

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: erraissi.allae@gmail.com

 http://journals.uob.edu.bh

Using model Driven Engineering to transform Big Data query

languages to MapReduce jobs

Allae Erraissi

Laboratory of Information Technology and Modeling, Hassan II University, faculty of sciences Ben M’Sik, Casablanca, Morocco

E-mail address: erraissi.allae@gmail.com

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Big Data processing is done using MapReduce which is a clustered data processing framework. Composed of Map and

Reduce functions, it distributes data processing tasks between different computers, then reduces the results in a single summary.

Most data analysts prefer to use query languages like Pig and Hive to process Big Data, given the complexity of the MapReduce

paradigm. In this paper, we propose an approach based on Model Engineering to transform requests written by Pig or Hive to

MapReduce jobs thanks to the use of the ATL transformation language. Our proposal will allow us to easily obtain MapReduce

programs from requests written in Pig or Hive.

Keywords: MapReduce, Model Driven Engineering, Hive, Pig.

1. INTRODUCTION

Big Data is a generic term used to describe the
strategies and technologies used to collect, organize,
process, and analyze large data sets. Big Data is the art of
managing and exploiting large volumes of data [1]. To
process this large amount of data, we find the Hadoop
ecosystem [2]. Hadoop remains the main Big Data
platform today. Based on Java, the open-source Hadoop
framework is used to store and process data in bulk.
Hadoop is part of the Apache project, which is also
behind the Pig, Hive, and Spark frameworks.

Hive was originally a Facebook project that links the
SQL world to Hadoop. It allows the execution of SQL
queries on a Hadoop cluster in order to analyze and
aggregate data. The SQL language is called HiveQL [3].
It is a visualization language only, which is why only
"Select" instructions are supported for data manipulation.
In some cases, developers must map between data
structures and Hive. There is also Pig which is originally a
Yahoo project which allows querying Hadoop data from a
scripting language [4]. Unlike Hive, Pig is based on a
high-level PigLatin language that allows you to create
MapReduce type programs. Pig Latin abstracts from the
Java MapReduce programming language and goes to a
higher level of abstraction, similar to that of SQL for

RDBMS systems. Unlike Hive, Pig does not have a web
interface [5].

Since we know that to do Big Data processing, we will
need the MapReduce paradigm [6]. So, the requests
written by the HiveQL language or PigLatin transform to
MapReduce jobs according to the classic Big Data
architecture.

In this paper, we continue to apply techniques related

to model engineering to standardize concepts at the Big

Data level. In previous work [7] we proposed a meta-

modeling of the layers: Data Sources and Ingestion. Then,

we proposed a meta-modeling for the other layers of a Big

Data system which are: Storage [8,9], Visualization [10],

and Security [11]. This work is a progress report on our

first proposal for a meta-modeling of the Big Data

Management layer [12]. Our goal is to provide a generic

Big Data system based on model engineering [13] to

address the problem of a large number of Big Data

solutions.

2. RELATED WORK

As part of our research project, we continue in this
paper the application of techniques related to model
engineering to standardize concepts at the Big Data level.
In previous work [7] we proposed a meta-modeling of the
layers: Data Sources and Ingestion. Then, we proposed a

2 Erraissi: Paper Title …

http://journals.uob.edu.bh

meta-modeling for the other layers of a Big Data system
which are: Storage, Visualization, and Security. This work
is a progress report on our first proposal for a meta-
modeling of the Big Data Management layer [12]. The
main paradigm used to process large amounts of data is
the MapReduce [6], plus other complementary tools like
Pig [4], Hive [3], Sqoop [14], etc. We treat in this paper
the two query languages Pig and Hive which aim to
process Big Data thanks to two languages dedicated to
this reason which are: Pig Latin and HiveQL. Queries
written by these two languages transform to MapReduce
jobs according to the classic Big Data architecture. Our
goal is to consolidate a generic Big Data system based on
model engineering to solve the problem of many existing
solutions in the market today.

Many studies have addressed the problem of the cost
of data transfers within MapReduce applications. Most of
them deal with the locality of the data during the map
phase. One of the algorithms proposed [15] improves this
locality by introducing a delay before migrating a task to
another node, if the preferred node is not available. The
BAR [16] algorithm aims to approach the optimal data
distribution taking into account an initial configuration
that will be dynamically adapted.

