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Abstract: Big Data processing is done by using MapReduce which is a clustered data processing framework. As it is Composed of 

Map and Reduce functions, it distributes data processing tasks between different computers, and hence reduces the results in a single 

summary. Most data analysts prefer to use query languages like Pig and Hive to process Big Data, given the complexity of the 

MapReduce paradigm. In this paper, we shall propose an approach based on Model Engineering to transform requests written by Pig 

or Hive to MapReduce jobs thanks to the use of the ATL transformation language. Our proposal will allow us to easily obtain 

MapReduce programs from requests written in Pig or Hive. 
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1. INTRODUCTION  

Big Data is a generic term used to describe the 
strategies and technologies used to collect, organize, 
process, and analyze large data sets. It is the art of 
managing and exploiting large volumes of data [1]. To 
process this large amount of data, we find the Hadoop 
ecosystem [2] mostly as Hadoop remains the main Big 
Data platform used today. Seeing that it is based on Java, 
the open-source Hadoop framework is applied to store and 
process data in bulk. Hadoop is part of the Apache project, 
which is also behind the Pig, Hive, and Spark frameworks. 

Hive has initially been a Facebook project that links the 
SQL world to Hadoop. it executes the queries written by 
SQL on a cluster to aggregate and analyze data. The 
language used for this reason is named HiveQL [3]. Only 
"Select" instructions are supported to manipulate data 
because it is a visualization language only. In some cases, 
developers must map between data structures and Hive. 
Besides that, Pig is originally a Yahoo project which allows 
querying Hadoop data from a scripting language [4]. 
Unlike Hive, Apache Pig uses Pig Latin query language 
that allows us to create MapReduce type programs. Pig 
Latin abstracts from the Java MapReduce programming 
language and goes to a higher level of abstraction, similar 
to that of SQL for RDBMS (Relational Database 
Management System). Unlike Hive, Pig does not have a 
web interface [5]. 

Since we know that to do Big Data processing, we will 
need the MapReduce paradigm [6]. So, the requests written 
by the HiveQL language or PigLatin transform to 
MapReduce jobs according to the classic Big Data 
architecture. During this paper, we continue the application 
of Model-Driven Engineering techniques to standardize 
concepts at the Big Data. In the previous contribution [7] 
we have already proposed two meta-models for Ingestion 
and Data sources layers. Next, we defined a meta-modeling 
for the other layers of Big Data which are: Storage [8,9], 
Visualization [10,11], and Security [12]. The work 
presented in this paper is an advancement report on our first 
proposal for a meta-modeling of the Big Data Management 
layer [13]. Our main goal is to provide a generic Big Data 
system based on Model-Driven Engineering [14] to address 
the problem of many Big Data solutions. 

This article is detailed as follows: section 2 presents the 
related work on which we are concerned to carry out this 
study. Then, in section 3 we talk about the MapReduce 
paradigm used to manage Big Data. Sections 4 and 5 
present Hive and Pig query languages and their modes of 
use. Section 6 presents our proposed approach which 
makes it easy to obtain MapReduce programs from queries 
written in Pig or Hive. Finally, section 7 presents the results 
and evaluation obtained after the application of our 
approach based on Model Driven Engineering. 
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2. RELATED WORK 

As part of our research project, we continue the 
application of Model-Driven Engineering techniques to 
standardize Big Data concepts. In the previous contribution 
[7] we have already proposed two meta-models for 
Ingestion and Data sources layers. Next, we defined a meta-
modeling for the other layers of Big Data which are: 
Storage [8,9], Visualization [10,11], and Security [12]. The 
work presented in this paper is an advancement report on 
our first proposal for a meta-modeling of the Big Data 
Management layer [13].  

The main paradigm used to process Big data is 
MapReduce [6], plus other complementary tools like Pig 
[4], Hive [3], Sqoop [15], etc. In this paper, we shall treat 
the two query languages, Pig and Hive, which aim to 
process Big Data thanks to two languages dedicated to this 
reason which are: Pig Latin and HiveQL. Queries that are 
written by these two languages will be transformed to 
MapReduce jobs according to the classic Big Data 
architecture. We aim to consolidate a generic Big Data 
system based on Model Driven Engineering to solve the 
problem of many existing solutions in the market today. 

Many studies have addressed the problem of the cost of 
data transfers within MapReduce applications. Most of 
them deal with the locality of the data during the map 
phase. One of the algorithms proposed [16] improves this 
locality by introducing a delay before migrating a task to 
another node, if the preferred node is not available. The 
BAR [17] algorithm aims to approach the optimal data 
distribution taking into account an initial configuration that 
will be dynamically adapted. 

