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Abstract: Big Data processing is done using MapReduce which is a clustered data processing framework. Composed of Map and 

Reduce functions, it distributes data processing tasks between different computers, then reduces the results in a single summary. 

Most data analysts prefer to use query languages like Pig and Hive to process Big Data, given the complexity of the MapReduce 

paradigm. In this paper, we propose an approach based on Model Engineering to transform requests written by Pig or Hive to 

MapReduce jobs thanks to the use of the ATL transformation language. Our proposal will allow us to easily obtain MapReduce 

programs from requests written in Pig or Hive. 
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1. INTRODUCTION  

Big Data is a generic term used to describe the 
strategies and technologies used to collect, organize, 
process, and analyze large data sets. Big Data is the art of 
managing and exploiting large volumes of data [1]. To 
process this large amount of data, we find the Hadoop 
ecosystem [2]. Hadoop remains the main Big Data 
platform today. Based on Java, the open-source Hadoop 
framework is used to store and process data in bulk. 
Hadoop is part of the Apache project, which is also 
behind the Pig, Hive, and Spark frameworks. 

Hive was originally a Facebook project that links the 
SQL world to Hadoop. It allows the execution of SQL 
queries on a Hadoop cluster in order to analyze and 
aggregate data. The SQL language is called HiveQL [3]. 
It is a visualization language only, which is why only 
"Select" instructions are supported for data manipulation. 
In some cases, developers must map between data 
structures and Hive. There is also Pig which is originally a 
Yahoo project which allows querying Hadoop data from a 
scripting language [4]. Unlike Hive, Pig is based on a 
high-level PigLatin language that allows you to create 
MapReduce type programs. Pig Latin abstracts from the 
Java MapReduce programming language and goes to a 
higher level of abstraction, similar to that of SQL for 

RDBMS systems. Unlike Hive, Pig does not have a web 
interface [5]. 

Since we know that to do Big Data processing, we will 
need the MapReduce paradigm [6]. So, the requests 
written by the HiveQL language or PigLatin transform to 
MapReduce jobs according to the classic Big Data 
architecture. 

In this paper, we continue to apply techniques related 

to model engineering to standardize concepts at the Big 

Data level. In previous work [7] we proposed a meta-

modeling of the layers: Data Sources and Ingestion. Then, 

we proposed a meta-modeling for the other layers of a Big 

Data system which are: Storage [8,9], Visualization [10], 

and Security [11]. This work is a progress report on our 

first proposal for a meta-modeling of the Big Data 

Management layer [12]. Our goal is to provide a generic 

Big Data system based on model engineering [13] to 

address the problem of a large number of Big Data 

solutions. 

2. RELATED WORK 

As part of our research project, we continue in this 
paper the application of techniques related to model 
engineering to standardize concepts at the Big Data level. 
In previous work [7] we proposed a meta-modeling of the 
layers: Data Sources and Ingestion. Then, we proposed a 
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meta-modeling for the other layers of a Big Data system 
which are: Storage, Visualization, and Security. This work 
is a progress report on our first proposal for a meta-
modeling of the Big Data Management layer [12]. The 
main paradigm used to process large amounts of data is 
the MapReduce [6], plus other complementary tools like 
Pig [4], Hive [3], Sqoop [14], etc. We treat in this paper 
the two query languages Pig and Hive which aim to 
process Big Data thanks to two languages dedicated to 
this reason which are: Pig Latin and HiveQL. Queries 
written by these two languages transform to MapReduce 
jobs according to the classic Big Data architecture. Our 
goal is to consolidate a generic Big Data system based on 
model engineering to solve the problem of many existing 
solutions in the market today. 

Many studies have addressed the problem of the cost 
of data transfers within MapReduce applications. Most of 
them deal with the locality of the data during the map 
phase. One of the algorithms proposed [15] improves this 
locality by introducing a delay before migrating a task to 
another node, if the preferred node is not available. The 
BAR [16] algorithm aims to approach the optimal data 
distribution taking into account an initial configuration 
that will be dynamically adapted. 