LEEN [17] is an algorithm for partitioning
intermediate keys that aim to balance the duration of
reduction while trying to reduce bandwidth consumption
during shuffle. This algorithm is based on statistics of the
frequency of the appearance of intermediate keys in an
attempt to create balanced partitions and optimize data
transfers. The HMPR algorithm [18] proposes a pre-
shuffling which tends to reduce the quantity of data to be
transferred as well as the number of transfers. For this, it
predicts the partition in which the data will be generated
at the output of the map and has the piece of data
processed by the node which will execute the reduce of
this partition if possible.

The Ussop runtime environment [19], targeting the
grids, adapts the amount of data to be processed by each
map according to the computing power of the machine
running it. Also, this tool tends to reduce intermediate
data transfers by locally performing the reduce on the
machine that generated the most intermediate keys.

A MapReduce application can be considered as a set
of divisible tasks since the data to be processed can be
distributed equally between the map instances. It is
therefore possible to apply results from the theory of
divisible tasks [20] to this type of application. This is the
approach that was followed by Berli´nska and
Drozdowski [21]. In this article, the authors consider an
execution environment in which the number of compute
nodes is greater than the number of communications that
can take place simultaneously without causing contention.
To avoid the appearance of this phenomenon, they
propose to model the execution of a MapReduce
application by a linear program that generates a

distribution of the data and static scheduling by phases of
the communications. If this approach turns out to be
interesting, the use of a linear program makes it
inapplicable for instances involving more than a few
hundred maps because the resolution time can sometimes
exceed several minutes. Also, it happens that the linear
program solver fails for certain instances. The sequencing
by phases induces, in addition, a large number of idle
times on machines and the network during the shuffle.

3. MAPREDUCE

The MapReduce paradigm [6] was presented in 2008
by Deanetal. In a MapReduce program, two types of
operations are chained to perform a calculation: the Map
operation and the Reduce operation. All of these
operations form a MapReduce job.

In the MapReduce paradigm, data is represented by
key-value pairs. The Map and Reduce operations take as
input a set of key-value pairs and return a set of key-value
pairs. More precisely, let and be three sets of keys and
three sets of values. We use the operator to describe the
power set (i.e. the set of parts) of a set. For a job, the Map
and Reduce functions are written:

𝑚𝑎𝑝 ∶ 𝐾 × 𝑉 → 𝛽(𝐾′ × 𝑉′)
(𝑘, 𝑣) → {(𝑘′, 𝑣′)|(𝑘′, 𝑣′) ∈ 𝐾′ × 𝑉′}
𝑟𝑒𝑑𝑢𝑐𝑒 ∶ 𝐾′ × 𝛽(𝑉′) → 𝛽(𝐾′′ × 𝑉′′)

(𝑘′, {𝑣′|𝑣′ ∈ 𝑉′} → {(𝑘′′, 𝑣′′)|(𝑘′′, 𝑣′′) ∈ 𝐾′′ × 𝑉′′}

These operations are designed to allow easy

distribution of the calculations. On a computing cluster,
each machine processes only part of the data, so as to take
advantage of distributed file storage.

A. Map operation

The Map operation transforms the input data to an
intermediate state usable by the Reduce operation.
Depending on the application, it can be used to filter data,
duplicate data, etc. In the distributed implementation of
the paradigm, the machines performing the Map operation
are called mappers. Each mapper then only works on part
of the data. The key to the element's output from the
Mapper function is to determine the reduced values
together in the Reduce operation.

B. Reduce operation

The Reduce operation transforms values with the same
key into a key-value pair. Depending on the application,
the Reduce operation transforms the output of the Map
into a statistical indicator, into a sorted data set, etc. In the
distributed implementation of the paradigm, machines
performing the Reduce operation are called a reducer.
Each reducer works on a part of the data.

C. Shuffle of data

Between the Map operation and the Reduce operation,
the dataset undergoes a modification. The Map operation
returns a set of key-value pairs and the Reduce operation

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

takes a key-set of values as input. The Shuffle step allows
for this transition. During the data shuffle, the data output
from the Map operation is transmitted over the network
towards the reducers. Pairs with the same keys are
transmitted to the same reducer. Key-set pairs of values
are formed this way.

This transfer can represent an important blocking point for

the distributed implementation. When handling large

datasets, the amount of information exchanged over the

network can be significant (up to several times the size of

the datasets, depending on the application). It is therefore

necessary to pay attention to the volume of data

transmitted during this step to improve the performance of

the algorithm.

Figure 1. MapReduce meta-model proposed.