LEEN [18] is an algorithm for partitioning intermediate 
keys that aim to balance the duration of reduction while 
trying to reduce bandwidth consumption in the shuffle. 
LEEN is based on the frequency of the intermediate 
appearance of keys in an attempt to create partitions and 
optimize data transfers. The HMPR algorithm [19] defines 
a pre-shuffling mode which tends to reduce the data 
quantity to be transferred. For this reason, it predicts the 
partition in which the data will be generated at the output 
of the map and has the piece of data processed by the node 
which will execute the Reduce of this partition if possible. 

The Ussop environment [20] permits to target of the 
grids and adapt the quantity of data to be treated by each 
map according to the computing power of the machine 
running it. Also, this tool tends to reduce intermediate data 
transfers by locally performing the Reduce on the machine 
that generated the most intermediate keys. 

A MapReduce program splits the work we want to do, 
into a set of tasks that will be delivered to map functions. It 
is therefore possible to use results from the theory of 
divisible tasks [21] for this kind of application. This 
approach was introduced by Drozdowski and Berlinska 
[22]. In this article, the authors consider an execution 
environment in which number of compute nodes is bigger 

than number of communications that can take place 
simultaneously without causing contention. To avoid the 
appearance of this phenomenon, the authors propose a new 
model that permits the run of a MapReduce job by a linear 
program that generates a distribution of the data and static 
scheduling by phases of the communications. If this 
approach turns out to be interesting, the use of a linear 
program makes it inapplicable for instances involving more 
than a few hundred maps because the resolution time can 
sometimes exceed several minutes. Also, it happens that 
the linear program solver fails for such instances. The 
sequencing by phases induces, in addition, a large number 
of idle times on machines and the network during the 
shuffle. 

3. MAPREDUCE 

The MapReduce paradigm [6] was presented in 2008 
by Dean et al [23]. In a MapReduce program, two types of 
operations are chained to perform a calculation: The Map 
operation and the Reduce operation. All these operations 
form a MapReduce job. 

In the MapReduce paradigm, data is represented by 
key-value pairs. The Map and Reduce operations take as 
input a set of key-value pairs and return a set of key-value 
pairs. We use the operator to describe the power set (i.e., 
the set of parts) of a set. For a job, the Map and Reduce 
functions are written: 

𝑚𝑎𝑝 ∶ 𝐾 × 𝑉 →  𝛽(𝐾′ × 𝑉′)  
(𝑘, 𝑣) → {(𝑘′, 𝑣′)|(𝑘′, 𝑣′)  ∈ 𝐾′ × 𝑉′}  
𝑟𝑒𝑑𝑢𝑐𝑒 ∶ 𝐾′ ×  𝛽(𝑉′)  →  𝛽(𝐾′′ × 𝑉′′) 

(𝑘′, {𝑣′|𝑣′ ∈ 𝑉′} → {(𝑘′′, 𝑣′′)|(𝑘′′, 𝑣′′) ∈ 𝐾′′ × 𝑉′′} 

 
These operations are designed to allow easy 

distribution of the calculations. On a computing cluster, 
each machine processes only part of the data, to take 
advantage of distributed file storage. 

A. Map operation  

The Map operation transforms the input data to an 
intermediate state usable by the Reduce operation [24]. 
Depending on the application, it can be used to filter data, 
duplicate data, etc. In the distributed implementation of the 
paradigm, the machines performing the Map operation are 
called mappers. Each mapper then only works on part of 
the data. The key to the element's output from the Mapper 
function is to determine the reduced values together in the 
Reduce operation. 

B. Reduce operation  

The Reduce operation transforms values with the same 
key into a key-value pair. Depending on the application, the 
Reduce operation transforms the output of the Map into a 
statistical indicator, into a sorted data set, etc. In the 
distributed implementation of the paradigm, machines 
performing the Reduce operation are called a reducer. Each 
reducer works on a part of the data [25]. 
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C. Shuffle of data 

Between the Map operation and the Reduce operation, 
the dataset undergoes a modification. The Map operation 
returns a set of key-value pairs and the Reduce operation 
takes a key-set of values as input. The Shuffle step allows 
for this transition [26]. During the data shuffle, the data 
output from the Map operation is transmitted over the 
network towards the reducers. Pairs with the same keys are 

transmitted to the same reducer. Key-set pairs of values are 
formed this way. This transfer can represent an important 
blocking point for the distributed implementation. When 
handling large datasets, the amount of information 
exchanged over the network can be significant (up to 
several times the size of the datasets, depending on the 
application). It is therefore necessary to pay attention to the 
volume of data transmitted during this step to improve the 
performance of the algorithm. 

