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Abstract: Music composition is now appealing to both musicians and non-musicians equally. It branches into various musical tasks 

such as the generation of melody, accompaniment, or rhythm. This paper discusses the top ten artificial intelligence algorithms with 

applications in computer music composition from 2010 to 2020. We give an analysis of each algorithm and highlight its recent 

applications in music composition tasks, shedding the light on its strengths and weaknesses. Our study gives an insight on the most 

suitable algorithm for each musical task, such as rule-based systems for music theory representation, case-based reasoning for 

capturing previous musical experiences, Markov chains for melody generation, generative grammars for fast composition of musical 

pieces that comply to music rules, and linear programming for timbre synthesis. Additionally, there are biologically inspired 

algorithms such as: genetic algorithms, and algorithms used by artificial immune systems and artificial neural networks, including 

shallow neural networks, deep neural networks, and generative adversarial networks. These relatively new algorithms are currently 

heavily used in performing numerous music composition tasks. 
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1. INTRODUCTION  

Thanks to the advancements in computer music 
composition, it is of no surprise today to find non-
musicians composing very nice music, even on-the-go. 
The desire to compose music with the aid of computers 
returns back to the early days of computer invention. A 
common belief is that the first musical notes produced by 
a computer were heard in the late 50’s (Illiac Suite) by 
Hiller et al. [1] through ILLIAC I computer at the 
University of Illinois at Urbana–Champaign. However, a 
recent research by Copland et al. [2] shows that musical 
notes produced from computers were heard even earlier, 
in the late 40’s, by Alan Turing; the father of modern 
computer science himself. Although not intended 
primarily to compose music, Turing emitted repeating 
clicks from the loudspeaker of his Manchester computer 
with certain patterns; which were interpreted by human 
ears as continuous sound or musical notes. Building on 
this and using the same Manchester computer, 
Christopher Strachey, a talented programmer, succeeded 
in 1951 to develop a program that plays Britain’s national 
anthem “God Save the King” [3] along with other 
melodies, which were then recorded and documented by 
the BBC [4]. It is still undeniable that Hiller’s research [1] 

results attracted researchers more to the field of computer 
music composition. 

Music composition is the task of devising a new 
musical piece that contains three main components: 
melody, accompaniment, and rhythm. Fig.  1 labels the 
main musical tasks lying under the computer music 
composition umbrella, further with their types. Melody 
generation is devising the musical notes pitch; “melody” 
is the group of consecutive notes forming the musical 
piece while a note “pitch” [5] is the human interpretation 
of the note’s frequency that distinguishes it from other 
notes. Timbre [6], another aspect of the musical piece’s 
melody, is defined by the American Standard Association 
(ASA) to be “That attribute of sensation in terms of which 
a listener can judge two sounds having the same loudness 
and pitch are dissimilar” [7]. Thus, timbre generation 
helps in the interpretation of musical instruments that play 
the melody. Music accompaniment has four types: 
counterpoint, chorales, chord, and bass. Counterpoint [8] 
is a special type of music accompaniment that represents 
the harmony between multiple accompanying voices 
(typically two to four) generated by a set of strict rules. 
Chorale [9] accompaniment is formed of four-part music 
lines; soprano and three other lower voices. Chord [10] 

http://dx.doi.org/10.12785/ijcds/100138 
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accompaniment is a prominent type of harmony where a 
chord is the group of multiple harmonic notes that sound 
agreeing when heard. Closely related to chord 
accompaniment generation is bassline [11] generation. 
Musical piece’s rhythm [12] controls its speed and style; it 
is the beat of the piece.  

Computers can aid, either fully or partially, in each of 
the aforementioned musical tasks. Along the years, 
research has been carried out for developing algorithms 
that automates each of these musical tasks, which lead to 
the term “algorithmic composition”. Artificial Intelligence 
(AI) had a great share of the research in algorithmic 
composition since teaching computer the various music 
composition tasks needs high levels of creativity. 
Computer music composition is all about emulating 
human creativity in music and that specifically is the 
challenge of AI [13]. 

The machine learning field is a subset of AI that is 
concerned by how computers learn from the given data. 
Instead of explicitly instructing computers how to perform 
tasks step-by-step, machine learning techniques enables 
computers to interpret relationships from the given data 
and accordingly perform tasks such as classification, 
clustering, regression, and prediction. 

In this paper, we study the top ten AI algorithms used 
in computer music composition with their applications. 
Also, the most recent machine learning techniques used in 
music composition for automating the various musical 
tasks are discussed. We first give an overview of each 
algorithm; its description, technical background, or 
pseudocode as needed. Then, we discuss its applications 
in the field of music composition. Our main focus is on 
the applications that have been developed in the last ten 
years. We consider very few older papers due to their high 
impact in the field. Finally, we list the strengths and 
weaknesses of each algorithm. Kindly note that we only 
focus on the music composition field; there are other 
fields of computer music generation that are not of interest 

in this work; such as improvisation (where the computer 
plays on-the-go harmonic music with human players) and 
expressive performance (which is concerned with 
simulating the personal touch of music players). 

The rest of this paper is organized as follows: Sections 

2 to 11 list each of the algorithms under study along with 

their recent applications in computer music composition. 

More specifically: Section 2 describes rule-based systems, 

Section 3 discusses case-based reasoning systems, Section 

4 describes Markov chains generally focusing on the 

hidden Markov model. Section 5 describes generative 

grammars focusing on the Chomsky hierarchy. Section 6 

describes linear programming. Section 7 elaborates on 

genetic algorithms. Section 8 discusses artificial immune 

systems. Sections 9 and 10 cover shallow and deep 

artificial neural networks respectively. Finally, Section 11 

sheds the light on one of the most recent and promising 

machine learning techniques used in music composition 

which is the use of generative adversarial networks. We 

compare the presented algorithms and discuss their merits 

in Section 12. Finally, we conclude our survey in Section 

13. 

2. RULE-BASED SYSTEMS 

Rule-Based systems (sometimes known as knowledge-
based or expert systems) are means of capturing human 
knowledge in a format comprehensible by computers. 
Rule-based systems mainly aim to aid humans in decision 
making; for example, medical expert systems help doctors 
in reaching the right diagnosis for patients based on the 
given symptoms. 

2.1 Overview and Description 

A rule-based system has three main components: 

1. Knowledge Base (KB): set of IF-THEN rules 

representing the captured knowledge. The IF part 

of a rule is called antecedent and the THEN part 

is called consequence. The KB might also 

contain facts (known assertions). 

2. Inference Engine (IE): component responsible for 

inferring or deducing new information from the 

knowledge base according to the system input. It 

matches the rules in the knowledge base with the 

current state of the world present in the working 

memory. 

3. Working Memory (WM): storage holding 

temporary data (assertions) about the current 

state. 

Figure 1. Computer Music Composition Tasks 
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The inference engine can infer data through either 
forward or backward chaining. Pseudocode of the forward 
chaining inference algorithm is listed in Fig.  2. The idea 
behind forward chaining is simply to find all the possible 
matches from the knowledge base that are relevant to the 
current state of the working memory. The forward 
chaining algorithm then makes sure that a matched rule 
only fires if its consequences will affect the working 
memory (change its current state). After marking all the 
defunct rules; which are rules that will not affect the 
working memory, the algorithm will continue only if the 
number of unmarked matches is not equal to zero. A 
conflict resolution technique might be needed if there are 
more than one unmarked match. Conflict resolution helps 
to select only one matched rule to fire. The selected rule 
then fires, and its consequences are asserted in the 
working memory. The process repeats until no more 
matches will affect the working memory. Forward 
chaining is known as data-driven approach since it starts 
from the already given facts to extract more information. 
Thus, it is seen as a bottom-up approach. 

On the other hand, backward chaining aims to prove 
whether a goal is true or not. Backward chaining 
pseudocode is listed in Fig.  3. The algorithm first 
matches the goal with the knowledge base facts; if a 
match is found, it returns true. If no fact matches the goal, 
all rules consequences are checked whether they match 
the goal. If the goal does not match any of the rules’ 
consequences, the algorithm returns false. Else, backward 
chaining is called recursively on all the matched rules 
antecedents keeping track of all the bound variables in the 
recursion process. If all the recursive calls return true, the 
algorithm is said to succeed and returns true. Backward 
chaining is called goal-driven inference approach since it 
starts with the goal and searches for a possible match in 
the knowledge base, which makes it a top-down approach. 

2.2 Rule-Based Systems in Algorithmic Composition 

Rule-based systems are convenient for counterpoint 
type of harmony since it is based on rigid rules for 
generating harmonic voices. Aguilera et al. [14] coded 
counterpoint rules with the help of probabilistic logic 

using Derive 6 software which is a computer algebra 
system. Navarro-Cáceres et al. [10], encoded rules about 
chord construction and progression in a penalty function. 
Then, they employed an Artificial immune system 
(discussed in Section 8) to suggest the next chord in a 
given sequence such that this chord minimizes the penalty 
function. 