LEEN [17] is an algorithm for partitioning 
intermediate keys that aim to balance the duration of 
reduction while trying to reduce bandwidth consumption 
during shuffle. This algorithm is based on statistics of the 
frequency of the appearance of intermediate keys in an 
attempt to create balanced partitions and optimize data 
transfers. The HMPR algorithm [18] proposes a pre-
shuffling which tends to reduce the quantity of data to be 
transferred as well as the number of transfers. For this, it 
predicts the partition in which the data will be generated 
at the output of the map and has the piece of data 
processed by the node which will execute the reduce of 
this partition if possible. 

The Ussop runtime environment [19], targeting the 
grids, adapts the amount of data to be processed by each 
map according to the computing power of the machine 
running it. Also, this tool tends to reduce intermediate 
data transfers by locally performing the reduce on the 
machine that generated the most intermediate keys. 

A MapReduce application can be considered as a set 
of divisible tasks since the data to be processed can be 
distributed equally between the map instances. It is 
therefore possible to apply results from the theory of 
divisible tasks [20] to this type of application. This is the 
approach that was followed by Berli´nska and 
Drozdowski [21]. In this article, the authors consider an 
execution environment in which the number of compute 
nodes is greater than the number of communications that 
can take place simultaneously without causing contention. 
To avoid the appearance of this phenomenon, they 
propose to model the execution of a MapReduce 
application by a linear program that generates a 

distribution of the data and static scheduling by phases of 
the communications. If this approach turns out to be 
interesting, the use of a linear program makes it 
inapplicable for instances involving more than a few 
hundred maps because the resolution time can sometimes 
exceed several minutes. Also, it happens that the linear 
program solver fails for certain instances. The sequencing 
by phases induces, in addition, a large number of idle 
times on machines and the network during the shuffle. 

3. MAPREDUCE 

The MapReduce paradigm [6] was presented in 2008 
by Deanetal. In a MapReduce program, two types of 
operations are chained to perform a calculation: the Map 
operation and the Reduce operation. All of these 
operations form a MapReduce job. 

In the MapReduce paradigm, data is represented by 
key-value pairs. The Map and Reduce operations take as 
input a set of key-value pairs and return a set of key-value 
pairs. More precisely, let and be three sets of keys and 
three sets of values. We use the operator to describe the 
power set (i.e. the set of parts) of a set. For a job, the Map 
and Reduce functions are written: 

𝑚𝑎𝑝 ∶ 𝐾 × 𝑉 →  𝛽(𝐾′ × 𝑉′)  
(𝑘, 𝑣) → {(𝑘′, 𝑣′)|(𝑘′, 𝑣′)  ∈ 𝐾′ × 𝑉′}  
𝑟𝑒𝑑𝑢𝑐𝑒 ∶ 𝐾′ ×  𝛽(𝑉′)  →  𝛽(𝐾′′ × 𝑉′′) 

(𝑘′, {𝑣′|𝑣′ ∈ 𝑉′} → {(𝑘′′, 𝑣′′)|(𝑘′′, 𝑣′′) ∈ 𝐾′′ × 𝑉′′} 

 
These operations are designed to allow easy 

distribution of the calculations. On a computing cluster, 
each machine processes only part of the data, so as to take 
advantage of distributed file storage. 

A. Map operation  

The Map operation transforms the input data to an 
intermediate state usable by the Reduce operation. 
Depending on the application, it can be used to filter data, 
duplicate data, etc. In the distributed implementation of 
the paradigm, the machines performing the Map operation 
are called mappers. Each mapper then only works on part 
of the data. The key to the element's output from the 
Mapper function is to determine the reduced values 
together in the Reduce operation. 

B. Reduce operation  

The Reduce operation transforms values with the same 
key into a key-value pair. Depending on the application, 
the Reduce operation transforms the output of the Map 
into a statistical indicator, into a sorted data set, etc. In the 
distributed implementation of the paradigm, machines 
performing the Reduce operation are called a reducer. 
Each reducer works on a part of the data. 

C. Shuffle of data 

Between the Map operation and the Reduce operation, 
the dataset undergoes a modification. The Map operation 
returns a set of key-value pairs and the Reduce operation 
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takes a key-set of values as input. The Shuffle step allows 
for this transition. During the data shuffle, the data output 
from the Map operation is transmitted over the network 
towards the reducers. Pairs with the same keys are 
transmitted to the same reducer. Key-set pairs of values 
are formed this way. 

