

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (May-2021)

E-mail: allae.erraissi-etu@etu.univh2c.ma

 http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/100160

Using Model Driven Engineering to Transform Big Data

Query Languages to MapReduce Jobs

Allae Erraissi

Laboratory of Information Technology and Modeling, Hassan II University, faculty of sciences Ben M’Sik, Casablanca, Morocco

Received 30 May. 2020, Revised 09 Apr. 2021, Accepted 15 Apr. 2021, Published 02 May. 2021

Abstract: Big Data processing is done by using MapReduce which is a clustered data processing framework. As it is Composed of

Map and Reduce functions, it distributes data processing tasks between different computers, and hence reduces the results in a single

summary. Most data analysts prefer to use query languages like Pig and Hive to process Big Data, given the complexity of the

MapReduce paradigm. In this paper, we shall propose an approach based on Model Engineering to transform requests written by Pig

or Hive to MapReduce jobs thanks to the use of the ATL transformation language. Our proposal will allow us to easily obtain

MapReduce programs from requests written in Pig or Hive.

Keywords: MapReduce, Model Driven Engineering, Hive, Pig.

1. INTRODUCTION

Big Data is a generic term used to describe the
strategies and technologies used to collect, organize,
process, and analyze large data sets. It is the art of
managing and exploiting large volumes of data [1]. To
process this large amount of data, we find the Hadoop
ecosystem [2] mostly as Hadoop remains the main Big
Data platform used today. Seeing that it is based on Java,
the open-source Hadoop framework is applied to store and
process data in bulk. Hadoop is part of the Apache project,
which is also behind the Pig, Hive, and Spark frameworks.

Hive has initially been a Facebook project that links the
SQL world to Hadoop. it executes the queries written by
SQL on a cluster to aggregate and analyze data. The
language used for this reason is named HiveQL [3]. Only
"Select" instructions are supported to manipulate data
because it is a visualization language only. In some cases,
developers must map between data structures and Hive.
Besides that, Pig is originally a Yahoo project which allows
querying Hadoop data from a scripting language [4].
Unlike Hive, Apache Pig uses Pig Latin query language
that allows us to create MapReduce type programs. Pig
Latin abstracts from the Java MapReduce programming
language and goes to a higher level of abstraction, similar
to that of SQL for RDBMS (Relational Database
Management System). Unlike Hive, Pig does not have a
web interface [5].

Since we know that to do Big Data processing, we will
need the MapReduce paradigm [6]. So, the requests written
by the HiveQL language or PigLatin transform to
MapReduce jobs according to the classic Big Data
architecture. During this paper, we continue the application
of Model-Driven Engineering techniques to standardize
concepts at the Big Data. In the previous contribution [7]
we have already proposed two meta-models for Ingestion
and Data sources layers. Next, we defined a meta-modeling
for the other layers of Big Data which are: Storage [8,9],
Visualization [10,11], and Security [12]. The work
presented in this paper is an advancement report on our first
proposal for a meta-modeling of the Big Data Management
layer [13]. Our main goal is to provide a generic Big Data
system based on Model-Driven Engineering [14] to address
the problem of many Big Data solutions.

This article is detailed as follows: section 2 presents the
related work on which we are concerned to carry out this
study. Then, in section 3 we talk about the MapReduce
paradigm used to manage Big Data. Sections 4 and 5
present Hive and Pig query languages and their modes of
use. Section 6 presents our proposed approach which
makes it easy to obtain MapReduce programs from queries
written in Pig or Hive. Finally, section 7 presents the results
and evaluation obtained after the application of our
approach based on Model Driven Engineering.

620 Allae Erraissi: Using Model Driven Engineering to Transform Big Data …

http://journals.uob.edu.bh

2. RELATED WORK

As part of our research project, we continue the
application of Model-Driven Engineering techniques to
standardize Big Data concepts. In the previous contribution
[7] we have already proposed two meta-models for
Ingestion and Data sources layers. Next, we defined a meta-
modeling for the other layers of Big Data which are:
Storage [8,9], Visualization [10,11], and Security [12]. The
work presented in this paper is an advancement report on
our first proposal for a meta-modeling of the Big Data
Management layer [13].

The main paradigm used to process Big data is
MapReduce [6], plus other complementary tools like Pig
[4], Hive [3], Sqoop [15], etc. In this paper, we shall treat
the two query languages, Pig and Hive, which aim to
process Big Data thanks to two languages dedicated to this
reason which are: Pig Latin and HiveQL. Queries that are
written by these two languages will be transformed to
MapReduce jobs according to the classic Big Data
architecture. We aim to consolidate a generic Big Data
system based on Model Driven Engineering to solve the
problem of many existing solutions in the market today.