3. CASE-BASED REASONING 

The most common definition for Case-Based 
Reasoning (CBR) is that it is an approach for solving 
problems by means of previous experiences. CBR aims 
for simulating human reasoning and learning from past 
experiences. Hence, it is a method of retrieving and 
reusing successful solutions from past problems. Unlike 
rule-based systems that keep general knowledge about the 
problem domain, CBR employs the knowledge of 
previous solutions for specific problems in the domain. 
Moreover, CBR systems keep adding new knowledge 
from learned experiences of newly solved problems. 

3.1  Overview and Description 

A CBR system keeps information about previous 
problems in what is called a case base. A “case” has the 
description of a previously solved problem along with its 
solution. The three main operations in the CBR cycle are: 
case retrieval, adaptation, and storing. Fig.  4 shows a 
diagram for the CBR cycle. When a new problem is 
presented to the system, the similar cases to that problem 
are retrieved from the case base. The next step is to adapt 

Figure 4. CBR cycle diagram 

While TRUE do 

     Find all matches between KB and WM 

     for each match M do 

          if M does not change WM then 

               Mark M as defunct 

          end if 

     end for 

     if Number of unmarked matches = 0 then 

          TERMINATE 

     end if 

     if Number of unmarked matches > 1 then 

          Call Resolve_Conflict 

     end if 

     Fire matched rule 

  Assert rule consequence in WM  

end while 

 

Figure 2. Forward Chaining Algorithm 

Match Goal with KB 

if a match is found then 

     return TRUE 

end if 

Match Goal with rules consequences 

if Match(es) is/are found then 

     for each matched rule antecedent A do 

          Call Backward Chaining(A) 

     end for 

     if all recursive calls return TRUE then 

          return TRUE 

     else 

          return FALSE 

     end if 

else 

     return FALSE 

end if 

 

Figure 3. Backward Chaining Algorithm 
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the retrieved cases and their solutions to meet the 
demands of the new problem. Finally, the newly solved 
problem is stored in the case base for future retrievals.  

Design decisions of CBR systems include how to 
represent the case, which also affects the retrieval quality. 
Case representation includes mainly some parameters or 
descriptors for the state of the world when the problem 
happened accompanied by the solution that worked for 
solving the problem. Another design issue in the retrieval 
process is the matching algorithm for comparing the new 
problem with the previous cases. The simplest way of 
matching is to apply nearest neighbor between each 
attribute in the new problem and its corresponding in the 
current case from the case base, then the cases having the 
largest weighted sum of all attributes, are retrieved. The 
case adaptation technique is chosen according to how 
close the matched case is to the current problem. 

3.2 CBR in Algorithmic Composition 

CBR is a very suitable approach for melody 
generation systems as these mainly aim to emulate the 
experience of human composers. CBR systems give the 
ability to apprehend previous composition experiences to 
be utilized in the generation of new compositions of the 
same style. To our knowledge, the recent applications of 
CBR in music composition are few. Instead, CBR is 
applied extensively in the field of expressive performance 
which is outside the scope of this paper as previously 
mentioned. 

Ribeiro et al. [15] developed a system that generated 
melody lines given a chord sequence as an input. Each 
case in the case-base contains a chord along with its 
corresponding melody line and rhythm. Case matching is 
through comparing chords based on “Schöenberg’s chart 
of the regions”. The system enables a set of 
transformations to modify the output melody before 
adapting the case and storing the produced solution in the 
case base. Navarro-Cáceres et al. [5] developed a system 
whose purpose is to assign probabilities for given notes 
following the last note of the melody. Their system was 
built upon a CBR architecture accompanied by a Markov 
model. The case base holds past solutions and melodies 
and cases are retrieved according to the user’s choices of 
the desired style, composer, etc. The adaptation step 

consists of training the Markov model with the retrieved 
cases. The adapted case is then evaluated and stored in the 
case base for future retrievals. Within the case adaptation 
phase, their system depended on user feedback to guide 
pitches and note duration. Generally speaking, CBR needs 
external guidance to successfully compose the desirable 
melodic pieces. 

4. MARKOV CHAINS 

Before introducing Markov chains, we need to define 
stochastic processes and chains. A stochastic process 
describes a sequence of events that depend on the time 
parameter t. The set of events is called the “state space”, 
and the set of parameters is called the “parameter space”. 
Stochastic chain refers to a stochastic process that 
consists of a sequence of a countable number of states. 

4.1 Overview and Description 

A Markov chain can be defined as a special case of 
stochastic chains in which the probability of a future event 
X(t+1) (random variable X at time t+1) depends on the 
current state X(t) according to the following equation: 

P(Xtm+1 = j|Xtm = i) = pij(tm,tm+1) 

This expression represents the transition probability of 
state Xtm=i at a given time tm to the state Xtm+1=j. A higher 
order Markov chain is a Markov chain where each state 
depends on more than one past state such that the order 
number indicates how many past states affect the current 
state. A Markov chain can be represented as a state 
transition graph (also known as a Markov state space 
graph), where each edge shows the transition probability 
as shown in Fig.  5(a). Note that the sum of all 
probabilities on the edges leaving each state is always 
one. Equivalently, a Markov chain can be represented by 
a transition matrix as shown in Fig.  5(b). 

Both figures describe the daily sportive activities of a 
man. He randomly spends his daily workout running or 
swimming and rests on some other days. By observing his 
sportive patterns, it was found that if he spends his 
workout on a certain day running, it is unlikely to see him 
run on the following day (with probability 0.2). Instead, it 
is more  

Figure 5. (a) Markov state space graph example - (b) Markov transition matrix example 
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likely to see him either swim or rest on the following day 
(both with an equal probability of 0.4). On the other hand, 
if he spends his workout swimming on a certain day, it is  
very probable to see him swim again on the following day 
(with probability 0.7). It is very unlikely to see him run or 
rest (with probabilities of 0.2 and 0.1 respectively). After 
a day of rest, he will probably spend the next day running 
or swimming (both with an equal probability of 0.4). He 
will hardly rest the next day (with probability 0.2). 

An advanced type of Markov chains is the Hidden 
Markov Model (HMM) that allows us to predict a 
sequence of unknown “hidden” variables from a set of 
observable variables. That is to say that the set of 
observable output symbols of the Markov model are 
visible, but their internal states and transitions are not. 
Each state generates an emission probability. An HMM 
represents a coupled stochastic process due to the 
presence of transition probabilities in addition to the state-
dependent emission probabilities of observable events. 

Any HMM can be formally described by: 

S = S1, S2, ..., SN. Set of N states  
π = π1, π2, ..., πN. Initial state probabilities 
A = aij. The transition probabilities from state i to state j 
O = o1, o2, ..., oT. The set of T observable outputs 

             belonging to the set of output symbols  
             Ot ∈ v1, ..., vM  

B = bit. The probability that observable output 
           ot is generated from state i 

 
There are three main algorithms for training HMM: 

1 Forward algorithm: the probability of the observed 
sequence is computed while all parameters are 
known. The opposite to the forward is the backward 
algorithms that computes probability in the opposite 
direction. 

2 Viterbi algorithm: the most likely sequence of 
hidden path (Viterbi path) is calculated based on the 
given observable sequence. 

3 Baum-Welch algorithm: calculates the most likely 
parameters of HMM based on the given observable 
sequence. 

Fig.  6, Fig. 7, and Fig. 8 - adapted from [16] - show 
simple pseudocodes for the aforementioned algorithms. 

4.2 Markov Chains in Algorithmic Composition 

Markov chains have been extensively used in music 
composition since the early research attempts in the field. 
As previously mentioned, for HMM there is a given set of 
observable events and we are to calculate the most 
probable states leading to these events. Similarly, in 
computer music, we have a set of desirable notes 
sequence forming a nice musical piece and we try to 
figure out the possible paths leading to this piece to 
produce similar pieces in the future. 

As for the applications of Markov chains in melody 
pitch generation; as aforementioned in Section 3.2, María 
Navarro-Cáceres et al. [5] combined a Markov model 
with case-based reasoning in the adaptation step in order 
that the Markov model is trained by the retrieved cases to 
predict the successive notes probabilities. Markov models 

viterbi[i,j] ← 0 for all i,j  

viterbi[0,0] ← 1.0  

for each time step t do 

   for each state s do 

         for each state transition s to s’ do  

             newscore ← viterbi[s,t] × 

                        a(s,s’) × b(s’,ot)                            

             if newscore > viterbi[s’,t + 1] then 

                    viterbi[s0,t + 1] ← newscore  

                    maxscore ← newscore 

             end if  

             save maxscore in a queue  

         end for  

   end for 

end for  

return queue 

Notes 

1. a(s,s’) is the transition probability from state s to s’ 

2. b(s’,ot) is the probability of state s0 given observation ot 

Figure 7. Viterbi Algorithm 

forward[i,j] ← 0 for all i,j  

forward[0,0] ← 1.0  

for each time step t do 

    for each state s do 

         for each state transition s to s’ do 

            forward[s’,t + 1]+ = forward[s,t] × 

                                 a(s,s’) × b(s’,ot) 

         end for  

    end for 

end for 

return Σforward[s,tfinal+1] for all states s 

Figure 6. Forward Algorithm 

Notes 

1. a(s,s’) is the transition probability from state s to s’ 

2. b(s’,ot) is the probability of state s’ given observation ot 

Initialize HMM Parameters  

Iterations = 0 

repeat 

    HMM ′ ← HMM ; Iterations ++  

    for each training data sequence do 

          Execute forward algorithm 

          Execute backward algorithm 

          Update HMM Parameters  

    end for 

until |HMM − HMM ′ | < delta OR iterations > MAX 

 

Figure 8. Baum-Welch Algorithm 
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also aided in counterpoint accompaniment generation. 
Padilla et al. [17] developed a recent emulative system 
that generates two-voice counterpoint based on Palestrina-
style. Being trained on limited data, the Markov model 
was not enough for capturing all the musical features 
found in counterpoint. Hence, Padilla’s system worked on 
discovering repeated patterns in each piece of the corpus 
(template) from different viewpoints. The discovered 
patterns were then fed into the Markov model for 
generating a two-voice counterpoint in terms of those 
patterns.   