This transfer can represent an important blocking point for 

the distributed implementation. When handling large 

datasets, the amount of information exchanged over the 

network can be significant (up to several times the size of 

the datasets, depending on the application). It is therefore 

necessary to pay attention to the volume of data 

transmitted during this step to improve the performance of 

the algorithm. 

 

 

Figure 1.  MapReduce meta-model proposed. 

4. PIG 

Apache Pig is a software created by Yahoo. It allows 
us to write useful treatments on data, without undergoing 
the complexity of Java. The goal is to make Hadoop 
accessible to non-computer scientists: physicists, 
statisticians, mathematicians, etc. Pig offers a scripting 
language called "Pig Latin". This language is called "Data 
Flow Language". Its instructions describe processing on a 
stream of data. Conceptually, it looks like a Unix tube; 
each command changes the flow of data passing through 
it. Pig Latin also makes it possible to build much more 
varied and non-linear treatments. Pig translates Pig Latin 
programs into MapReduce jobs and integrates the results 
into the flow. 

A. Example of a Pig program 

This program displays the 10 youngest adults 
extracted from a csv file containing 3 columns: identifier, 
name, and age. 

 

To run it: freelance program.pig. It's launching a 
MapReduce job in Hadoop. You can also type the 
instructions one by one into Pig's shell. 

B. Comparison between SQL and Pig Latin 

There are some apparent similarities between SQL and 
Pig Latin. There are several keywords in common (JOIN, 
ORDER, LIMIT, etc.) but their principle is different: 

• In SQL, queries are built that describe the data to 

be obtained. It is not known how the SQL engine 

will calculate the result. We only know that 

internally, the query will be broken down into 

loops and in comparison, on the data and making 

the best use of the indexes. 

• In Pig Latin, programs are built that contain 

instructions. It describes exactly how the result 

should be obtained, what calculations should be 

made, and in what order. 

Also, Pig was designed for uncertain Hadoop data, 
while SQL runs on perfectly healthy SGBDs. 

C. Pig Latin Language 

1) Structure of a program 
Comments are placed between /*...*/ or from - and the 

end of the line. A Pig Latin program is a series of 
instructions. All must be terminated with a; As in SQL, 
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there is no notion of variables, nor functions/procedures. 
The result of each Pig statement is a collection of tuples. 
We call it a relationship. We can see it as a database table. 
Each Pig instruction takes an input relation and produces a 
new output relation. 

output - INSTRUCTION input PARAMETRES...; 

2) Running a program 
When you run a program, Pig first analyzes it. Each 

instruction, if it is syntactically correct, is added to a kind 
of action plan, a succession of MapReduce, and it is only 
at the end of the program that this action plan is executed 
according to what you ask at the end. 

The EXPLAIN relation instruction displays the action 
plan planned to calculate the relation. It’s pretty 
indigestible when you’re not a specialist. 

3) Relationships and aliases 
The syntax name = INSTRUCTION...; defines an 

alias, i.e. a name for the relation created by the 
instruction. This name is generally used in the following 
instructions, this is what builds a processing flow. 

 

The same alias can be reused in different instructions, 
which creates bifurcations in the processing flow: 
separations or groupings. It is not recommended to 
reassign the same alias. 

4) Chaining of instructions 
Pig allows you to either chain instructions through the 

alias mechanism, or through a nested call. 

 

You will choose the one you find most readable. 
However, nested calls do not allow easy separation of 
processing, unlike aliases: 

 

5) Relationships and types 
A relation is an ordered collection of tuples which all 

have the same fields. Here are the possible types. The 
scalar types are: 

• int and long for integers, float and double for reals 

• chararray for any chains. 

• bytearray for any binary objects 

• There are also three complex types: 

• dictionaries (maps): [name # mickey, age # 87] 

• tuples of fixed size: (mickey, 87, hergé) 

• sacs (bags) = sets without tuples order: {(mickey, 

87), (asterix, 56), (tintin, 86)} 

6) Schema of a relationship 
The list of fields in a relationship is called a schema. It 

is a tuple. We write it (name1: type1, name2: type2, ...). 

For example, a relationship containing employees will 
have the following schema: 

 

The LOAD instruction 'file.csv' AS diagram; allows to 
read a CSV file and to make a relation according to the 
indicated diagram. 