Many studies have addressed the problem of the cost of
data transfers within MapReduce applications. Most of
them deal with the locality of the data during the map
phase. One of the algorithms proposed [16] improves this
locality by introducing a delay before migrating a task to
another node, if the preferred node is not available. The
BAR [17] algorithm aims to approach the optimal data
distribution taking into account an initial configuration that
will be dynamically adapted.

LEEN [18] is an algorithm for partitioning intermediate
keys that aim to balance the duration of reduction while
trying to reduce bandwidth consumption in the shuffle.
LEEN is based on the frequency of the intermediate
appearance of keys in an attempt to create partitions and
optimize data transfers. The HMPR algorithm [19] defines
a pre-shuffling mode which tends to reduce the data
quantity to be transferred. For this reason, it predicts the
partition in which the data will be generated at the output
of the map and has the piece of data processed by the node
which will execute the Reduce of this partition if possible.

The Ussop environment [20] permits to target of the
grids and adapt the quantity of data to be treated by each
map according to the computing power of the machine
running it. Also, this tool tends to reduce intermediate data
transfers by locally performing the Reduce on the machine
that generated the most intermediate keys.

A MapReduce program splits the work we want to do,
into a set of tasks that will be delivered to map functions. It
is therefore possible to use results from the theory of
divisible tasks [21] for this kind of application. This
approach was introduced by Drozdowski and Berlinska
[22]. In this article, the authors consider an execution
environment in which number of compute nodes is bigger

than number of communications that can take place
simultaneously without causing contention. To avoid the
appearance of this phenomenon, the authors propose a new
model that permits the run of a MapReduce job by a linear
program that generates a distribution of the data and static
scheduling by phases of the communications. If this
approach turns out to be interesting, the use of a linear
program makes it inapplicable for instances involving more
than a few hundred maps because the resolution time can
sometimes exceed several minutes. Also, it happens that
the linear program solver fails for such instances. The
sequencing by phases induces, in addition, a large number
of idle times on machines and the network during the
shuffle.

3. MAPREDUCE

The MapReduce paradigm [6] was presented in 2008
by Dean et al [23]. In a MapReduce program, two types of
operations are chained to perform a calculation: The Map
operation and the Reduce operation. All these operations
form a MapReduce job.

In the MapReduce paradigm, data is represented by
key-value pairs. The Map and Reduce operations take as
input a set of key-value pairs and return a set of key-value
pairs. We use the operator to describe the power set (i.e.,
the set of parts) of a set. For a job, the Map and Reduce
functions are written:

𝑚𝑎𝑝 ∶ 𝐾 × 𝑉 → 𝛽(𝐾′ × 𝑉′)
(𝑘, 𝑣) → {(𝑘′, 𝑣′)|(𝑘′, 𝑣′) ∈ 𝐾′ × 𝑉′}
𝑟𝑒𝑑𝑢𝑐𝑒 ∶ 𝐾′ × 𝛽(𝑉′) → 𝛽(𝐾′′ × 𝑉′′)

(𝑘′, {𝑣′|𝑣′ ∈ 𝑉′} → {(𝑘′′, 𝑣′′)|(𝑘′′, 𝑣′′) ∈ 𝐾′′ × 𝑉′′}

These operations are designed to allow easy

distribution of the calculations. On a computing cluster,
each machine processes only part of the data, to take
advantage of distributed file storage.

A. Map operation

The Map operation transforms the input data to an
intermediate state usable by the Reduce operation [24].
Depending on the application, it can be used to filter data,
duplicate data, etc. In the distributed implementation of the
paradigm, the machines performing the Map operation are
called mappers. Each mapper then only works on part of
the data. The key to the element's output from the Mapper
function is to determine the reduced values together in the
Reduce operation.

B. Reduce operation

The Reduce operation transforms values with the same
key into a key-value pair. Depending on the application, the
Reduce operation transforms the output of the Map into a
statistical indicator, into a sorted data set, etc. In the
distributed implementation of the paradigm, machines
performing the Reduce operation are called a reducer. Each
reducer works on a part of the data [25].