Wassermann and Glickman [18] have recently 
developed two novel approaches for harmonizing chorales 
in Bach style. In the first approach, the primary input into 
a chorale-harmonization algorithm is the bass line, as 
opposed to the main melody. Their second approach 
combines music theory and machine-learning techniques 
in guiding the harmonization process. They employ a 
hidden Markov model in learning the harmonic structure 
and apply a Boltzmann pseudolikelihood function 
optimization for determining individual voice lines. They 
incorporate musical constraints through a weighted linear 
combination of constraint indicators. They evaluated their 
model through a group of test subjects who could not 
easily distinguish between the generated chorales and the 
original Bach chorales. The bass-up approach 
outperformed the traditional melody-down approach in 
out-of-sample performance. 

5. GENERATIVE GRAMMARS 

Language, in its simplest definition, is a set of symbol 
strings (sentences) whose structure abides to certain rules. 
A formal language is that provided with mathematical 
description of both its alphabet symbols and formation 
rules. A grammar describes how a sentence is formed and 
distinguishes between well-formed (grammatical) and ill-
formed (nongrammatical) sentences. A generative 
grammar is a recursive rule system describing the 
generation of well-formed sentences (expressions) for a 
given language. String sequences in a generative grammar 
are formed through rewriting rules where symbols on the 
right-hand side replace symbols on the left-hand side of a 
rule. 

5.1 Overview and Description 

In the following we give an example of generative 
grammar which can be used to derive a simple English 
sentence.  The grammar rules are as follows: 

 S    → NP VP 

 NP → Det NP 

 NP → Adj N 

 VP → V  Adv 

where S refers to “sentence” NP refers to “nominal 
phrase”, VP refers to “verbal phrase”, Det is for article 
(determiner), Adj is for adjective, N is for noun, and Adv 
is for adverb. Fig.  9 shows the derivation of a sample 
sentence using this generative grammar. The last row of 
the derivation holds the terminal symbols that cannot be 
further rewritten in contrast to the non-terminal symbols. 
Terminal symbols (in our example: The, scared, boy, 
runs, and furiously) are to be found in the language 
lexicon. 

 Noam Chomsky [19] classified generative grammars 
into four types according to their restriction level from 
type-0 (unrestricted) to type-3 (highly restricted). This 
classification is now known as “the Chomsky hierarchy”. 

Fig.  10 shows a visual representation of the Chomsky 
hierarchy. From the figure it is clear that each type is 
contained in the less restrictive types. In other words, a 
type-3 grammar is also a type-2, a type-1, and a type-0 
grammar. Similarly, a type-2 grammar is also a type-1 and 
a type-0 grammar. 

Table 1 compares the four types of grammars defined 
by Chomsky. As we go down in the Chomsky hierarchy 
(from type-0 to type-3), complexity and generative 
capacity decrease while restrictions increase. Type-0 
grammars produce the recursively enumerable languages 
recognized by a Turing machine. It has the lowest level of 
restriction and the highest generative capacity.  

Deciding whether a string belongs to such a language 
is an undecidable problem. The rules of type-0 grammars 
are in the form: α →β such that α and β are any sets of 
terminal and non-terminal variables. 

Type-1 grammars define context-sensitive languages. 
In this case, the number of symbols on the left-hand side 
of a rule must be less than or equal to the number of those 
on its right-hand side. Type-1 grammars are also highly 
generative, of exponential complexity, and recognized by 
linear bounded automata. Type-2 grammars, on the other 
hand, describe context-free languages that are recognized 
by pushdown automata which can make use of stack in 
determining a transition path. They are of medium 
generative capacity and of polynomial complexity. 
Finally, Type-3 grammars or regular grammars are the 
least generative and the most restrictive of all the four 
types. Its rules are restricted to only one non-terminal on 
the left-hand side and only one terminal on the right-hand 
side possibly followed by a non-terminal. Type-3 
grammars are of linear complexity and is recognized by 
deterministic or non-deterministic finite state automata 
(DFA or NFA). 
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On the other hand, a renowned grammar system is 
Lindenmayer System or L-System [20] which is famous 
for parallel rewriting. Parallel rewriting is finding all the 
possible derivations for a given rule simultaneously. 
These are especially suited for representing self-similarity. 
L-Systems were used primarily in microbial, fungal, and 
plant growth portrayal.  

5.2 Generative Grammar in Algorithmic Composition 

Forming music through grammars can be achieved by 
replacing strings with music elements such as chords, 
notes pitch, and duration. The major design concern in 
composing music with grammars is the formulation of the 
set of grammar rules itself, most of the time this step is 
carried out manually then rules are fed into the system. 
However, there exists other software where grammar rules 
are extracted (inferred) from a previously composed 
music corpus; a process that is called “grammatical 
inference”. During the music composition process, a 
human composer converges from the main piece theme 
towards its individual elements and notes. Likewise, 
music composition by grammar converges from level to 
level in conjunction with the derivation of symbols and 
musical elements. 

One early work that extremely influenced music 
composition by grammars, is the book named “A 
Generative Theory of Tonal Music” [21]. The book 
describes the relation between tonal music and linguistics 
where the authors grammatically analyze tonal music. The 
book was not intended for computer music composition, 
nonetheless, the concepts within the book were further 
utilized in this research field. Melody morphing by 

Hamanaka et al. [22] is an example of the works inspired 
by the book.  

Cruz-Alcázar et al. [23] developed a grammatical 
inference system for modeling a musical style which was 
then used in generating automatic compositions. They 
expanded on their work in [24] adding more comparisons 
between different inference techniques and music coding 
schemes (absolute pitch, relative pitch, melody contour, 
and relative to tonal center). 

A basic approach for employing L-Systems in music 
composition applications was to interpret the graphical 
representations produced by L-Systems into musical notes 
such as in [25]. Kaliakatsos-Papakostas et.al. [12] 
modified finite L-Systems to generate rhythm sequences. 
Quick and Hudak [26] presented a novel category of 
generative grammars in their work called Probabilistic 
Temporal Graph Grammars (PTGGs), that handles the 
temporal aspects of music and repetitive musical phrases. 
Melkonian [27] expanded on Quick and Hudak's [26] 
probabilistic temporal graph grammars in order to include 
generating of melody and rhythm in addition to generating 
harmonic structures. 

6. LINEAR PROGRAMMING 

Linear programming or linear optimization is a subset 
of mathematical programming (optimization) where an 
optimal solution is found for a problem with multiple 
decisions about limited resources. In linear programming, 
a problem is formulated as a mathematical model with 

Type Language Automaton Complexity 
Generative 

Capacity 
Production Rule 

Type-0 
Recursively 

enumerable 
Turing machine Undecidable Very high α → β 

Type-1 Context sensitive 
Linear-bounded 

automaton 
Exponential High αAβ → αγβ 

Type-2 Context-free 
Push-down 

automaton 
Polynomial Medium A → γ 

Type-3 Regular DFA or NFA Linear Low A → b or A → bC 

TABLE 1. COMPARISON OF GENERATIVE GRAMMARS 

Figure 9. Derivation of a generative grammar 

Figure 10 - Chomsky Hierarchy 
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linear relationships.  

6.1 Overview and Description 

In order to solve a problem using linear programming 
the following steps are involved: 

1. Modeling the problem mathematically 

2. Examining all the possible solutions for the 

problem 

3. Finding the best (optimal) solution out of all the 

possible ones 

A linear programming model can be described as 
follows: 

1. Set of decision variables X = {x1,x2,...,xn} 

2. Objective function Z = c1x1 + c2x2 + ... + cnxn or  

                               Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

3. Set of constraints: 

a11x1 + a12x2 + ... + a1nxn ≤ b1  

a21x1 + a22x2 + ... + a2nxn ≤ b2 

. 

. 

. 

am1x1 + am2x2 + ... + amnxn ≤ bm ,  

 

where all elements in X ≥ 0 
Finding a solution for a two-variable linear 

programming model is simple; it can be solved 
graphically via drawing straight lines that correspond to 
each constraint in a two-dimensional space. The area 
covered by each straight line contains the values of its 
possible solutions and the area covered by all the lines 
(area of intersection) represents the “feasible region” or 
“feasible solution space”. The shaded area in the graph in 
Fig.  11 is an example of a feasible region; where Con1, 
Con2, and Con3 model the linear equations of each 
constraint.  