4. PIG

Apache Pig is a software created by Yahoo. It allows
us to write useful treatments on data, without undergoing
the complexity of Java. The goal is to make Hadoop
accessible to non-computer scientists: physicists,
statisticians, mathematicians, etc. Pig offers a scripting
language called "Pig Latin". This language is called "Data
Flow Language". Its instructions describe processing on a
stream of data. Conceptually, it looks like a Unix tube;
each command changes the flow of data passing through
it. Pig Latin also makes it possible to build much more
varied and non-linear treatments. Pig translates Pig Latin
programs into MapReduce jobs and integrates the results
into the flow.

A. Example of a Pig program

This program displays the 10 youngest adults
extracted from a csv file containing 3 columns: identifier,
name, and age.

To run it: freelance program.pig. It's launching a
MapReduce job in Hadoop. You can also type the
instructions one by one into Pig's shell.

B. Comparison between SQL and Pig Latin

There are some apparent similarities between SQL and
Pig Latin. There are several keywords in common (JOIN,
ORDER, LIMIT, etc.) but their principle is different:

• In SQL, queries are built that describe the data to

be obtained. It is not known how the SQL engine

will calculate the result. We only know that

internally, the query will be broken down into

loops and in comparison, on the data and making

the best use of the indexes.

• In Pig Latin, programs are built that contain

instructions. It describes exactly how the result

should be obtained, what calculations should be

made, and in what order.

Also, Pig was designed for uncertain Hadoop data,
while SQL runs on perfectly healthy SGBDs.

C. Pig Latin Language

1) Structure of a program
Comments are placed between /*...*/ or from - and the

end of the line. A Pig Latin program is a series of
instructions. All must be terminated with a; As in SQL,

4 Erraissi: Paper Title …

http://journals.uob.edu.bh

there is no notion of variables, nor functions/procedures.
The result of each Pig statement is a collection of tuples.
We call it a relationship. We can see it as a database table.
Each Pig instruction takes an input relation and produces a
new output relation.

output - INSTRUCTION input PARAMETRES...;

2) Running a program
When you run a program, Pig first analyzes it. Each

instruction, if it is syntactically correct, is added to a kind
of action plan, a succession of MapReduce, and it is only
at the end of the program that this action plan is executed
according to what you ask at the end.

The EXPLAIN relation instruction displays the action
plan planned to calculate the relation. It’s pretty
indigestible when you’re not a specialist.

3) Relationships and aliases
The syntax name = INSTRUCTION...; defines an

alias, i.e. a name for the relation created by the
instruction. This name is generally used in the following
instructions, this is what builds a processing flow.

The same alias can be reused in different instructions,
which creates bifurcations in the processing flow:
separations or groupings. It is not recommended to
reassign the same alias.

4) Chaining of instructions
Pig allows you to either chain instructions through the

alias mechanism, or through a nested call.

You will choose the one you find most readable.
However, nested calls do not allow easy separation of
processing, unlike aliases:

5) Relationships and types
A relation is an ordered collection of tuples which all

have the same fields. Here are the possible types. The
scalar types are:

• int and long for integers, float and double for reals

• chararray for any chains.

• bytearray for any binary objects

• There are also three complex types:

• dictionaries (maps): [name # mickey, age # 87]

• tuples of fixed size: (mickey, 87, hergé)

• sacs (bags) = sets without tuples order: {(mickey,

87), (asterix, 56), (tintin, 86)}

6) Schema of a relationship
The list of fields in a relationship is called a schema. It

is a tuple. We write it (name1: type1, name2: type2, ...).

For example, a relationship containing employees will
have the following schema:

The LOAD instruction 'file.csv' AS diagram; allows to
read a CSV file and to make a relation according to the
indicated diagram.

7) Complex schema (tuples)
Pig allows the creation of a relationship based on a

diagram including complex data. Either a file containing
3D segments:

We use the character to represent a tabulation. Here is
how to read this file:

8) Complex schema (bags)
You can also read bags, i.e. data sets of the same types

but in any number:

The diagram of this file is:

Explanations:

• The second field of the diagram is specified as:

"field name": "type of bag content"

• Data in this field should be in the "list of values

for the type" format.

9) Complex schema (maps)

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

Finally, with dictionaries, here is the contents of the
heros.csv file:

It is made a relationship by:

Note: All these constructions, tuple, map and bags can
be nested, but some combinations are difficult to specify.

10) Field names
There are two syntaxes for naming the fields of a

relationship. Either use their plain name or designate them
by their position $ 0 designating the first field, $ 1 the
second and so on.

The second syntax is used when the names of the
fields are not known or when they have been generated
dynamically.