 Int. J. Com. Dig. Sys. 10, No.1, 619-628 (May-2021) 621

http://journals.uob.edu.bh

C. Shuffle of data

Between the Map operation and the Reduce operation,
the dataset undergoes a modification. The Map operation
returns a set of key-value pairs and the Reduce operation
takes a key-set of values as input. The Shuffle step allows
for this transition [26]. During the data shuffle, the data
output from the Map operation is transmitted over the
network towards the reducers. Pairs with the same keys are

transmitted to the same reducer. Key-set pairs of values are
formed this way. This transfer can represent an important
blocking point for the distributed implementation. When
handling large datasets, the amount of information
exchanged over the network can be significant (up to
several times the size of the datasets, depending on the
application). It is therefore necessary to pay attention to the
volume of data transmitted during this step to improve the
performance of the algorithm.

Figure 1. Proposed MapReduce meta-model.

4. PIG

Pig is a big data processing tool [4]. This software is
created by Yahoo. Pig offers to perform processing on
distributed data sets using a natural programming language,
much like SQL. The query language used to manipulate big
data with the Apache Pig tool is Pig Latin [28]. The goal of
using Pig Latin to define simple scripts, such as SQL, is to
make it easier to write large data processing programs
without having to write Java jobs through the MapReduce
framework. The Pig solution was adopted by the Apache
organization and is now an essential component of the
Hadoop suite [27].

A. Example of a Pig program

This program displays the 11 youngest adults extracted
from a csv file containing 3 columns: identifier, name, and
age.

persons = LOAD ‘persons.csv’ USING PigStorage(‘;’)

AS (userid:int, name:chararray, age:int);

youngadults= FILTER persons BY age>= 18 AND age <25;

ranking = ORDER youngadults BY age;

result = LIMIT ranking 11;
DUMP result;

To run it: freelance program.pig. It's launching a

MapReduce job in Hadoop. You can also type the
instructions one by one into Pig's shell.

B. Comparison between SQL and Pig Latin

There are some apparent similarities between SQL [29]
and Pig Latin. There are several keywords in common
(JOIN, ORDER, LIMIT, etc.) but their principle is
different:

• In SQL, queries are built that describe the data to

be obtained. It is not known how the SQL engine

will calculate the result. We only know that

internally, the query will be broken down into

loops and in comparison, on the data and making

the best use of the indexes.

• In Pig Latin, programs are built that contain

instructions. It describes exactly how the result

should be obtained, what calculations should be

made, and in what order.

Also, Pig was designed for uncertain Hadoop data,
while SQL runs on perfectly healthy RDBMS.

C. Pig Latin Language

1) Structure of a program
Comments are placed between /*...*/ or from - and the

end of the line. A Pig Latin program is a series of
instructions. All must be terminated with a; As in SQL,
there is no notion of variables, nor functions/procedures.
The result of each Pig statement is a collection of tuples.

622 Allae Erraissi: Using Model Driven Engineering to Transform Big Data …

http://journals.uob.edu.bh

We call it a relationship. We can see it as a database table.
Each Pig instruction takes an input relation and produces a
new output relation.

output - INSTRUCTION input PARAMETRES...;

2) Running a program
When you run a program, Pig first analyzes it. Each

instruction, if it is syntactically correct, is added to a kind
of action plan, a succession of MapReduce, and it is only at
the end of the program that this action plan is executed
according to what you ask at the end.

The EXPLAIN relation instruction displays the action
plan planned to calculate the relation. It’s pretty
indigestible when you’re not a specialist.

3) Relationships and aliases
The syntax name = INSTRUCTION...; defines an alias,

i.e., a name for the relation created by the instruction. This
name is generally used in the following instructions, this is
what builds a processing flow.

name1 = LOAD ... ;
name2 = FILTER name1... ;
name3 = ORDER name2... ;
name4 = LIMIT name3... ;

The same alias can be reused in different instructions,
which creates bifurcations in the processing flow:
separations or groupings. It is not recommended to reassign
the same alias.

4) Chaining of instructions
Pig allows you to either chain instructions through the

alias mechanism, or through a nested call.

name4 = LIMIT (ORDER (FILTER (LOAD ...) ...) ...) ... ;

You will choose the one you find most readable.
However, nested calls do not allow easy separation of
processing, unlike aliases:

name1 = LOAD ... ;
name2 = FILTER name1 ... ;
name3 = FILTER name1 ... ;
name4 = JOIN name2 ..., name3 ;

5) Relationships and types
A relation is an ordered collection of tuples that all have

the same fields. Here are the possible types. The scalar
types are:

• int and long for integers, float and double for reals

• chararray for any chains.

• bytearray for any binary objects

• There are also three complex types:

• dictionaries (maps): [name # mickey, age # 87]

• tuples of fixed size: (mickey, 87, hergé)

• sacs (bags) = sets without tuples order: {(mickey,

87), (asterix, 56), (tintin, 86)}

6) Schema of a relationship
The list of fields in a relationship is called a schema. It

is a tuple. We write it (name1: type1, name2: type2, ...).