However, when there are more than two decision 
variables, the “simplex method” is adopted for finding the 
problem solution. Instead of exploring all the feasible 
solutions, the simplex method deals only with a specific 
set of points called the “extreme points” which represents 
the vertex points of the convex feasible region containing 
all the possible solutions. Fig.  12 is a basic version of the 
simplex method described geometrically, for more 
mathematical details please check [28] (P. 864 - 878). 

The simplex algorithm starts by locating an extreme 
point in the feasible region. Among all the edges 
connected to the extreme point, the algorithm searches for 
the edge with the highest rate of increase in favor of the 
objective function. It then moves along this edge until it 
reaches the next extreme point. The aforementioned step 
might have two results; either a new extreme point is 
found, or the edge turns out to be infinite which means 
that this problem is unbound and has no solution. This 
algorithm repeats until no more increasing edges are 
found.  

6.2 Linear Programming in Algorithmic Composition 

Linear programming has been excessively employed 
in timbral synthesis; the main idea is to distribute sounds 
in what is called a timbral space. When the user enters 
specific descriptors to describe the desired timbre 
properties, these descriptors are given numerical values 
and represented as linear equations in the timbral space. 
The generated linear equations represent the boundaries of 
the region containing the desired timbre, hence, solving 
them using linear programming results in the optimal 
sound.  

Locate a starting extreme point EP 

while TRUE do 

    for all the edges containing EP do 

       find the edge E that provides the greatest  

       rate of increase for the objective function 

    end for  

    if E = NULL then 

       RETURN EP  % no more increasing edges found 

    end if 

    Move along E to reach the next extreme point 

    if a new extreme point is found EP(new) then 

       Let BFS = BFS(new) 

    else 

       RETURN FAIL   % The edge is infinite; 

                       no solution found 

    end if 

end while 

 
Figure 12. Simplex Algorithm (Basic version) 

Figure 11. Graph of Linear Programming Model for a Two 

Decision Variables Problem 
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Timbral synthesis has earlier been based on verbal 
descriptions. However, Mintz [29] built his timbral 
synthesis on a more standard format which is MPEG-7. In 
his method, users can define the timbre they want using 
standardized descriptors. His model contains a timbral 
synthesis engine that turns these descriptor values into 
control envelopes producing synthesis equations. The 
coefficients of these equations are mapped as specific 
points in the timbral space. Seago et al. [6] also worked 
with timbral spaces. They proposed a timbre space search 
strategy, based on Weighted Centroid Localization 
(WCL). They expanded on their work in [30]. However, 
the authors pointed out that this method suffers from slow 
convergence. 

7. GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are a class of evolutionary 
algorithms, they are also considered as stochastic search 
techniques. GAs tend to emulate the natural system of 
evolution on computers. Natural evolution is based on the 
fact that organisms produce excess offspring than that 
could survive. The large offspring compete over limited 
resources; thus, only those individuals who are best suited 
to their environment (best fit) will be able to survive. The 
surviving offspring reproduces and transfers its traits to its 
offspring creating a more fit generation each time. 

7.1 Overview and Description 

GAs portray natural evolution by working on a 
population of artificial chromosomes. Each artificial 
chromosome is formed of a number of genes, each is 
represented by a “0” or “1”. Hence, mapping any problem 
to be solved by GAs involves, first, encoding individuals 
(representing potential solutions) into chromosomes. A 
fitness function decides how fit the individuals in each 
generation are. Genetic operations (crossover and 
mutation) on the best fit chromosomes evolve a new 
generation.  

The steps of GA are demonstrated in more detail in 
Fig.  13. The very first step is to formulate chromosomes’ 
binary genes. The population size is defined from the 
beginning, same for the crossover and mutation 
probabilities, Pc and Pm respectively. These probabilities 
determine the applied ratio of the crossover and mutation 
operations in each generation. A fitness function is then 
defined according to the satisfying criteria of describing a 
“fit” chromosome. Next, one generation of chromosomes 
is generated (the first generation). The fitness function is 
then applied to each chromosome to return its fitness 
ratio. According to the returned fitness ratios, the best fit 
chromosomes are selected, and genetic operators are 
applied to each pair of them. The result is a new 
generation of chromosomes that passes through the same 
process over and over again until the desired fitness is 
attained or until the maximum number of generations is 
reached. 

Other than selection, a GA mainly relies on the 
crossover and mutation operators. Mutation is the 
flipping of one randomly selected gene in the 
chromosome, while crossover involves splitting a pair of 
chromosomes at a randomly selected crossover point and 
exchange the resulting chromosome sections. Fig.  14 
gives an example of each operation.  

7.2 GAs in Algorithmic Composition 

GAs have been broadly used in the field of 
algorithmic composition. GAs are suited for music 
composition applications due to the following [31]: 

1. They help in generating many segments 

(generations) to form larger musical pieces. 

2. Musical segments are continuously generated and 

examined, which generally complies with the 

composition process and concepts. 

3. The generated music is always evaluated through 

fitness metrics which improves the quality of the 

generated music. 

Represent chromosomes in binary format 

Set Size of population to N 

Set mutation probability to Pm 

Set crossover probability to Pc 

Define the fitness function: Fitness_Fn() 

Produce the first generation of chromosomes 

X1,X2,...,XN 

repeat 

  for each i do 

    Call Fitness Fn(i) to GET the fitness ratio FX  

   end for  

   repeat 

     Choose a pair of chromosomes Xi and Xj   

        according to their fitness ratios FX1 and FX2 

     Apply genetic operators on Xi and Xj according 

     to Pc and Pm 

     Add new Xi’ and Xj’ to the new generation  

   until number of chromosomes of the new 

         generation = N 

   Replace old generation with the new one  

until a chromosome with satisfying fitness is  

      found or the maximum number of generations  

      is reached 

Figure 13. The Genetic Algorithm 

Figure 14. Examples on mutation and crossover 
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4. The generated results are also affected by how 

music is encoded. 

Music is encoded either in the form of absolute or 
relative pitch; absolute pitch encoding specifies the 
concrete note pitch value in binary, while relative pith 
encodes the distance between two consecutive notes. 
Table 2 compares between absolute and relative pitch. 

Genetic operators are twisted to be applied to music; 
for example, mutation and crossover are changed into 
mirror and crab. However, these twists can be applied to 
western music only where the distance between notes in 
the scale are constant. These transformations, on the other 
hand, are supposed to work on musical segments 
primarily musically related. This is, nonetheless, 
problematic in GAs due to the continuous generation of 
new fragments through rearranging chromosomes, and 
thus, losing their musical structure in the process. Large 
musical fragments are problematic because the musical 
context is completely changed with every genetic 
operator, resulting in a possibly undesirable abrupt 
modulation. To overcome this issue, we can use rule-
based techniques to control and guide the operators 
according to the musical domain modeled in the rules. 
Moreover, since we are dealing with context-dependent 
information, Markov chains and generative grammars can 
be used as promising potential aids to GAs for better 
handling such information. 

Fitness evaluation also represents a challenge for GAs 
in music. At first, human user evaluation has been 
adopted for GAs; this however, caused the algorithm to be 
delayed waiting for the user input. Consequently, 
techniques such as rule-based and neural networks were 
utilized in fitness functions as a weak alternative to human 
evaluation. Nonetheless, research involving more than one 
fitness function proved to produce better results. 

There are plenty of applications of GAs in the 
different music composition tasks. As for melody 
generation, the work of Pedro J. Ponce de León et al. [32] 
enhanced the selection process through developing a 

multi-objective fitness function. Moreover, they proposed 
a new data structure; “Melodic Trees” for chromosomes 
representation. For the task of timbre synthesis, Carpentier 
et al. [33] developed an evolutionary algorithm that, not 
only discovers optimal orchestration solutions, but also 
indulges in the examination of non-spontaneous mixtures 
of sounds. 

GAs were also employed in chord generation, such as 
the polyphonic accompaniment generation (formed of 
main, bass, and chord) system of Liu et al. [34]. In their 
system they implemented a fitness function that is built 
upon evaluation rules inspired by music theory. Later, 
they enhanced their system in [35] by mining and 
extracting chord patterns from specific composer’s music 
to be introduced as genes in the GA. In addition to chords, 
Liu’s work included bassline and rhythm generation, 
through the merging of GAs and data mining. 

Recently, R. De Prisco et al. [36] developed an 
algorithm for automatic music composition using an 
evolutionary algorithm. They work on chorales of four 
voices. Their algorithm takes one of the voices as input 
and produce the rest of the four voices as output. they aim 
to finding both; suitable chords, in addition to the melodic 
lines. They not only proposed a novel representation for 
the chromosomes, but also, they enhanced the quality of 
the new generations through customizing operators to 
make use of music theory and musical statistical analysis 
on a Bach’s chorales corpus. As for the fitness function, 
the authors used a multi-objective fitness function dealing 
with both the harmonic and the melodic aspects. 