When there is ambiguity on the relation concerned, we
prefix the name of the field with the name of the relation:
relation.champ.

• When a field is a tuple, its elements are named

relation.champ.element. For example

segments.P1.z1

• For a map type field, its elements are named

relation.champ # element. For example

heros.infos # metier

• There is no syntax for accessing bag fields.

The following figure shows the meta-model that we

proposed for PIG:

Figure 2. Meta-model of PIG.

5. HIVE

Hive simplifies work with a database like HBase or
CSV files. Hive allows you to write queries in a language
inspired by SQL and called HiveQL. These requests are
turned into MapReduce jobs. To work, simply define a
diagram that is associated with the data. This diagram
gives the names and types of columns and structures the
information into tables that Can be used by HiveQL.

A. Defining a diagram

The diagram of a table is also called metadata (i.e.
data information). Metadata is stored in a MySQL
database, called metastore. Here is the definition of a table
with its diagram:

The beginning is classic, except for the constraints of
integrity: there are none. The end of the query indicates
that the data is in a CSV file. Let us first look at the types
of columns.

B. Types HiveQL

Hive defines the following types:

• BIGINT (8 bytes), INT (4), SMALLINT (2),

BYTE (1 byte)

• FLOAT and DOUBLE

• BOOLEAN worth TRUE or FALSE

• STRING, we can specify coding (UTF8 or other)

• TIMESTAMP expressed in number of seconds.

Nanoseconds since 01/01/1970 UTC

• structured data as with Pig:

o ARRAY indicates that there is a list of type

o STRUCT for a multi-value structure

6 Erraissi: Paper Title …

http://journals.uob.edu.bh

o MAP for a suite of. key (pairs,value).

C. Field Separations for Reading

The creation of a table is done as follows:

The guidelines after the diagram indicate how the data
is stored in the CSV file. These are:

• FIELDS TERMINATED BY ';': there is one; to

separate the fields

• COLLECTION ITEMS TERMINATED BY ',':

there is a, between the elements of an ARRAY

• MAP KEYS TERMINATED BY ':': there is one:

between the keys and values of a MAP

• LINES TERMINATED BY 'n': there is a 'n' at the

end of the line

• STORED AS TEXTFILE: It is a CSV.

D. Loading data

Here is how to load a CSV file that's on HDFS in the
table:

You can also load a local file (not HDFS):

The file is then copied to HDFS in Hive's files.

E. HiveQL requests

As with conventional SGBD, there is a shell launched
by the hive command. This is where SQL queries are
typed. They are mainly SELECT. All the clauses you
know are available: FROM, JOIN, WHERE, GROUP BY,
HAVING, ORDER BY, LIMIT.

There are others to optimize the underlying
MapReduce work, for example when you want to rank on
a column, you have to write:

The directive sends the affected n-uplets on a single
machine to compare them more quickly to establish the
ranking.

F. Other guidelines

It is also possible to export results in a file:

Other orders include:

• SHOW TABLES; to view the list of tables (they

are in the metastore).

• DESCRIBE EXTENDED table; shows the table

schematic

G. Hive meta-model

The following figure shows the meta-model we

proposed for Hive and its HiveQL query language:

Figure 3. Hive meta-model.

6. TRANSFORMATION

After defining the meta-models of MapReduce, Pig,
and Hive. In this section, we present the transformation
rules used to pass from generic meta-models of PIG and
Hive query languages to the MapReduce meta-model
which represents the body of processing within Big Data.
The following figure shows the architecture of our
proposal.

Figure 4. Architecture of PigHive2MapReduce.

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

To apply all the transformations, we chose the ATL
transformation language. We now present extracts from
the ATL code that we used to transform the meta-models
proposed for Pig and Hive to the meta-model proposed for
the MapReduce. These defined meta-models present the
PIM (Platform Independent Model) level according to the
architecture led by the ‘MDA’ models.

7. EVALUATION AND DISCUSSION

To evaluate our approach, we used three datasets. On
these datasets, we applied 30 queries to better measure the
execution time of each query on the different datasets
chosen to test our proposal.

To implement PigHive2MapReduce, we used version
3.1.1 of Hadoop, version 3.1.2 of Hive, and version 0.17.0
of Pig. All these tools were installed on a machine with a

2.70 GHz Intel (R) Core (TM) i7 processor. With a
storage space of 2 TB and a RAM memory of 16 GB.

The three datasets used have the following sizes: DS1
(17GB), DS2 (15GB) and DS3 (13GB). The following
table shows the loading time of the three datasets:

TABLE I. LOADING TIME DATASETS.