For example, a relationship containing employees will
have the following schema:

(id:long, lastname:chararray, firstname:chararray,
picture:bytearray, seniority:int, salary:float)

The LOAD instruction 'file.csv' AS diagram; allows to
read a CSV file and to make a relation according to the
indicated diagram.

7) Complex schema (tuples)
Pig allows the creation of a relationship based on a

diagram including complex data. Either a file containing
3D segments:

S1 ➭ (3,8,9) ➭ (4,5,6)

S2 ➭ (1,4,7) ➭ (3,7,5)

S3 ➭ (2,5,8) ➭ (9,5,8)

We use the character to represent a tabulation. Here is
how to read this file:

segments = LOAD 'segments.csv' AS (
name:chararray,
T1:tuple(a1:int, b1:int, c1:int),
T2:tuple(a2:int, b2:int, c2:int));

DUMP segments;

8) Complex schema (bags)
We can also read bags, i.e., data sets of the same types

but in any number:

L1 ➭ {(3,8,9),(4,5,6)}

L2 ➭ {(4,8,1),(6,3,7),(7,4,5),(5,2,9),(2,7,1)}

L3 ➭ {(4,3,5),(6,7,1),(3,1,7)}

The diagram of this file is:

(name:chararray, Points:{tuple(a:int, b:int, c:int)})

Explanations:

• The second field of the diagram is specified as

"field name": "type of bag content".

• Data in this field should be in the "list of values for

the type" format.

9) Complex schema (maps)
Finally, with dictionaries, here are the contents of the

heros.csv file:

1 ➭ [name#asterix, job#warrior]

2 ➭ [name#tintin, job#journalist]

3 ➭ [name#spirou, job#groom]

It is made a relationship by:

heros = LOAD 'heros.csv' AS (id:int, info:map[chararray])

 Int. J. Com. Dig. Sys. 10, No.1, 619-628 (May-2021) 623

http://journals.uob.edu.bh

Note: All these constructions, map, bags, and tuple, can
be nested, but some combinations are difficult to specify.

10) Field names
There are two syntaxes for naming the fields of a

relationship. Either use their plain name or designate them
by their position $0 designating the first field, $1 the
second, and so on.

The second syntax is used when the names of the fields
are not known or when they have been generated
dynamically.

When there is ambiguity on the relation concerned, we
prefix the name of the field with the name of the relation:
relation.champ.

• When a field is a tuple, its elements are named

relation.champ.element. For example

segments.P1.z1

• For a map type field, its elements are named

relation.champ # element. For example heros.infos

metier

• There is no syntax for accessing bag fields.

The following figure shows our proposition for Pig, it

defines our meta-model:

Figure 2. Meta-model of PIG.

5. HIVE

Apache Hive is a data warehouse for Hadoop like
HBase [30]. It was created by Facebook to later become an
open-source Apache project. This is a system that
maintains metadata describing data stored in HDFS. It uses
a relational database called metastore (Derby by default) to
ensure metadata persistence [31]. Thus, a table in Hive is
essentially composed of a schema stored in the metastore,
and data stored in HDFS. With the metastore data, Hive
allows manipulating the data as if they were persisted in
tables (in the sense of a classic database management
system) and to query them with its HiveQL language [32].
Hive converts HiveQL queries into MapReduce or Tez jobs
(from version 0.13 of Hive, a HiveQL query can be
translated into an executable job on Apache Tez, which is
an execution framework on Hadoop that can replace
MapReduce).

A. Defining a diagram

The diagram of a table is also called metadata (i.e., data
information). Metadata is stored in a MySQL database,
called metastore. Here is the definition of a table with its
diagram:

CREATE TABLE statement (
idstatement STRING,
year INT,
temp FLOAT, quality BYTE, ...)

ROW FORMAT DELIMITED FIELDS TERMINATED BY
'\t';

The beginning is classic, except for the constraints of
integrity: there are none. The end of the query indicates that
the data is in a CSV file. Let us first look at the types of
columns.

B. HiveQL Types

Hive defines the following types [33]:

• BIGINT (8 bytes), INT (4), SMALLINT (2),

BYTE (1 byte).

• FLOAT and DOUBLE.

• BOOLEAN worth TRUE or FALSE.

• STRING, we can specify coding (UTF8 or other).

• TIMESTAMP is expressed in a number of

seconds. Nanoseconds since 01/01/1970 UTC.