Abu Doush and Sawalha [37] combined GAs and 
neural networks for composing music. They implemented 
a GA to generate random notes and used neural networks 
as the fitness function for that algorithm. The authors 
compared between four GAs with different combinations 
of parameters such as; tournament and roulette-wheel for 
the selection phase and one-point and two-point 
crossovers. Their experiments showed that using 
tournament selection and two-point crossover generate 
music compositions of higher quality. 

8. ARTIFICIAL IMMUNE SYSTEMS 

Researchers developed Artificial Immune Systems 
(AIS) aspiring to find solutions for their research 
problems based on concepts inspired by the biological 
immune system. The biological immune system protects 
our bodies from pathogen attacks (harmful 
microorganisms that stimulate immune response). Unlike 
the centralization of the neural system that is controlled by 
the brain, the biological immune system is decentralized 
and distributed throughout the body. 

Absolute Pitch Relative Pitch 

When a chromosome is 

modified the following 

sequence stays intact. 

When a chromosome is 

changed all the following 

notes are affected. 

Preferred if transpositions 

apply to one voice of 

polyphonic movement. 

Allows for transposition for 

whole segment. 

Mutation produces larger 

modification. 

Mutation causes less 

modification. 

TABLE 2. COMPARISON BETWEEN ABSOLUTE AND RELATIVE 

PITCH 
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 The immune system has the advantage of being 
robust, self-organized, and adaptive. It has pattern-
recognition and anomalies detection capabilities, and it 
keeps track of previous attacks for better future responses. 
When a body is attacked by pathogens, the immune 
system detects them and instantiates a primary defense 
response. If the attack repeats later, the immune system 
remembers that past experience and consequently 
launches a secondary response quicker than the primary 
one. The immune system has the ability to differentiate 
between self (those belong to the body) and non-self cells 
(invaders). The term “B cell” refers to a part of the 
immune system that produces antibodies targeting the 
pathogens to be diminished from the body. Antibodies are 
produced when B cells clone and mutate after a process of 
recognition and stimulation. 

8.1 Overview and Description 

Prior to solving problems by AIS, the “antigens” and 
“antibodies” need to be defined in terms of the problem 
domain, and then encoded in binary format. An important 
design choice is the “affinity metric” (also called the 
“matching function”) which is pretty similar to the 
“fitness function” in GAs. Selection and mutation 
operations also need to be determined (mutation is also 
very similar to that in GAs, based on flipping bits). When 
all the above is well defined the algorithm can then be 
executed. 

The most famous selection algorithms in AIS are 

“negative selection” and “clonal selection” algorithms. 
The negative selection algorithm proposed by Forrest et 
al. [38], is shown in Fig.  15 reproduced from [39]. Its 
idea is to differentiate between self and non-self cells and 
to react differently to them. The input to this algorithm is 
a set of self strings that are stored and marked as friendly 
normal data. The first phase of the algorithm is the 
generation of string detectors. Detectors are generated as 
random strings and matched with the list of self strings 
keeping only those that do not match. The second phase is 
to monitor the system for detection through continuously 
matching the input strings with the detector strings and 
streaming out those that match. 

Clonal selection is based on the idea of cloning the B 
cells that are proved to be of the highest match with the 
antigens (highest affinity). The cloned B cells act as an 
army for defending the body against antigens; because 
they have the correct antibodies inside them. The clonal 
selection algorithm is shown in Fig.  16 reproduced from 
[39]. The first step in the algorithm is to generate a 
random group of B cells. The affinity is then calculated 
between each antigen and all the B cells. The B cells of 
the highest affinity are cloned proportionally to the 
affinity measure. The cloned cells are mutated with a 
probability that is inversely proportional to the affinity 
measure. The affinity of the mutated clones, with respect 
to the antigen, is then calculated. The B cell clones of 
higher affinity replace the B cells of lower affinity in the 
old generation. Furthermore, a copy of the clones with the 
highest affinity is kept in memory.  

input: S = a set of antigens, representing data 

           elements to be recognized. 

output: M = set of memory B-cells capable of 

            classifying unseen data elements. 

Generate set of random specificity B-cells B. 

for all antigens ag ∈ S do 

   Calculate affinity of all B-cells b ∈ B with ag.  
   Select highest affinity B-cells, perform 

   affinity proportional cloning, place clones  

   in C. 

   for all B-cell clones c ∈ C do 
      Mutate c at rate inversely proportional to 

      affinity. 

      Determine affinity of c with ag. 

   end for 

   Copy all c ∈ C into B. 

   Copy the highest affinity clones c ∈ C into 
   memory set M. 

   Replace lowest affinity B-cells b ∈ B with 
   randomly generated alternatives.  

end for 

 
Figure 16. Clonal Selection Algorithm (Reproduced from [39]) 

input: S = set of self strings characterizing 

           friendly, normal data. 

output: A = Stream of non-self strings detected. 

Create empty set of detector strings D. 

Generate random strings C.  

for all random strings c ∈ C do 
    for all self strings s ∈ S do 
        if c matches s then 

            Discard c  

        else 

            Place c in D  

        end if  

    end for 

end for 

while there exist protected strings p to check do 

    Retrieve protected string p  

    for all detector strings d ∈ D do  
        if p matches d then 

            Place p in A and output. 

        end if 

    end for 

end while 

 

Figure 15. Negative Selection Algorithm (Reproduced from [39]) 
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8.2 AIS in Algorithmic Composition 

As previously mentioned in Section 2.2, AIS has been 
used for chord generation by Navarro-Cáceres et al. [10] 
to provide a recommendation for the following chord in a 
sequence. AIS is unique in that it provides more than one 
suggested solution (chord) because multiple optima are 
found in parallel. In the case of chord generation, the 
suggested multiple optima need to be filtered to offer a 
threshold for generating the good chords only. Navarro-
Cáceres et al. expanded on their work in [40] and 
enhanced their AIS so as to optimize an objective function 
that encodes musical properties of the chords as distances 
in the so called Tonal Interval Space (TIS). Chord 
selection is viewed as a search problem in a the TIS 
geometric space in which all chords are represented under 
certain constraints. Navarro-Cáceres’ work is centered 
about generating the next candidate chord given the 
previous two chords as an input; thus, their system 
captures short-term dependencies only and need 
enhancements to generate a chord that depends on the 
whole music context rather than the previous few chords 
only.  

For the task of computer aided orchestration, Caetano 
et al. [41] developed a multi-modal AIS that comes up 
with new combinations of musical instrument sounds as 
close as possible to the encoded sound in a penalty 
function. In contrary to chord generation, the nature of the 
orchestration problem is that it may hold more than one 
possibility, hence the aim of Marcelo’s system was to 
maximize the diversity in the solution set of the multi-
modal optimization problem. This approach led to the 
existence of various orchestrations for the same reference 
sound and actually embraced the multiple optima 
phenomena in AIS. 

Navarro‑Cáceres et al. [42] have recently introduced 
an interesting application for chords generation based on a 
neurological phenomenon called Synesthesia. In this 
phenomenon, the stimulation of one sensory, results in 
automatic, involuntary experiences in a second sensory. 
Inspired by this phenomenon, the authors extract sound 
from colors for chord progressions generation utilizing an 
AIS. They extract the main colors from a given image and 
feed them as parameters to the AIS. They developed an 
optimization function to come up with best candidate 
chord for the progression, according to its consonance and 
relationship with the key and the previous chords in the 
progression. 

9. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) aim for simulating 
the biological neural system controlled by the brain. A 
biological neural system is composed of small 
interconnected units called neural cells or neurons. A 
biological neuron is a special type of cells that processes 
information. A neuron has four parts: Dendrites, Soma, 

Axon, and Synapses. Dendrites help the neuron receive 
information from other neurons. Soma is the cell body 
that is responsible for information processing. A neuron 
sends information through Axon. Synapses help a neuron 
to connect with other neurons in the network. 

9.1 Overview and Description 

An Artificial Neuron (AN) models the biological 
neuron; it also has inputs, a node (body), weights 
(interconnections) and an output. Fig.  17 adapted from 
[43] shows a diagram of an artificial neural.  

The variables in the figure are: 

1. Input variables {x1,x2,...,xN}: features or attributes 

coming from other neurons connected to the current 

neuron. 

2. Weights {w1,w2,...,wN} : factors multiplied by the 

inputs to control how much each input is affecting 

the result. 

3. Summation result a: It is the weighted sum of all 

inputs. 

4. Bias b: A constant affecting the activation function 

f(u) where 𝑢 = 𝑎 + 𝑏 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑁
𝑖=1  

5. Error threshold θ = -b which is applied to the neuron 

output to decide whether the neuron will fire or not. 

6. Neuron output Y = f(u) 

7. Activation Function f(u): It is the function applied to 

u to determine the final output Y.  f can be a linear, 

step, or sigmoid function, among others.  