 

Figure 1.  Proposed MapReduce meta-model. 

4. PIG 

Pig is a big data processing tool [4]. This software is 
created by Yahoo. Pig offers to perform processing on 
distributed data sets using a natural programming language, 
much like SQL. The query language used to manipulate big 
data with the Apache Pig tool is Pig Latin [28]. The goal of 
using Pig Latin to define simple scripts, such as SQL, is to 
make it easier to write large data processing programs 
without having to write Java jobs through the MapReduce 
framework. The Pig solution was adopted by the Apache 
organization and is now an essential component of the 
Hadoop suite [27]. 

A. Example of a Pig program 

This program displays the 11 youngest adults extracted 
from a csv file containing 3 columns: identifier, name, and 
age. 

persons = LOAD ‘persons.csv’ USING PigStorage(‘;’)  

AS (userid:int, name:chararray, age:int);  

youngadults= FILTER persons BY age>= 18 AND age <25; 

ranking = ORDER youngadults BY age;  

result = LIMIT ranking 11;  
DUMP result; 

 
To run it: freelance program.pig. It's launching a 

MapReduce job in Hadoop. You can also type the 
instructions one by one into Pig's shell. 

B. Comparison between SQL and Pig Latin 

There are some apparent similarities between SQL [29] 
and Pig Latin. There are several keywords in common 
(JOIN, ORDER, LIMIT, etc.) but their principle is 
different: 

• In SQL, queries are built that describe the data to 

be obtained. It is not known how the SQL engine 

will calculate the result. We only know that 

internally, the query will be broken down into 

loops and in comparison, on the data and making 

the best use of the indexes. 

• In Pig Latin, programs are built that contain 

instructions. It describes exactly how the result 

should be obtained, what calculations should be 

made, and in what order. 

Also, Pig was designed for uncertain Hadoop data, 
while SQL runs on perfectly healthy RDBMS. 

C. Pig Latin Language 

1) Structure of a program 
Comments are placed between /*...*/ or from - and the 

end of the line. A Pig Latin program is a series of 
instructions. All must be terminated with a; As in SQL, 
there is no notion of variables, nor functions/procedures. 
The result of each Pig statement is a collection of tuples. 
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We call it a relationship. We can see it as a database table. 
Each Pig instruction takes an input relation and produces a 
new output relation. 

output - INSTRUCTION input PARAMETRES...; 

2) Running a program 
When you run a program, Pig first analyzes it. Each 

instruction, if it is syntactically correct, is added to a kind 
of action plan, a succession of MapReduce, and it is only at 
the end of the program that this action plan is executed 
according to what you ask at the end. 

The EXPLAIN relation instruction displays the action 
plan planned to calculate the relation. It’s pretty 
indigestible when you’re not a specialist. 

3) Relationships and aliases 
The syntax name = INSTRUCTION...; defines an alias, 

i.e., a name for the relation created by the instruction. This 
name is generally used in the following instructions, this is 
what builds a processing flow. 

name1 = LOAD ... ;  
name2 = FILTER name1... ;  
name3 = ORDER name2... ;  
name4 = LIMIT name3... ; 

The same alias can be reused in different instructions, 
which creates bifurcations in the processing flow: 
separations or groupings. It is not recommended to reassign 
the same alias. 

4) Chaining of instructions 
Pig allows you to either chain instructions through the 

alias mechanism, or through a nested call. 

name4 = LIMIT (ORDER (FILTER (LOAD ...) ...) ...) ... ; 

You will choose the one you find most readable. 
However, nested calls do not allow easy separation of 
processing, unlike aliases: 

name1 = LOAD ... ;  
name2 = FILTER name1 ... ;  
name3 = FILTER name1 ... ;  
name4 = JOIN name2 ..., name3 ; 

5) Relationships and types 
A relation is an ordered collection of tuples that all have 

the same fields. Here are the possible types. The scalar 
types are: 

• int and long for integers, float and double for reals 

• chararray for any chains. 