624 Allae Erraissi: Using Model Driven Engineering to Transform Big Data …

http://journals.uob.edu.bh

• structured data as with Pig:

o ARRAY indicates that there is a list of types.

o STRUCT for a multi-value structure.

o MAP for a suite of. key (pairs, value).

C. Field Separations for Reading

The creation of a table is done as follows:

CREATE TABLE name (schema) ROW FORMAT
DELIMITED descr format

The guidelines after the diagram indicate how the data
is stored in the CSV file. These are:

• FIELDS TERMINATED BY ';': there is one; to

separate the fields.

• COLLECTION ITEMS TERMINATED BY ',':

there is a, between the elements of an ARRAY.

• MAP KEYS TERMINATED BY ':': there is one:

between the keys and values of a MAP.

• LINES TERMINATED BY 'n': there is a 'n' at the

end of the line.

• STORED AS TEXTFILE: It is a CSV.

D. Loading data

Here is how to load a CSV file that is on HDFS [34] in
the table:

LOAD DATA INPATH '/share/allae/data/183'
OVERWRITE INTO TABLE statement;

You can also load a local file (not HDFS):

LOAD DATA LOCAL INPATH 'stations.csv'
OVERWRITE INTO TABLE stations;

The file is then copied to HDFS in Hive's files.

E. HiveQL requests

As with conventional RDBMS, there is a shell launched
by the hive command. This is where SQL queries are typed.
They are mainly SELECT. All the clauses you know are
available: FROM, WHERE, JOIN, HAVING, GROUP
BY, LIMIT, ORDER BY.

There are others to optimize the underlying MapReduce
work, for example when you want to rank on a column, you
have to write:

SELECT... DISTRIBUTE BY colonne SORT BY colonne;

The directive sends the affected n-uplets on a single
machine to compare them more quickly to establish the
ranking.

F. Other guidelines

It is also possible to export results in a file:

INSERT OVERWRITE LOCAL DIRECTORY
'/tmp/weather/hot'
SELECT year,month,day,temperature
FROM statement
WHERE temperature > 40.0;

Other orders include:

• SHOW TABLES; to view the list of tables (they

are in the metastore).

• DESCRIBE EXTENDED table; shows the table

schematic.

G. Hive meta-model

The following figure shows our proposition for Hive, it

defines our meta-model for Hive and its HiveQL query

language:

Figure 3. Hive meta-model.

6. TRANSFORMATION

After defining meta-models for MapReduce, Pig, and
Hive. In this section, we present the ATL transformation

rules used to pass from our generic meta-models of PIG and
Hive query languages to MapReduce meta-model which
represents the body of processing within Big Data. The
following figure shows the architecture of our proposal.

 Int. J. Com. Dig. Sys. 10, No.1, 619-628 (May-2021) 625

http://journals.uob.edu.bh

Figure 4. Architecture of PigHive2MapReduce.

To apply the transformations defining in figure 4, we
have chosen the ATL transformation language [35,36]. We
now present the ATL transformation rules used to pass
from our generic meta-models of PIG and Hive query
languages to MapReduce meta-model which represents the
body of processing within Big Data. These defined meta-
models present the PIM level according to the Model
Driven Architecture “MDA” [41,37].

rule Pig2MapReduce{

 from

 s: MegaModelHadoopManagement!Pig

 to

 t: MegaModelHadoopManagement!MapReduce(

inputPath<- s.Pig.inputPath,

outputPath<- new

outputPath(C:\Users\AllaeE

rraissi\Desktop\

PigHive2MapReduceFolder\

PigOutput)

IdMap<- s.Pig.ProjectID,

Mapper<-s. PigLatinScript.PigClause,

Reducer<- s.Pig.Complier,

InputFilePath<- s.InputFilePath

JobPackage<-s.Pig.Project,

MapReuce.Date<-s.Pig.Date,

query<- s.Pig.PigLatinScript

)

}

rule Hive2MapReduce{

 from

 s: MegaModelHadoopManagement!Hive

 to

 t: MMClouderaManagement!Cldr_Hive(

 inputPath<-

s.Hive.inputPath,

outputPath<- new

outputPath(C:\Users\AllaeE

rraissi\Desktop\

PigHive2MapReduceFolder\

HiveOutput)

IdMap<- s.Hive.ProjectID,

Mapper<-

s.Hive.HiveQL.HiveSelect_Query.Clause,

Reducer<- s.Hive.HComplier,

InputFilePath<- s.InputFilePath

JobPackage<-s.Hive.Project,

MapReuce.Date<-s.Hive.Date,

query<-

s.Hive.HiveQL.HiveSelect_Query

)

}

7. EVALUATION AND DISCUSSION

To evaluate our approach, we used three datasets. On
these datasets, we applied 30 queries to better measure the
execution time of each query on the different datasets
chosen to test our proposal.