One of the building blocks of neural networks design 
is the “network topology” which is how the neurons are 
organized in the network. There are two main types of 
topology: 

1. Feedforward networks: In a feedforward network 

signals move in one direction from input to output. A 

feedforward network can either be:  

(a) A single layer feedforward network (single layer 

perceptron): A network having only one layer of 

nodes connected to the input layer. This type of 

network is typically used to solve linearly 

separable classification problems.  

Figure 17. Artificial neuron (Adapted from [43]) 
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(b) A multilayer feedforward network: A network 

having one or more layers between the input and 

the output layer. Multilayer networks are fully 

connected which means that each neuron in one 

layer is connected to all the neurons in the next 

layer. This type of networks is typically used to 

solve non-linearly separable classification 

problems. 

2. Feedback Networks: In a feedback network signals 

can flow in both directions such as in the case of 

Recurrent Neural Networks (RNNs) which have 

closed loops in their architecture. They have 

connections from units in a layer leading to the same 

layer or to previous ones through what is called 

“context neurons”. This kind of networks is dynamic 

and keeps changing until it reaches an equilibrium 

state. RNNs provide a means of storing information 

from previous epochs (training cycles) and using 

them in future ones, i.e. they support long-term 

dependencies. For even more support of long-term 

dependencies, Long Short-Term Memory (LSTM) 

networks add memory block units to recurrent 

networks. 

ANNs are trained (they learn) to perform the desired 
tasks. There are three ways an ANN can learn with: 

1. Supervised learning: A dependent type of 

learning in which the output of the network is 

compared with the desired output. According to 

the difference between the actual output and the 

desired output, the weights of the network are 

updated until the neuron’s output match the target 

output. Supervised learning examples include: 

the delta rule for training single layer perceptrons 

and the backpropagation algorithm to train 

multilayer networks. 

2. Unsupervised learning: An independent type of 

learning typically used for clustering input data 

of similar types or for dimensionality reduction. 

3. Reinforcement learning: A semi-dependent type 

of learning based on reward and punishment. 

Without labeled data items, the network receives 

a feedback from the environment as an evaluation 

to its performance. 

Since backpropagation is one of the most powerful 
learning algorithms that are widely used in different types 
of ANNs, we provide a simplified version of this 
algorithm in Fig.  18 (adapted from [44]), assuming the 
network has only one hidden layer. The input training 
samples (or vectors) are fed into the network and 
transferred to the hidden layer as weighted sums. The 
hidden layer units apply an activation function to these 
sums, then they transfer the results to the output layer 
units as another set of weighted sums. The output of the 

 Initialize weights (small random values) 

 repeat 

  for each training sample do 

     –FEEDFORWARD– 

Each input unit receives an input signal Xi 

∈ {x1,x2,...,xn} and broadcasts it to all 

the hidden units in the next layer 

Each hidden unit Zj ∈ {Z1,Z2,...,Zp} sums the  
weighted input signals: 

          𝑧_𝑖𝑛𝑗 =  𝑣0𝑗 + ∑ x𝑖𝑣𝑖𝑗
n
i=1  

then applies the activation function to the 

output zi = f(z_inj) then broadcast its 

signal to all the units in the output layer 

Each output unit Yk ∈ {y1,y2,...,ym} sums the 
weighted input signals: 

          𝑦_𝑖𝑛𝑘 =  𝑤0𝑘 +  ∑ z𝑖𝑤𝑗𝑘
p
j=1   

then applies the activation function to 

the  

output    𝑦𝑘  =  𝑓(𝑦_𝑖𝑛𝑘) 

–BACKPROPAGATION– 

For each output unit Yk ∈ {y1,y2,...,ym}, the 
error σk is computed between the output 

signal and the target sample corresponding 

to the  

training input sample  

          𝜎𝑘  =  (𝑡𝑘  −  𝑦𝑘)𝑓′(𝑦_𝑖𝑛𝑘) 
where f0 is the derivative of the 

activation function. The weight correction 

term is then  

calculated 

∆𝑤𝑗𝑘  =  𝛼𝜎𝑘𝑧𝑗 

and the error σk is transferred to all the 

hidden units in the previous layer 

For each hidden unit Zj ∈ z1,z2,...,zp the 
weighted sum of the transferred error is 

calculated 

           𝜎_𝑖𝑛𝑗 =  ∑ 𝜎𝑘𝑤𝑗𝑘
𝑚
𝑘=1  

The error information is then calculated:  

           𝜎𝑗  =  𝜎_𝑖𝑛𝑗𝑓′(𝑧_𝑖𝑛𝑗) 

and the weight correction term is  

calculated: 

                 ∆𝑣𝑖𝑗  =  𝛼𝜎𝑗𝑥𝑖    where α is the  

                               Learning rate 

Weights of the hidden layer are updated 

𝑣𝑖𝑗(𝑛𝑒𝑤)  =  𝑣𝑖𝑗(𝑜𝑙𝑑)  +  ∆𝑣𝑖𝑗 

Weights of the output layer are updated 

𝑤𝑗𝑘(𝑛𝑒𝑤)  =  𝑤𝑗𝑘(𝑜𝑙𝑑)  +  ∆𝑤𝑗𝑘 

   end for 

 until Error threshold is reached 

Figure 18. Backpropagation Algorithm (Adapted from [44]) 
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network is the result of applying the activation function in 
the output layer. The difference between the output and 
the corresponding target sample data is calculated which 
serves as the error factor. The weighted error sum is 
propagated backward from the output layer to the hidden 
layer and from the hidden layer to the input layer. 
Meanwhile, the weight correction factor is calculated for 
each unit (in terms of the error factor) which is then used 
to update the network weights. The whole process is 
repeated until the error becomes less than a given 
threshold. 

9.2 ANNs in Algorithmic Composition 

There are many examples of using ANNs in musical 
tasks. For chorale music, Hadjeres et al. [45] aimed for 
imitating Bach’s chorales in their system using a 
dependency network and pseudo-Gibbs for the music 
sampling. On the other hand, Yamada et al. [9] set up a 
comparison between adopting Bayesian Networks (BNs) 
and recurrent neural networks in chorale music generation 
to show the strengths and weaknesses of each. 

Recent research about chord generation using ANNs 
include that of Brunner et al. [46] and of Nadeem et al. 
[47]. The former’s system produces polyphonic music 
based on combining two LSTMs. The first LSTM 
network is responsible for chord progression prediction 
based on a chord embedding. The second LSTM then uses 
the predicted chord progression for generating polyphonic 
music. The latter’s system produces musical notes 
accompanied by their chords concurrently. They use a 
fixed time-step with a view to improve the quality of the 
music generated. To produce new music, chords and notes 
networks are trained in parallel and afterwards their 
outputs are combined through a dense layer followed by a 
final LSTM layer. This technique ensures that both inputs, 
notes and chords, are being dealt with along all the steps 
of generation, and thus, become closely related. As 
mentioned earlier in Section 7.2, Abu Doush and Sawalha 
[37] employed neural networks to compute the fitness 
function for a GA. They were trained to learn the 
regularity and patterns of a set of melodies.  

10. DEEP NEURAL NETWORKS 

Deep Neural Networks (DNNs) are distinguished from 
single hidden layer ANNs by their depth. The network’s 
depth means the number of layers that an input has to pass 
through until it reaches the output layer. 

10.1 Overview and Description 

A famous type of deep neural networks is the 
Convolutional Neural Network (CNN). CNNs apply the 
convolution operation instead of general matrix 
multiplication (weighted sum) in at least one of its layers. 
Fig.  19, adapted from [48], shows the general architecture 
of a CNN. The main building blocks of a CNN are the 
input, output, convolutional, pooling, and fully connected 
layers. The idea behind CNNs is to decompose a given 
problem into smaller ones and work on solving each. the 

convolution layer in a CNN applies several filters on the 
input data such that each filter extracts a specific feature 
from it. The maxpooling layer performs dimension 
reduction by keeping only data items of highest values 
within the pooling size. The output from maxpooling is 
then flattened to be introduced to a fully connected neural 
network which in turn produces the final output. 

The convolutional layer performs the computation 
defined by the following mathematical equation (the dot 
product between the input data and a given filter): 

 (𝐼 ∗ 𝐹)(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑢, 𝑣)𝐹(𝑥 − 𝑢, 𝑦 − 𝑣)𝑥+𝑤
𝑢=𝑥−𝑤

𝑦+ℎ
𝑣=𝑦−ℎ  

where I is the input, F is the filter of width 2w + 1 and 
height 2h + 1. F is defined over [−w,w] × [−h,h]. A simple 
pseudocode for the convolution process is described in 
Fig.  20 adapted from [49]. This can be interpreted 
visually as a window scanning the input data from left to 
right and from up to down moving one cell at a time. At 
each step, a dot product is computed between the 
window’s values and the current values of the input data 
that corresponds in position to the window. These steps 
repeat until the algorithm finishes scanning the input data. 
Training the CNN can be done through applying the 
backpropagation algorithm on the features map produced 
from the convolution process in the fully-connected layer. 