• bytearray for any binary objects 

• There are also three complex types: 

• dictionaries (maps): [name # mickey, age # 87] 

• tuples of fixed size: (mickey, 87, hergé) 

• sacs (bags) = sets without tuples order: {(mickey, 

87), (asterix, 56), (tintin, 86)} 

6) Schema of a relationship 
The list of fields in a relationship is called a schema. It 

is a tuple. We write it (name1: type1, name2: type2, ...). 

For example, a relationship containing employees will 
have the following schema: 

(id:long, lastname:chararray, firstname:chararray, 
picture:bytearray, seniority:int, salary:float) 

The LOAD instruction 'file.csv' AS diagram; allows to 
read a CSV file and to make a relation according to the 
indicated diagram. 

7) Complex schema (tuples) 
Pig allows the creation of a relationship based on a 

diagram including complex data. Either a file containing 
3D segments: 

S1 ➭ (3,8,9) ➭ (4,5,6)  

S2 ➭ (1,4,7) ➭ (3,7,5)  

S3 ➭ (2,5,8) ➭ (9,5,8) 

We use the character to represent a tabulation. Here is 
how to read this file: 

segments = LOAD 'segments.csv' AS (  
name:chararray,  
T1:tuple(a1:int, b1:int, c1:int),  
T2:tuple(a2:int, b2:int, c2:int));  

DUMP segments; 

8) Complex schema (bags) 
We can also read bags, i.e., data sets of the same types 

but in any number: 

L1 ➭ {(3,8,9),(4,5,6)} 

L2 ➭ {(4,8,1),(6,3,7),(7,4,5),(5,2,9),(2,7,1)} 

L3 ➭ {(4,3,5),(6,7,1),(3,1,7)} 

The diagram of this file is: 

(name:chararray, Points:{tuple(a:int, b:int, c:int)}) 

Explanations: 

• The second field of the diagram is specified as 

"field name": "type of bag content". 

• Data in this field should be in the "list of values for 

the type" format. 

9) Complex schema (maps) 
Finally, with dictionaries, here are the contents of the 

heros.csv file: 

1 ➭ [name#asterix, job#warrior]  

2 ➭ [name#tintin, job#journalist]  

3 ➭ [name#spirou, job#groom] 

It is made a relationship by: 

heros = LOAD 'heros.csv' AS (id:int, info:map[chararray]) 
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Note: All these constructions, map, bags, and tuple, can 
be nested, but some combinations are difficult to specify. 

10) Field names 
There are two syntaxes for naming the fields of a 

relationship. Either use their plain name or designate them 
by their position $0 designating the first field, $1 the 
second, and so on. 

The second syntax is used when the names of the fields 
are not known or when they have been generated 
dynamically.  

When there is ambiguity on the relation concerned, we 
prefix the name of the field with the name of the relation: 
relation.champ. 

• When a field is a tuple, its elements are named 

relation.champ.element. For example 

segments.P1.z1 

• For a map type field, its elements are named 

relation.champ # element. For example heros.infos 

# metier 

• There is no syntax for accessing bag fields. 

The following figure shows our proposition for Pig, it 

defines our meta-model: 

 

Figure 2.  Meta-model of PIG. 

5. HIVE 

Apache Hive is a data warehouse for Hadoop like 
HBase [30]. It was created by Facebook to later become an 
open-source Apache project. This is a system that 
maintains metadata describing data stored in HDFS. It uses 
a relational database called metastore (Derby by default) to 
ensure metadata persistence [31]. Thus, a table in Hive is 
essentially composed of a schema stored in the metastore, 
and data stored in HDFS. With the metastore data, Hive 
allows manipulating the data as if they were persisted in 
tables (in the sense of a classic database management 
system) and to query them with its HiveQL language [32]. 
Hive converts HiveQL queries into MapReduce or Tez jobs 
(from version 0.13 of Hive, a HiveQL query can be 
translated into an executable job on Apache Tez, which is 
an execution framework on Hadoop that can replace 
MapReduce). 

A. Defining a diagram 

The diagram of a table is also called metadata (i.e., data 
information). Metadata is stored in a MySQL database, 
called metastore. Here is the definition of a table with its 
diagram: 

CREATE TABLE statement (  
idstatement STRING,  
year INT,  
temp FLOAT, quality BYTE, ...)  

ROW FORMAT DELIMITED FIELDS TERMINATED BY 
'\t'; 

The beginning is classic, except for the constraints of 
integrity: there are none. The end of the query indicates that 
the data is in a CSV file. Let us first look at the types of 
columns. 

B. HiveQL Types  

Hive defines the following types [33]: 

• BIGINT (8 bytes), INT (4), SMALLINT (2), 

BYTE (1 byte). 