To implement PigHive2MapReduce, we used version
3.1.1 of Hadoop, version 3.1.2 of Hive, and version 0.17.0
of Pig. We used a machine with a 2.80 GHz Intel (R) Core
(TM) i7 processor. With a storage space of 2 TB and a
RAM of 16 GB.

The three datasets used have the following sizes: DS1
(17GB), DS2 (15GB), and DS3 (13GB). The following
table shows the loading time of the three datasets:

TABLE I. LOADING TIME DATASETS.

Dataset Dataset 1 Dataset 2 Dataset

Loading time

(s)
3,4 3,2 2,9

The following tables show the execution time of the 30

queries on the three datasets. Note that we tested
PigHive2MapReduce with 15 queries using the PigLatin
language, and 15 with the use of the HiveQL query
language.

TABLE II. PIG REQUEST TRANSFORMATION TIME ON DATASET 1.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
356 376 481 450 256 298 516 518 318 389 667 687 321 321 124

TABLE III. HIVE REQUEST TRANSFORMATION TIME ON DATASET1.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
456 445 234 213 765 656 231 124 764 343 545 432 535 654 344

626 Allae Erraissi: Using Model Driven Engineering to Transform Big Data …

http://journals.uob.edu.bh

TABLE IV. PIG REQUEST TRANSFORMATION TIME ON THE DATASET2.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
346 366 471 440 246 288 506 508 307 398 606 676 310 300 110

TABLE V. HIVE REQUEST TRANSFORMATION TIME ON THE DATASET2.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
446 435 224 203 755 646 221 114 754 333 535 422 525 644 334

TABLE VI. PIG REQUEST TRANSFORMATION TIME ON THE DATASET3.

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
340 360 468 434 243 278 500 502 304 374 649 669 309 312 114

TABLE VII. HIVE REQUEST TRANSFORMATION TIME ON THE DATASET3.

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

PigHive2MapReduce

(ms)
443 432 219 200 748 643 219 108 747 337 542 427 526 641 330

The results obtained after using our approach based on
model engineering are shown in the following figures:

Figure 5. Transformation time of Pig requests on dataset1.

Figure 6. Transformation time of Pig requests on dataset2.

Figure 7. Transformation time of Pig requests on dataset3.

Figure 8. Transformation time of Hive requests on dataset1.

456 445

234 213

765

656

231

124

764

343

545

432

535

654

344

0

100

200

300

400

500

600

700

800

900

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15

PigHive2MapReduce (ms)

 Int. J. Com. Dig. Sys. 10, No.1, 619-628 (May-2021) 627

http://journals.uob.edu.bh

Figure 9. Transformation time of Hive requests on dataset2.

Figure 10. Transformation time of Hive requests on dataset3.

The results obtained from applying the transformations
using the ATL transformation language show that the time
to transform Pig Latin or HiveQL queries is speedy. The
fact that will allow users of the MapReduce paradigm to
obtain MapReduce programs quickly from Hive or Pig
requests.

Based on the definition of meta-models for the different
layers of a Big Data system in our previous work [38,40].
In continuous efforts, this work complements the meta-
model already proposed for the management layer [13,39].
Precisely to define the functioning of the two Pig and Hive
query languages which are based on the transformation of
queries written either by the Pig Latin language or by
HiveQL, into MapReduce jobs thanks to the ATL
transformation language.

8. CONCLUSION

A large number of solutions are available in the Big
Data market. Big Data solution providers have developed
distributions to manage this large amount of data.
However, Big Data solution providers do not have the
meta-models necessary to create standard applications that
can be compatible with each provider, since each provider
has its policy that allows it to design its own Big Data
system. So, the application of techniques related to model
engineering will standardize Big Data concepts. Given the
complexity of processing Big Data with the MapReduce
paradigm. This paper proposes an approach based on

Model Driven Engineering which makes it possible to
transform the requests written by PigLatin and HiveQL to
MapReduce jobs.

REFERENCES

[1] Inmon, W. H., and Daniel Linstedt. "2.1 - A Brief History of Big
Data." In Data Architecture: a Primer for the Data Scientist, edited
by W. H. Inmon and Daniel Linstedt, 4548. Boston: Morgan
Kaufmann, 2015. https://doi.org/10.1016/B978-0-12-802044-
9.00008-8..