Dataset Dataset 1 Dataset 2 Dataset

Loading time (s) 3,4 3,2 2,9

The following tables show the execution time of the

30 queries on the three datasets. Note that we tested
PigHive2MapReduce with 15 queries using the PigLatin
language, and 15 with the use of the HiveQL query
language.

TABLE II. PIG REQUEST TRANSFORMATION TIME ON DATASET 1.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
356 376 481 450 256 298 516 518 318 389 667 687 321 321 124

TABLE III. HIVE REQUEST TRANSFORMATION TIME ON DATASET1.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
456 445 234 213 765 656 231 124 764 343 545 432 535 654 344

TABLE IV. PIG REQUEST TRANSFORMATION TIME ON THE DATASET2.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
346 366 471 440 246 288 506 508 307 398 606 676 310 300 110

TABLE V. HIVE REQUEST TRANSFORMATION TIME ON THE DATASET2.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
446 435 224 203 755 646 221 114 754 333 535 422 525 644 334

TABLE VI. PIG REQUEST TRANSFORMATION TIME ON THE DATASET3.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
340 360 468 434 243 278 500 502 304 374 649 669 309 312 114

TABLE VII. HIVE REQUEST TRANSFORMATION TIME ON THE DATASET3.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
443 432 219 200 748 643 219 108 747 337 542 427 526 641 330

8 Erraissi: Paper Title …

http://journals.uob.edu.bh

The results obtained after using our approach based on
model engineering are shown in the following figures:

Figure 5. Transformation time of Pig requests on dataset1.

Figure 6. Transformation time of Pig requests on dataset2.

Figure 7. Transformation time of Pig requests on dataset3.

Figure 8. Transformation time of Hive requests on dataset1.

Figure 9. Transformation time of Hive requests on dataset2.

Figure 10. Transformation time of Hive requests on dataset3.

The results obtained from applying the
transformations using the ATL transformation language
show that the time to transform Pig Latin or HiveQL
queries is very fast. The fact that will allow users of the
MapReduce paradigm to obtain MapReduce programs
quickly from Hive or Pig requests.

456 445

234 213

765

656

231

124

764

343

545

432
535

654

344

0

200

400

600

800

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15

PigHive2MapReduce (ms)

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

Based on the definition of meta-models for the
different layers of a Big Data system in our previous
work. In continuous efforts, this work complements the
meta-model already proposed for the management layer.
Exactly to define the functioning of the two Pig and Hive
query languages which are based on the transformation of
queries written either by the Pig Latin language or by
HiveQL, into MapReduce jobs thanks to the ATL
transformation language.

8. CONCLUSION

Given a large number of Big Data solutions available
today in the market. We have noted the diversity of
solutions and the non-interoperability between them. So,
the application of techniques related to model engineering
will standardize Big Data concepts. In our work, we aim
to propose a universal meta-modeling of a Big Data
system. Our proposals will be considered as a standard for
Big Data.

REFERENCES

[1] Inmon, W. H., and Daniel Linstedt. "2.1 - A Brief History of Big
Data." In Data Architecture: a Primer for the Data Scientist, edited
by W. H. Inmon and Daniel Linstedt, 4548. Boston: Morgan
Kaufmann, 2015. https://doi.org/10.1016/B978-0-12-802044-
9.00008-8..

[2] Allae Erraissi, Abdessamad Belangour, and Abderrahim Tragha,
"Digging into Hadoop-based Big Data Architectures," Int. J.
Comput. Sci. IJCSI Issues, 14, No. 6, 52-59, Nov. 2017.

[3] Dayong Du. Apache Hive Essentials: Essential techniques to help
you process, and get unique insights from, big data, 2nd Edition
eBook: Dayong Du: Gateway.

[4] Gates, Alan, and Daniel Dai. Programing Pig: Dataflow Scripting
with Hadoop. 2 edition. O'Reilly Media, 2016.

[5] Urmila, R. 2016. "Big Data Analysis: Comparision of Hadoop
MapReduce, Pig and Hive Dr. Urmila R. Pol Assistant Professor,
Department of Computer Science, Shivaji University, Kolhapur,
India" Vol. 5, Issue 6, June 2016 Copyright to IJIRSET.

[6] Blokdyk, Gerardus. MapReduce Complete Self-Assessment
Guide. CreateSpace Independent Publishing Platform, 2017.

[7] Erraissi, A., And Belangour, A. (2018). Data sources and
ingestion big data layers: meta-modeling of key concepts and
features. International Journal of Engineering and Technology,
7(4), 3607-3612.