• FLOAT and DOUBLE. 

• BOOLEAN worth TRUE or FALSE. 

• STRING, we can specify coding (UTF8 or other). 

• TIMESTAMP is expressed in a number of 

seconds. Nanoseconds since 01/01/1970 UTC. 
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• structured data as with Pig: 

o ARRAY indicates that there is a list of types. 

o STRUCT for a multi-value structure. 

o MAP for a suite of. key (pairs, value). 

C. Field Separations for Reading 

The creation of a table is done as follows: 

CREATE TABLE name (schema) ROW FORMAT 
DELIMITED descr format 

The guidelines after the diagram indicate how the data 
is stored in the CSV file. These are: 

• FIELDS TERMINATED BY ';': there is one; to 

separate the fields. 

• COLLECTION ITEMS TERMINATED BY ',': 

there is a, between the elements of an ARRAY. 

• MAP KEYS TERMINATED BY ':': there is one: 

between the keys and values of a MAP. 

• LINES TERMINATED BY 'n': there is a 'n' at the 

end of the line. 

• STORED AS TEXTFILE: It is a CSV. 

D. Loading data 

Here is how to load a CSV file that is on HDFS [34] in 
the table: 

LOAD DATA INPATH '/share/allae/data/183'  
OVERWRITE INTO TABLE statement; 

You can also load a local file (not HDFS): 

LOAD DATA LOCAL INPATH 'stations.csv'  
OVERWRITE INTO TABLE stations; 

The file is then copied to HDFS in Hive's files. 

E. HiveQL requests 

As with conventional RDBMS, there is a shell launched 
by the hive command. This is where SQL queries are typed. 
They are mainly SELECT. All the clauses you know are 
available: FROM, WHERE, JOIN, HAVING, GROUP 
BY, LIMIT, ORDER BY. 

There are others to optimize the underlying MapReduce 
work, for example when you want to rank on a column, you 
have to write: 

SELECT... DISTRIBUTE BY colonne SORT BY colonne; 

The directive sends the affected n-uplets on a single 
machine to compare them more quickly to establish the 
ranking. 

F. Other guidelines 

It is also possible to export results in a file: 

INSERT OVERWRITE LOCAL DIRECTORY 
'/tmp/weather/hot'  
SELECT year,month,day,temperature  
FROM statement  
WHERE temperature > 40.0; 

Other orders include: 

• SHOW TABLES; to view the list of tables (they 

are in the metastore). 

• DESCRIBE EXTENDED table; shows the table 

schematic. 

G. Hive meta-model 

The following figure shows our proposition for Hive, it 

defines our meta-model for Hive and its HiveQL query 

language: 

 

 

Figure 3.  Hive meta-model. 

6. TRANSFORMATION 

After defining meta-models for MapReduce, Pig, and 
Hive. In this section, we present the ATL transformation 

rules used to pass from our generic meta-models of PIG and 
Hive query languages to MapReduce meta-model which 
represents the body of processing within Big Data. The 
following figure shows the architecture of our proposal. 
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Figure 4.  Architecture of PigHive2MapReduce. 

To apply the transformations defining in figure 4, we 
have chosen the ATL transformation language [35,36]. We 
now present the ATL transformation rules used to pass 
from our generic meta-models of PIG and Hive query 
languages to MapReduce meta-model which represents the 
body of processing within Big Data. These defined meta-
models present the PIM level according to the Model 
Driven Architecture “MDA” [41,37]. 

rule Pig2MapReduce{ 

 from 

       s: MegaModelHadoopManagement!Pig 

 to 

 t: MegaModelHadoopManagement!MapReduce( 

inputPath<- s.Pig.inputPath, 

outputPath<- new 

outputPath(C:\Users\AllaeE

rraissi\Desktop\ 

PigHive2MapReduceFolder\

PigOutput) 

IdMap<- s.Pig.ProjectID, 

Mapper<-s. PigLatinScript.PigClause, 

Reducer<- s.Pig.Complier, 

InputFilePath<- s.InputFilePath  

JobPackage<-s.Pig.Project, 

MapReuce.Date<-s.Pig.Date, 

query<- s.Pig.PigLatinScript 

  ) 

} 

rule Hive2MapReduce{ 

 from 

  s: MegaModelHadoopManagement!Hive 

 to 

  t: MMClouderaManagement!Cldr_Hive( 

   inputPath<- 

s.Hive.inputPath, 

outputPath<- new 

outputPath(C:\Users\AllaeE

rraissi\Desktop\ 

PigHive2MapReduceFolder\

HiveOutput) 