7) Complex schema (tuples) 
Pig allows the creation of a relationship based on a 

diagram including complex data. Either a file containing 
3D segments: 

 

We use the character to represent a tabulation. Here is 
how to read this file: 

 

8) Complex schema (bags) 
You can also read bags, i.e. data sets of the same types 

but in any number: 

 

The diagram of this file is: 

 

Explanations: 

• The second field of the diagram is specified as: 

"field name": "type of bag content" 

• Data in this field should be in the "list of values 

for the type" format. 

9) Complex schema (maps) 
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Finally, with dictionaries, here is the contents of the 
heros.csv file: 

 

It is made a relationship by: 

 

Note: All these constructions, tuple, map and bags can 
be nested, but some combinations are difficult to specify. 

10) Field names 
There are two syntaxes for naming the fields of a 

relationship. Either use their plain name or designate them 
by their position $ 0 designating the first field, $ 1 the 
second and so on. 

The second syntax is used when the names of the 
fields are not known or when they have been generated 
dynamically.  

When there is ambiguity on the relation concerned, we 
prefix the name of the field with the name of the relation: 
relation.champ. 

• When a field is a tuple, its elements are named 

relation.champ.element. For example 

segments.P1.z1 

• For a map type field, its elements are named 

relation.champ # element. For example 

heros.infos # metier 

• There is no syntax for accessing bag fields. 

The following figure shows the meta-model that we 

proposed for PIG: 

 

Figure 2.  Meta-model of PIG. 

5. HIVE 

Hive simplifies work with a database like HBase or 
CSV files. Hive allows you to write queries in a language 
inspired by SQL and called HiveQL. These requests are 
turned into MapReduce jobs. To work, simply define a 
diagram that is associated with the data. This diagram 
gives the names and types of columns and structures the 
information into tables that Can be used by HiveQL. 

A. Defining a diagram 

The diagram of a table is also called metadata (i.e. 
data information). Metadata is stored in a MySQL 
database, called metastore. Here is the definition of a table 
with its diagram: 

 

The beginning is classic, except for the constraints of 
integrity: there are none. The end of the query indicates 
that the data is in a CSV file. Let us first look at the types 
of columns. 

B. Types HiveQL 

Hive defines the following types: 

• BIGINT (8 bytes), INT (4), SMALLINT (2), 

BYTE (1 byte) 

• FLOAT and DOUBLE 

• BOOLEAN worth TRUE or FALSE 

• STRING, we can specify coding (UTF8 or other) 

• TIMESTAMP expressed in number of seconds. 

Nanoseconds since 01/01/1970 UTC 

• structured data as with Pig: 

o ARRAY indicates that there is a list of type 

o STRUCT for a multi-value structure 
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o MAP for a suite of. key (pairs,value). 

C. Field Separations for Reading 

The creation of a table is done as follows: 

 

The guidelines after the diagram indicate how the data 
is stored in the CSV file. These are: 

• FIELDS TERMINATED BY ';': there is one; to 

separate the fields 

• COLLECTION ITEMS TERMINATED BY ',': 

there is a, between the elements of an ARRAY 

• MAP KEYS TERMINATED BY ':': there is one: 

between the keys and values of a MAP 

• LINES TERMINATED BY 'n': there is a 'n' at the 

end of the line 

• STORED AS TEXTFILE: It is a CSV. 

D. Loading data 

Here is how to load a CSV file that's on HDFS in the 
table: 

 

You can also load a local file (not HDFS): 

 

The file is then copied to HDFS in Hive's files. 

E. HiveQL requests 

As with conventional SGBD, there is a shell launched 
by the hive command. This is where SQL queries are 
typed. They are mainly SELECT. All the clauses you 
know are available: FROM, JOIN, WHERE, GROUP BY, 
HAVING, ORDER BY, LIMIT. 

There are others to optimize the underlying 
MapReduce work, for example when you want to rank on 
a column, you have to write: 

 

The directive sends the affected n-uplets on a single 
machine to compare them more quickly to establish the 
ranking. 

F. Other guidelines 

It is also possible to export results in a file: 

 

Other orders include: 

• SHOW TABLES; to view the list of tables (they 

are in the metastore). 

• DESCRIBE EXTENDED table; shows the table 

schematic 

G. Hive meta-model 

The following figure shows the meta-model we 

proposed for Hive and its HiveQL query language: 

 

Figure 3.  Hive meta-model. 