[2] Allae Erraissi, Abdessamad Belangour, and Abderrahim Tragha,
"Digging into Hadoop-based Big Data Architectures," Int. J.
Comput. Sci. IJCSI Issues, 14, No. 6, 52-59, Nov. 2017.

[3] Dayong Du. Apache Hive Essentials: Essential techniques to help
you process, and get unique insights from, big data, 2nd Edition
eBook: Dayong Du: Gateway.

[4] Gates, Alan, and Daniel Dai. Programing Pig: Dataflow Scripting
with Hadoop. 2 edition. O'Reilly Media, 2016.

[5] Urmila, R. 2016. "Big Data Analysis: Comparision of Hadoop
MapReduce, Pig and Hive Dr. Urmila R. Pol Assistant Professor,
Department of Computer Science, Shivaji University, Kolhapur,
India" Vol. 5, Issue 6, June 2016 Copyright to IJIRSET.

[6] Blokdyk, Gerardus. MapReduce Complete Self-Assessment Guide.
CreateSpace Independent Publishing Platform, 2017.

[7] Erraissi, A., And Belangour, A. (2018). Data sources and ingestion
big data layers: meta-modeling of key concepts and features.
International Journal of Engineering and Technology, 7(4), 3607-
3612.

[8] Erraissi A., Belangour A. (2019) Capturing Hadoop Storage Big
Data Layer Meta-Concepts. In: Ezziyyani M. (eds) Advanced
Intelligent Systems for Sustainable Development (AI2SD'2018).
AI2SD 2018. Advances in Intelligent Systems and Computing,
Flight 915. Springer, Ham

[9] Erraissi Allae, and Abdessamad Belangour. "Hadoop Storage Big
Data Layer: Meta-Modeling of Key Concepts and Features."
International Journal of Advanced Trends in Computer Science and
Engineering 8, No. 3 (2019): 646-53.

[10] Erraissi Allae, and Abdessamad Belangour. "Meta-Modeling of Big
Data visualization layer using On-Line Analytical Processing
(OLAP)." International Journal of Advanced Trends in Computer
Science and Engineering 8, No. 4 (2019).

[11] Erraissi, Allae, and Abdessamad Belangour. "An Approach Based
On Model Driven Engineering For Big Data Visualization In
Different Visual Modes." International Journal of Scientific &
Technology Research (2020).

[12] Erraissi Allae, and Abdessamad Belangour. "A Big Data Security
Layer Meta-Model Proposal." Advances in Science, Technology
and Engineering Systems Journal 4, No. 5 (2019).
https://doi.org/10.25046/aj040553..

[13] Erraissi, Allae, and Abdessamad Belangour. Meta-Modeling of Big
Data Management Layer. International Journal of Emerging Trends
in Engineering Research 7, 7, 36-43, 2019.
https://doi.org/10.30534/ijeter/2019/01772019..

[14] Royer, Jean-Claude, and Hugo Arboleda. Model-Driven and
Software Product Line Engineering. 1st Edition. London, UK:
Hoboken, NJ, USA: Wiley-ISTE, 2012.

[15] Ting, Kathleen, and Jarek Jarcec Cecho. Apache Sqoop Cookbook:
Unlocking Hadoop for Your Relational Database. 1 edition.
Sebastopol, CA: O'Reilly Media, 2013.

https://doi.org/10.1016/B978-0-12-802044-9.00008-8
https://doi.org/10.1016/B978-0-12-802044-9.00008-8
https://doi.org/10.25046/aj040553
https://doi.org/10.30534/ijeter/2019/01772019

628 Allae Erraissi: Using Model Driven Engineering to Transform Big Data …

http://journals.uob.edu.bh

[16] Zaharia (M.), Borthakur (D.), Sarma (J. S.), Elmeleegy (K.),
Shenker (S.) and Stoica (I.). Job Scheduling for Multi-User
MapReduce Clusters. Technical Report n UCB/EECS-2009-55,
EECS Department, University of California, Berkeley, April 2009.

[17] Jin (J.), Luo (J.), Song (A.), Dong (F.) and Xiong (R.). BAR: An
Efficient Data Locality Driven Task Scheduling Algorithm for
Cloud Computing. In: Proc. of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). 295-
304. Newport Beach, CA, May 2011.

[18] Ibrahim (S.), Jin (H.), Lu (L.), Wu (S.), He (B.) and Qi (L.). LEEN:
Locality/Fairness-Aware Key Partitioning for MapReduce in the
Cloud. In: Proc. Of the Second IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). 17-24.
Indianapolis, IN, November 2010.