IdMap<- s.Hive.ProjectID, 

Mapper<-

s.Hive.HiveQL.HiveSelect_Query.Clause, 

Reducer<- s.Hive.HComplier, 

InputFilePath<- s.InputFilePath  

JobPackage<-s.Hive.Project, 

MapReuce.Date<-s.Hive.Date, 

query<- 

s.Hive.HiveQL.HiveSelect_Query 

  )  

} 

7. EVALUATION AND DISCUSSION 

To evaluate our approach, we used three datasets. On 
these datasets, we applied 30 queries to better measure the 
execution time of each query on the different datasets 
chosen to test our proposal. 

To implement PigHive2MapReduce, we used version 
3.1.1 of Hadoop, version 3.1.2 of Hive, and version 0.17.0 
of Pig. We used a machine with a 2.80 GHz Intel (R) Core 
(TM) i7 processor. With a storage space of 2 TB and a 
RAM of 16 GB. 

The three datasets used have the following sizes: DS1 
(17GB), DS2 (15GB), and DS3 (13GB). The following 
table shows the loading time of the three datasets: 

TABLE I.  LOADING TIME DATASETS. 

Dataset Dataset 1 Dataset 2 Dataset 

Loading time 

(s) 
3,4 3,2 2,9 

 
The following tables show the execution time of the 30 

queries on the three datasets. Note that we tested 
PigHive2MapReduce with 15 queries using the PigLatin 
language, and 15 with the use of the HiveQL query 
language. 

TABLE II.  PIG REQUEST TRANSFORMATION TIME ON DATASET 1. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
356 376 481 450 256 298 516 518 318 389 667 687 321 321 124 

TABLE III.  HIVE REQUEST TRANSFORMATION TIME ON DATASET1. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
456 445 234 213 765 656 231 124 764 343 545 432 535 654 344 
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TABLE IV.  PIG REQUEST TRANSFORMATION TIME ON THE DATASET2. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
346 366 471 440 246 288 506 508 307 398 606 676 310 300 110 

TABLE V.  HIVE REQUEST TRANSFORMATION TIME ON THE DATASET2. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
446 435 224 203 755 646 221 114 754 333 535 422 525 644 334 

TABLE VI.  PIG REQUEST TRANSFORMATION TIME ON THE DATASET3. 

Pig query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
340 360 468 434 243 278 500 502 304 374 649 669 309 312 114 

TABLE VII.  HIVE REQUEST TRANSFORMATION TIME ON THE DATASET3. 

Query Hive Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

PigHive2MapReduce 

(ms) 
443 432 219 200 748 643 219 108 747 337 542 427 526 641 330 

The results obtained after using our approach based on 
model engineering are shown in the following figures: 

 

Figure 5.  Transformation time of Pig requests on dataset1. 

 

Figure 6.  Transformation time of Pig requests on dataset2. 

 

Figure 7.  Transformation time of Pig requests on dataset3. 

 

Figure 8.  Transformation time of Hive requests on dataset1. 
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Figure 9.  Transformation time of Hive requests on dataset2. 

 

Figure 10.  Transformation time of Hive requests on dataset3. 

The results obtained from applying the transformations 
using the ATL transformation language show that the time 
to transform Pig Latin or HiveQL queries is speedy. The 
fact that will allow users of the MapReduce paradigm to 
obtain MapReduce programs quickly from Hive or Pig 
requests. 

Based on the definition of meta-models for the different 
layers of a Big Data system in our previous work [38,40]. 
In continuous efforts, this work complements the meta-
model already proposed for the management layer [13,39]. 
Precisely to define the functioning of the two Pig and Hive 
query languages which are based on the transformation of 
queries written either by the Pig Latin language or by 
HiveQL, into MapReduce jobs thanks to the ATL 
transformation language. 

8. CONCLUSION 

A large number of solutions are available in the Big 
Data market. Big Data solution providers have developed 
distributions to manage this large amount of data. 
However, Big Data solution providers do not have the 
meta-models necessary to create standard applications that 
can be compatible with each provider, since each provider 
has its policy that allows it to design its own Big Data 
system. So, the application of techniques related to model 
engineering will standardize Big Data concepts. Given the 
complexity of processing Big Data with the MapReduce 
paradigm. This paper proposes an approach based on 

Model Driven Engineering which makes it possible to 
transform the requests written by PigLatin and HiveQL to 
MapReduce jobs.  
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