6. TRANSFORMATION 

After defining the meta-models of MapReduce, Pig, 
and Hive. In this section, we present the transformation 
rules used to pass from generic meta-models of PIG and 
Hive query languages to the MapReduce meta-model 
which represents the body of processing within Big Data. 
The following figure shows the architecture of our 
proposal. 

 

Figure 4.  Architecture of PigHive2MapReduce. 
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To apply all the transformations, we chose the ATL 
transformation language. We now present extracts from 
the ATL code that we used to transform the meta-models 
proposed for Pig and Hive to the meta-model proposed for 
the MapReduce. These defined meta-models present the 
PIM (Platform Independent Model) level according to the 
architecture led by the ‘MDA’ models. 

7. EVALUATION AND DISCUSSION 

To evaluate our approach, we used three datasets. On 
these datasets, we applied 30 queries to better measure the 
execution time of each query on the different datasets 
chosen to test our proposal. 

To implement PigHive2MapReduce, we used version 
3.1.1 of Hadoop, version 3.1.2 of Hive, and version 0.17.0 
of Pig. All these tools were installed on a machine with a 

2.70 GHz Intel (R) Core (TM) i7 processor. With a 
storage space of 2 TB and a RAM memory of 16 GB. 

The three datasets used have the following sizes: DS1 
(17GB), DS2 (15GB) and DS3 (13GB). The following 
table shows the loading time of the three datasets: 

TABLE I.  LOADING TIME DATASETS. 

Dataset Dataset 1 Dataset 2 Dataset 

Loading time (s) 3,4 3,2 2,9 

 
The following tables show the execution time of the 

30 queries on the three datasets. Note that we tested 
PigHive2MapReduce with 15 queries using the PigLatin 
language, and 15 with the use of the HiveQL query 
language. 

TABLE II.  PIG REQUEST TRANSFORMATION TIME ON DATASET 1. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
356 376 481 450 256 298 516 518 318 389 667 687 321 321 124 

TABLE III.  HIVE REQUEST TRANSFORMATION TIME ON DATASET1. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
456 445 234 213 765 656 231 124 764 343 545 432 535 654 344 

TABLE IV.  PIG REQUEST TRANSFORMATION TIME ON THE DATASET2. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
346 366 471 440 246 288 506 508 307 398 606 676 310 300 110 

TABLE V.  HIVE REQUEST TRANSFORMATION TIME ON THE DATASET2. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
446 435 224 203 755 646 221 114 754 333 535 422 525 644 334 

TABLE VI.  PIG REQUEST TRANSFORMATION TIME ON THE DATASET3. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
340 360 468 434 243 278 500 502 304 374 649 669 309 312 114 

TABLE VII.  HIVE REQUEST TRANSFORMATION TIME ON THE DATASET3. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
443 432 219 200 748 643 219 108 747 337 542 427 526 641 330 
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The results obtained after using our approach based on 
model engineering are shown in the following figures: 

 

Figure 5.  Transformation time of Pig requests on dataset1. 

 

Figure 6.  Transformation time of Pig requests on dataset2. 

 

Figure 7.  Transformation time of Pig requests on dataset3. 

 

Figure 8.  Transformation time of Hive requests on dataset1. 

 

Figure 9.  Transformation time of Hive requests on dataset2. 

 

Figure 10.  Transformation time of Hive requests on dataset3. 

The results obtained from applying the 
transformations using the ATL transformation language 
show that the time to transform Pig Latin or HiveQL 
queries is very fast. The fact that will allow users of the 
MapReduce paradigm to obtain MapReduce programs 
quickly from Hive or Pig requests. 
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Based on the definition of meta-models for the 
different layers of a Big Data system in our previous 
work. In continuous efforts, this work complements the 
meta-model already proposed for the management layer. 
Exactly to define the functioning of the two Pig and Hive 
query languages which are based on the transformation of 
queries written either by the Pig Latin language or by 
HiveQL, into MapReduce jobs thanks to the ATL 
transformation language. 

8. CONCLUSION 

Given a large number of Big Data solutions available 
today in the market. We have noted the diversity of 
solutions and the non-interoperability between them. So, 
the application of techniques related to model engineering 
will standardize Big Data concepts. In our work, we aim 
to propose a universal meta-modeling of a Big Data 
system. Our proposals will be considered as a standard for 
Big Data. 
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