[19] Seo (S.), Jang (I.), Woo (K.), Kim (I.), Kim (J.-S.) and Maeng (S.).
HPMR: Prefetching and Pre-shuffling in Shared MapReduce
Computation Environment. In: Proc. IEEE International
Conference on Cluster Computing (Cluster). New Orleans, LA,
September 2009.

[20] Su (Y.-L.), Chen (P.C.), Chang (J.B.) and Shieh (C.-K.). Variable-
Sized Map and Locality-Aware Reduce on Public-Resource Grids.
FGCS, 27, n6, June 2011, 843-849.

[21] Veeravalli (B.), Ghose (D.), Mani (V.) and Robertazzi (T.).
Scheduling Divisible Loads in Parallel and Distributed Systems.
IEEE Computer Society Press, 1996, 292p.

[22] Berlinska (J.) and Drozdowski (Mr.). Scheduling Divisible
MapReduce Computations. Journal of Parallel and Distributed
Computing, 71, n3, March 2010, 450-459.

[23] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible data
processing tool." Communications of the ACM 53.1 (2010): 72-77.

[24] Condie, Tyson, et al. "MapReduce online." Nsdi. Vol. 10. No. 4.
2010.

[25] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1
(2008): 107-113.

[26] Tian, Chao, et al. "A dynamic mapreduce scheduler for
heterogeneous workloads." 2009 Eighth International Conference
on Grid and Cooperative Computing. IEEE, 2009.

[27] Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

[28] Olston, Christopher, et al. "Pig latin: a not-so-foreign language for
data processing." Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. 2008.

[29] Melton, Jim, and Alan R. Simon. Understanding the new SQL: a
complete guide. Morgan Kaufmann, 1993.

[30] Vora, Mehul Nalin. "Hadoop-HBase for large-scale data."
Proceedings of 2011 International Conference on Computer
Science and Network Technology. Vol. 1. IEEE, 2011.

[31] Banane, Mouad, and Abdessamad Belangour. "A new system for
massive RDF data management using Big Data query languages
Pig, Hive, and Spark." International Journal of Computing and
Digital Systems 9.2 (2020): 259-270.

[32] Geng, Yifeng, et al. "SciHive: Array-based query processing with
HiveQL." 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE,
2013.

[33] Geng, Yifeng, et al. "SciHive: Array-based query processing with
HiveQL." 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE,
2013.

[34] Borthakur, Dhruba. "HDFS architecture guide." Hadoop Apache
Project 53.1-13 (2008): 2.

[35] Jouault, Frédéric, et al. "ATL: A model transformation tool."
Science of computer programming 72.1-2 (2008): 31-39.

[36] Kalna, Fatima, et al. "A Scalable Business Intelligence Decision-
Making System in the Era of Big Data." International Journal of
Innovative Technology and Exploring Engineering (2019).

[37] Banane, Mouad, Allae Erraissi, and Abdessamad Belangour.
"SPARQL2Hive: An approach to processing SPARQL queries on
Hive based on meta-models." 2019 8th International Conference on
Modeling Simulation and Applied Optimization (ICMSAO). IEEE,
2019.

[38] A. Erraissi, M. Banane, A. Belangour and M. Azzouazi, "Big Data
Storage using Model Driven Engineering: From Big Data Meta-
model to Cloudera PSM meta-model," 2020 International
Conference on Data Analytics for Business and Industry: Way
Towards a Sustainable Econamey (ICDABI), Sakheer, Bahrain,
2020, pp. 1-5, doi: 10.1109/ICDABI51230.2020.9325674.

[39] A. Erraissi and M. Banane, "Managing Big Data using Model
Driven Engineering: From Big Data Meta-model to Cloudera PSM
meta-model," 2020 International Conference on Decision Aid
Sciences and Application (DASA), Sakheer, Bahrain, 2020, pp.
1235-1239, doi: 10.1109/DASA51403.2020.9317292.

[40] Erraissi, Allae, Banane Mouad, and Abdessamad Belangour. "A
Big Data visualization layer meta-model proposition." 2019 8th
International Conference on Modeling Simulation and Applied
Optimization (ICMSAO). IEEE, 2019.

[41] Kleppe, Anneke G., et al. MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional,
2003.

Allae Erraissi is a PhD on

Computer Science from Hassan II

University, Faculty of Sciences

Ben M’Sik, Casablanca,

Morocco. His main interests

engaged in research on various

aspects of Information

technologies namely Model-

Driven Engineering approaches

and their applications on new

emerging technologies such as

Big Data, Cloud Computing, Business Intelligence, Internet of

Things, etc.