10.2  DNNs in Algorithmic Composition 

Given the filter array F of size Fw ×Fh and the 

input data array I of size Iw × Ih  

for y from 0 to Ih do 

for x from 0 to Iw 

do sum = 0  

  for j from 0 to Fh do 

     for i from 0 to Fw do 

  sum += I[y + j][x + i] ∗ 
F[j][i]  

         end for 

end for 

C[y][x] = sum/(Fw ∗ Fh)  

        end for 

end for 

return C 

 

Figure 20. Convolution Pseudocode (Adapted from [49]) 

Figure 19. Convolutional Neural Network Architecture  

(Adapted from [48]) 
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CNNs were employed by Huang et al. [8] for 
composing music in a nonlinear fashion closer to human 
composers’ style of composition, rather than the 
chronological style. Their CNN was trained to generate 
partial musical scores. Moreover, they introduced the use 
of blocked Gibbs sampling as an equivalent to music 
rewriting. 

Deep RNNs implemented by Colombo et al. [50] for 
the purpose of melody generation, had the ability to 
capture the long range temporal structure of music. 
Temporal dependencies were also modeled in Benjamin 
Smith’s [51] work through the help of a Convolutional 
Restricted Boltzmann Machine (CRBM). They could 
achieve full reconstructions of musical pieces just from a 
starting seed note. BachBot is a recent research project by 
Liang et al. [52] that imitates Bach’s chorales style 
through a deep LSTM generative model. Inspired by 
CNNs, Johnson [53] developed two deep networks 
architectures for polyphonic music composition; Tied 
Parallel LSTM-NADE (TP-LSTM-NADE) as well as Bi-
Axial LSTM (BALSTM). Johnson designed his models so 
as to be transposition invariant; i.e., making the training 
independent from the musical key. In brief, he divides the 
process of music generation into a set of tied parallel 
RNN networks with tied weights between them such that 
each network is responsible for a single note prediction. 
Since all the networks use the same procedure to calculate 
their outputs, a shift in the input will cause an equal 
amount of shift in the output; thus, the process is 
transposition invariant. The name Bi-axial comes from the 
combination of LSTMs with recurrent connections along 
two different axes: First along the time axis and then 
along the note axis. This architecture eliminated the need 
for windowing the input notes before introducing them to 
the networks, and thus, the captured dependencies 
between notes became not limited to the bunch of notes 
inside the window. Mao et al. [54] enhanced the biaxial 
model developed by Johnson [53] so as to include musical 
styles and music dynamics. They based their architecture 
on the bi-axial model nonetheless they added conditioning 
for style enforcement at every layer. However, both 
systems [53] and [54] lacked long term structure between 
notes and lacked central themes in the generated music. 

One of the powerful recent applications of DNNs in 
music is WaveNet [55] which is a deep neural network for 
generating raw audio waveforms. Although principally 
developed for speech synthesis purposes, WaveNet was 
able to produce reasonable musical waveforms when 
tested on musical piano pieces. The problem with 
WaveNets is that they are rather slow; producing 0.02 
seconds of audio in one second of time, and thus, not 
suitable for real time applications. Vasquez and Luis [56] 
developed an audio generative model based on WaveNet 
in the frequency domain. They work on spectrograms and 
their model is based on autoregression. Accordingly, it 
estimates a distribution element-by-element over the time 
and frequency. Their results were very promising on a 

wide range of applications not only music generation and 
the music generated by their system was of a rather high 
quality.  

Cífka et al. [57] have recently presented a one-shot 
style transfer approach. The authors clarify the meaning of 
one-shot learning to be the process of learning the concept 
of a class from a single example. They target 
accompaniment style transfer in their work. They 
introduce an encoder-decoder neural network that consists 
of two encoders one for content and one for style in 
addition to a decoder for the output generation. 

One year after developing WaveNet, the authors; Oord 
et al. [58], developed a much more advanced version of 
WaveNet. The new version uses probability density 
distillation which is a new method for training a parallel 
feed-forward network. It takes the new WaveNet only one 
second to produce twenty seconds of audio which is a 
thousand times faster than the original version. The new 
WaveNet has a reference (teacher) network that works 
correctly but slowly and is another (student) network that 
tries to mimic the teacher network but more efficiently. 
This architecture has somehow similar vibes as the 
generative adversarial networks described in the next 
section.  

11. GENERATIVE ADVERSARIAL NETWORKS 

Generative Adversarial Networks (GANs) were 
invented by Ian Goodfellow [59] in 2014. They are 
designed to put two ANNs in a competition with each 
other. GANs aims for imitating any distribution of data. 

11.1 Overview and Description 

The two main components of a GAN are a generator 
network G and a discriminator network D. Fig.  21, 
adapted from [60], shows the basic architecture of a GAN. 
The generator takes as an input randomly sampled data 
taken from a previously generated distribution and 
generates a fake sample. The input to D is either a real 
sample (taken from the prior distribution) or a fake sample 
(generated from G). The networks are trained such that D 
learns to distinguish between real and fake samples while 
G learns to deceive D. The objective function of a GAN 

Figure 21. Generative Adversarial Network Architecture 

(Adapted from [60]) 
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is: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉 (𝐷, 𝐺) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] 

                       +𝔼𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧)))] 

This formulation, in brief, suggests that G and D are 
playing a minmax game over an objective; that is to 
support D to assign the label ‘one’ to the real data and 
‘zero’ to the fake data. This is the objective that G aims to 
minimize, while D tends to maximize. G and D in the first 
GAN version were multilayer perceptron neural networks, 
nonetheless, these networks were later on replaced by 
convolutional deep neural networks. Two particularly 
interesting variations of GANs are the pix2pix [61] and 
cycleGAN [62]. These GANs generate images based on 
condition images rather than on random noise. Pix2pix 
and cycleGANs are used for supervised and unsupervised 
image style transfer respectively.   

11.2  GANs in Algorithmic Composition 

The field of computer music generation, among other 
fields, has excessively benefited from the invention of 
GANs. Yang et al. [63] were able to generate melody 
employing GANs; however, they worked on MIDI 
sequences in the symbolic musical space rather than 
working on waveforms. Dong et al. [64] succeeded in 
developing a multi-track music generation system 
utilizing GANs. They worked with piano-rolls music 
representation format which encodes music as binary-
valued time-pitch matrices. While convolutional GANs 
normally produce real values, they subsequentially 
enhanced their GAN, in [65], to overcome the problem of 
the resulting real-valued piano-rolls by incorporating 
binary neurons. They introduced a refiner network that is 
applied to the generator’s output. The output layer of the 
refiner network is formed of binary neurons. This 
approach achieved better results than the naïve 
binarization post-processing of the network’s output. Oza 
et al. [66] expanded on Dong’s work [65] by applying 
progressive training such that new layers are successively 
added to the pretrained, already converged, network. They 
start their training by small time-step values and pitch 
range, then they progressively enlarge these by adding 
more layers to the network. The total number of layers in 
their network after all the progressive training phases is 12 
layers in the shared generator and discriminator network 
and 8 layers in the refiner network. Progressive training in 
[66] lead to musically better results than [65] having 
lesser fragmentation of the notes and improving 
periodicity and melodic perception.  

Brunner et al. [67] developed a system for music style 
transfer utilizing cycleGANs. They perform music 
transfer between Classic, Jazz, and Pop styles. They 
trained their network with binary piano-rolls; however, 
they compressed all music tracks into one instrument 

removing drums track. Their network contained multiple 
discriminators in order to improve the fidelity of the input 
music to the input music structure. Their system generates 
music that is harmonic in general; nonetheless, this 
method is limited to musical files having few tracks and 
still does not capture notes velocities, correct duration, 
and instruments’ variations. 

Most recently, Jin et al. [68] developed a style-specific 
music generation system inspired from GAN and based on 
reinforcement learning. Their system consists of a 
generator, a control network, and a probability network 
(discriminator). The novelty of their system lies in the 
addition of a control network mediating between the 
generator and the discriminator, in addition to taking 
advantage of LSTM in the generator. There are three main 
tasks for the control network: 1. Introducing music rules 
to restrict the generated music to a specified style, 2. 
Calculating a loss function according to music theory 
constraints to generate high-quality music, and 3. 
Assigning a scoring to the music generated by the 
generator network by means of a reward function 
algorithm. Their system generated music that was 
evaluated to be of high quality but needed more 
enhancement to match the specified style. 

All the GAN applications mentioned so far in this 
section train on piano-rolls (binary-valued time-pitch 
matrices). Liu et al. [69] developed a GAN music 
generator that works on mel-spectograms, which they 
enhanced in [70]. In their system, the generator takes a 
variable-length sequence of noise vectors as input and 
generates variable-length mel-spectrograms.  

12. COMPARISON AND DISCUSSION 

Table 3 compares all top ten AI algorithms we 

covered. The table lists the recent applications of the 

algorithms for each computer music composition task. 

The table also highlights the strengths and weaknesses of 

each algorithm. In this section, we delve into a deeper 

discussion of their challenges and future directions.  

A. Rule-Based Reasoning 

 Our analysis shows that rule-based systems are 
suitable for representing music theory and rules. Adopting 
rule-based systems in music composition is 
straightforward due to the nature of music theory that is 
composed of rules. 

