, where 

the DWPT of the input signal was computed based on the 

lifting steps, and then the Hilbert transform of the DWPT 

signal was subsequently computed in the second stage of 

the processor. The waveform analysis of the results and 

the tabulation of the simulation results confirmed that the 

processor performed as expected. 
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Figure 13. Simulink verification model for wavelet processor stage 

 

 
 

Figure 14. Computation of the Hilbert transform of update and predict values 
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TABLE IX.  HILBERT TRANSFORM OF UPDATE AND PREDICT SIGNALS 

 S/N IEEE-754 format Decimal  IEEE-754 format Decimal 

U
p

d
at

e
 s

ig
n

al
 

0 00111111100101101000001111011011 1.17589 

H
ilb

e
rt

 t
ra

n
sf

o
rm

 

10111111011110010010000111101101 -0.97317 
1 10111110000001000001010010001111 -0.12898 00111101110110101001111010001100 0.10674 
2 10111111100010100110110100111011 -1.08145 10111111001001110001111101000010 -0.65282 
3 00111111000001010101011001000001 0.52084 10111110100001011100010101001000 -0.26127 
4 01000000010101100101111011010010 3.34953 00111110010011000001000010101000 0.19928 
5 01000000000000111010111010011001 2.05753 11000000001000111011100101010101 -2.55818 
6 00111110111101111111001100000110 0.48427 11000000101010000101001100000001 -5.26013 
7 10111101010000000010011000111011 -0.04691 11000000010001000001010111011111 -3.06383 
8 00111111101010001100100010101110 1.31862 00111111111100100010110010000010 1.89198 
9 01000000000010110000111010001000 2.17276 00111111010000000000100010111000 0.75013 

10 10111111001111000110100111011011 -0.73598 01000000000000010110001011011100 2.02164 
11 00111111110101111100011000110110 1.68573 11000000000110101000101110110000 -2.41476 
12 00111111101001101110010001011111 1.30384 10111111000010000010111101011100 -0.53198 
13 00111110100001111011000101010100 0.26502 11000000100111000001001000101110 -4.87720 
14 10111110001011010010000011011010 -0.16907 11000000011000101101100010111111 -3.54446 
15 10111111000100011000111010100001 -0.56858 01000000101111011001000111011011 5.92405 

P
re

d
ic

t 
si

gn
al

 

0 00111110110111110010111110011000 0.43591 

H
ilb

e
rt

 t
ra

n
sf

o
rm

 

10111110101110001011010101101010 -0.36075 
1 01000000001100100101011001001101 2.78651 11000000000100111001011101111111 -2.30612 
2 10111111011111110100111101101001 -0.99730 00111110100000001100111101010000 0.25158 
3 00111110100011010111110101111101 0.27634 11000000011110010110000111011101 -3.89659 
4 10111111110100010100110010001100 -1.63514 01000000010011110101100010111001 3.23979 
5 01000000011010110110111110001100 3.67868 00111110100001001111000111011000 0.25965 
6 10111110000001101110111100101111 -0.13177 00111111101001111001101010011110 1.30940 
7 10111111000111011111110100000111 -0.61714 11000000000000010110111011000010 -2.02238 
8 00111111010111101010110100101001 0.86982 11000000101110101001000101110111 -5.83025 
9 10111110001101001001100001011101 -0.17636 01000000110010001111110010100010 6.28083 

10 10111111001001010001110010000111 -0.64496 11000000110000010001101001110110 -6.03448 
11 00111011011011111111100101011000 0.00366 01000000101101100110111011101010 5.70103 
12 00111111000011001000011000111101 0.54892 00111111110110000101100111010100 1.69024 
13 10111110111010110011101100110011 -0.45943 00111111011100010010000111011100 0.94192 
14 10111111000110011001101111101000 -0.60003 11000000000000010001000101010100 -2.01668 
15 10111111101101111100000110001001 -1.43559 10111111111011111010101101111011 -1.87242 

 

 

 
 

Figure 15. Zoomed-in view of first two and sixteenth values of Hilbert transform 

 

TABLE X.  PERFORMANCE COMPARISON OF PROPOSED HILBERT TRANSFORM PROCESSOR WITH SIMILAR PROCESSORS 

Title of work LUTs FF IoBs BRAM Mults DSP GCLK BUF

G FPGA-Based implementation of instantaneous frequency estimation of 

phonocardiographic signals [38] 

5,555 2,168 49 2 4 - 1 - 
Embedded Hilbert transform based algorithm within an FPGA to classify 

nonlinear SDOG systems [39] 

8,511 7,078 - 26 20 - - - 

Efficient Architecture For Real Time Implementation of Hilbert Transform in 

FPGA [34] 

 

3,525 2,168 49 - - - - - 

A High Performance Pipelined Discrete Hilbert Transform Processor [40] 6,486 5,268 - - - - - - 

Ultrasound  B-Mode Back End Signal Processor on FPGA [41] 
 

2,190 883 52 134 - 21 - 1 

Proposed Hilbert Transform processor  2,597 4,536 34 - - 2 - 1 
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Figure 16. Simulink-State flow verification model for Hilbert transform 
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