[8] Erraissi A., Belangour A. (2019) Capturing Hadoop Storage Big
Data Layer Meta-Concepts. In: Ezziyyani M. (eds) Advanced
Intelligent Systems for Sustainable Development (AI2SD'2018).
AI2SD 2018. Advances in Intelligent Systems and Computing,
Flight 915. Springer, Ham

[9] Erraissi Allae, and Abdessamad Belangour. "Hadoop Storage Big
Data Layer: Meta-Modeling of Key Concepts and Features."
International Journal of Advanced Trends in Computer Science
and Engineering 8, No. 3 (2019): 646-53.

[10] Erraissi Allae, and Abdessamad Belangour. "Meta-Modeling of
Big Data visualization layer using On-Line Analytical Processing
(OLAP)." International Journal of Advanced Trends in Computer
Science and Engineering 8, No. 4 (2019).

[11] Erraissi Allae, and Abdessamad Belangour. "A Big Data Security
Layer Meta-Model Proposal." Advances in Science, Technology
and Engineering Systems Journal 4, No. 5 (2019).
https://doi.org/10.25046/aj040553..

[12] Erraissi, Allae, and Abdessamad Belangour. Meta-Modeling of
Big Data Management Layer. International Journal of Emerging

Trends in Engineering Research 7, 7, 36-43, 2019.
https://doi.org/10.30534/ijeter/2019/01772019..

[13] Royer, Jean-Claude, and Hugo Arboleda. Model-Driven and
Software Product Line Engineering. 1st Edition. London, UK:
Hoboken, NJ, USA: Wiley-ISTE, 2012.

[14] Ting, Kathleen, and Jarek Jarcec Cecho. Apache Sqoop
Cookbook: Unlocking Hadoop for Your Relational Database. 1
edition. Sebastopol, CA: O'Reilly Media, 2013.

[15] Zaharia (M.), Borthakur (D.), Sarma (J. S.), Elmeleegy (K.),
Shenker (S.) and Stoica (I.). Job Scheduling for Multi-User
MapReduce Clusters. Technical Report n UCB/EECS-2009-55,
EECS Department, University of California, Berkeley, April 2009.

[16] Jin (J.), Luo (J.), Song (A.), Dong (F.) and Xiong (R.). BAR: An
Efficient Data Locality Driven Task Scheduling Algorithm for
Cloud Computing. In: Proc. of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid).
295-304. Newport Beach, CA, May 2011.

[17] Ibrahim (S.), Jin (H.), Lu (L.), Wu (S.), He (B.) and Qi (L.).
LEEN: Locality/Fairness-Aware Key Partitioning for MapReduce
in the Cloud. In: Proc. Of the Second IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom). 17-24. Indianapolis, IN, November 2010.

[18] Seo (S.), Jang (I.), Woo (K.), Kim (I.), Kim (J.-S.) and Maeng
(S.). HPMR: Prefetching and Pre-shuffling in Shared MapReduce
Computation Environment. In: Proc. IEEE International
Conference on Cluster Computing (Cluster). New Orleans, LA,
September 2009.

[19] Su (Y.-L.), Chen (P.C.), Chang (J.B.) and Shieh (C.-K.). Variable-
Sized Map and Locality-Aware Reduce on Public-Resource Grids.
FGCS, 27, n6, June 2011, 843-849.

[20] Veeravalli (B.), Ghose (D.), Mani (V.) and Robertazzi (T.).
Scheduling Divisible Loads in Parallel and Distributed Systems.
IEEE Computer Society Press, 1996, 292p.

[21] Berlinska (J.) and Drozdowski (Mr.). Scheduling Divisible
MapReduce Computations. Journal of Parallel and Distributed
Computing, 71, n3, March 2010, 450-459.

Allae Erraissi Allae Erraissi is a

Ph.D. on computer science at the

Faculty of Sciences Ben M'Sik at the

Hassan II University, Casablanca,

Morocco. He won his master’s

degree in information sciences and

Engineering from the same

University in 2016 and is currently

working as a Mathematics teacher in

a High school in Casablanca, Morocco. His main interests are

the new technologies namely Model-driven engineering, Cloud

Computing, and Big Data.

https://doi.org/10.1016/B978-0-12-802044-9.00008-8
https://doi.org/10.1016/B978-0-12-802044-9.00008-8
https://doi.org/10.25046/aj040553
https://doi.org/10.30534/ijeter/2019/01772019