Challenges: In real life, it is not enough to have 
knowledge about music theory for composing music, yet 
musical skills and experiences are essential to accomplish 
the task. Similarly, the rule-based approach cannot be 
used alone for producing the desired musical 
compositions. Instead, they would achieve better results if 
used to assist other algorithms. 
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Future Directions: Rule-based systems can serve as 
pre- or post-processing tools within other music 
generation systems either for data selection or 
enhancement. We already gave an example for rule-based 
utilization in the evaluation function of AIS [10]. It would 
be interesting to study rule-based fitness functions in GAs 
as well. Basically, a study is needed to define the musical 

rules that can be used to compute a chromosome’s fitness. 
Additionally, rule-based algorithms can be integrated with 
neural networks, whether shallow or deep, to guide the 
overall convergence of the network according to musical 
guidelines. The same idea can also be applied to GANs 
where extra penalties can be added to the loss functions to 
generate images that are musically correct.  

Algorithm  Composition Task  Reference(s) Strengths Weaknesses 

(1) Rule-Based 

Counterpoint [14] (2010) Simple to implement because 

musical rules are already 
available, can serve as a 

guidance for other techniques. 

Insufficient alone for getting 

acceptable results. 

Chord [10] (2015) 

(2) Case-Based 

Reasoning 
Melody Pitch [15] (2002), [5] (2017) 

Excellent for learning by 
example. 

Insufficient for obtaining 
pleasing results. Requires 

external guidance or 

association with other 
techniques. Lacks creativity. 

(3) Markov Chains 

Melody Pitch [5] (2017) 
Predicts new successive notes 

based on previous knowledge. 

Predicts one note at a time. 

Lacks long term musical 
dependencies. Not suitable 

for polyphonic music. 
Counterpoint [17] (2018), [18] (2020) 

(4) Generative 

Grammars 

Melody Pitch 

[22] (2008), [23] (2003), 

[24] (2008), [25] (2009),  

[27] (2020) 

Fast compositions. 

Compositions conform to 
musical rules. 

Sometimes grammatical rules 

derivation is done manually. 
Various grammatical 

inference techniques affect 

the produced music quality. 
Accompaniment [26] (2013) 

Rhythm [12] (2012), [27] (2020) 

(5) Linear Programming Timbre 
 [29] (2007), [6] (2010), 

 [30] (2013) 

More successful than earlier 

verbal descriptors. Offers 

standardization through timbral 
spaces. 

Does not perform well in 

high dimensional timbral 

spaces. Slow convergence. 

(6) Genetic Algorithm 

Melody Pitch 
[32] (2016) 

[37] (2020) 

Simulates the natural 

composition process. Aids in 

concurrently executing multiple 
musical composition tasks. 

Single fitness function is 

insufficient for getting 

satisfying musical results, 
while multi-objective fitness 

functions are sometimes 
contradictory and need 

optimization techniques to be 

combined. 

Timbre [33] (2010) 

Chord [34] (2012), [35] (2015) 

Bass [34] (2012), [11] (2015) 

Rhythm [35] (2015) 

Chorales [36] (2020) 

(7) Artificial Immune 

System 

Timbre Orchestration [41] (2019) Suggests more than one 
solution. 

Might need a means of 

filtration if fewer solutions 

are needed, captures short-

term dependencies. 
Chord 

[10] (2015), [40] (2019), 

[42] (2020) 

(8) Artificial Neural 

Networks 

Chorale [45] (2017), [9] (2018) Can produce polyphonic music 
and four-part harmonization. 

RNNs and CRBM can capture 
long term dependencies in 

music. 

Contradicting results when 
adopting different networks 

for the same musical task. 
Dependency networks 

(among other types) are time 

consuming. 

Chord and 

 Pitch 

(Polyphonic) 

[46] (2017), [47] (2019) 

[35] (2015) 

Melody [37] (2020) 

(9) Deep Neural 

Networks 

Pitch [50] (2016), [51] (2017) Shown to produce appealing 
music. Capable of training on 

large musical corpus. Performs 

multiple compositional tasks 
concurrently. Excels in musical 

features extraction from data, 

enhancement of generated 
compositions through revisiting 

(in case of CNNs). 

As networks get deeper, the 
results get better at the cost 

of computational power. 

Some DNNs lack long-term 
relative dependencies 

between notes. 

Chorale [52] (2017) 

Counterpoint [8] (2019) 

Chord and pitch 

(polyphonic) 

[53] (2017), [54] (2018), 

[54, 56] (2016, 2017), 

[56] (2019) 

Accompaniment [57] (2020) 

(10) Generative 

Adversarial Networks 

Pitch 

[63] (2017), 

[63, 64] (2018),  

[66] (2019) 

The generated music is voted 

for as high quality. 

Consumes high energy rates. 

Needs special handling for 

music data. Still not perfect 
in capturing notes velocities 

and duration. Polyphonic [67] (2018), [68] (2020) 

     

TABLE 3. COMPARISON BETWEEN THE TOP 10 AI ALGORITHMS IN COMPUTER MUSIC 
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B. Case-Based Reasoning 

CBR systems are very good for resembling human’s 
way of learning from previous musical experiences. 

Challenges: CBR alone is rather limited and not 
sufficient for generating pleasing compositions. When 
applying CBR in music composition, the resulting musical 
pieces lack creativity as they are copies of previously 
composed musical pieces stored in the case-base. 

Future Directions:  CBR can assist other algorithms 
in music composition. We already gave an example 
combining CBR and Markov chains [5]. Further study is 
needed to combine CBR with other algorithms such as 
GAs and AIS in the fitness evaluation. It would also be of 
interest to incorporate CBR with GANs. For example, 
GANs would be responsible for generating melody lines 
and CBR would be responsible for fetching suitable 
accompaniments for the generated melodies. This can 
produce more creative musical pieces. Additionally, CBR 
needs to be further exploited in the automation of music 
composition tasks other than melody pitch generation, 
such as accompaniment music or rhythm generation. 

C. Markov Chains 

 Markov chains were proven to be suitable for melody 
generation as they excel in predicting new notes from 
previous knowledge.  

Challenges: Markov models can only predict one note 
at a time. As such, they lack long term dependencies; a 
key feature of musical pieces. On the other hand, Markov 
models are more suitable for composing monophonic 
music rather than polyphonic ones. This is because 
Markov models grow significantly in complexity as the 
number of musical voices increase. 

Future Directions: Markov models might be a 
suitable candidate to replace or assist the generator 
network of a GAN since it has the ability to predict the 
next musical notes. 

D. Generative Grammars 

 They provide for fast composition of musical pieces 
that conform to music rules.   

 Challenges: Generative grammars need wise 
decisions for each design issue such as how to formulate 
grammar rules, which grammatical rules to apply, etc. 
Most of the time the composition grammatical rules are 
formulated manually and fed into the system. This manual 
formulation of rules constitutes a severe overhead. On the 
other hand, grammatical inference techniques adopted 
produce rules of diverse quality potentially harming the 
quality of the produced music. 

Future Directions: Further research is needed in the 
automation of generative grammars derivation for music. 
Since current grammars are restricted to melodic and 

harmonic structures, it is encouraged to devise grammars 
for style and genre specific music generation. 

E. Linear Programming  

Linear programming aids a lot in timbre synthesis over 
the early verbal descriptors due to the idea of timbral 
spaces.  

Challenges: linear optimization works better for small 
dimensional spaces. In [6] it is stated that the WCL 
method performs significantly better in relatively simple 
three-dimensional spaces (in this case the formant space 
and the SCG-EHA spaces) than in spaces where the 
dimensionality is greater (the MDS space). 

Future Directions: research is needed for speeding up 
the convergence process in the WCL method. Another 
research direction would be to consider applying linear 
programing for different music composition tasks other 
than timbre synthesis devising spaces having the same 
style as timbral spaces but for notes or chords. Linear 
programming might also be a good candidate for being 
embedded in fitness evaluations for GA and AIS. 

F.  Genetic Algorithms 

GAs already provide enhancements in various music 
composition tasks such as melody generation, timbre 
synthesis, chord, bass, and rhythm generation. GAs are 
pretty similar to the natural process of music composition 
as quoted in [71]: “For composers, it provides an 
innovative and natural means of generating musical ideas 
from a specifiable set of primitive components and 
processes. For musicologists, these techniques are used to 
model the cultural transmission and change of a 
population’s body of musical ideas over time”. 

Challenges: GAs have challenges such as the 
challenge of designing the most convenient fitness 
function. Due to the multiple featured nature of music, 
single fitness functions are often not sufficient for a 
proper evaluation. This brought up the need for multi-
objective fitness functions; however, this approach excels 
only if suitable optimization is achieved among all the 
(sometimes contradictory) fitness criteria. 

Future Directions: In GAs, there is a need for 
research in fitness function enhancement to cope with the 
nature of musical notes and generate music from different 
genres. Additionally, the door is open for more research in 
applying other algorithms in the fitness computation, such 
as linear programming and rule-based algorithms. We 
already gave an example for employing ANNs to do so 
[37]. Further research can include experimenting with 
different types and architectures of ANNs and comparing 
the results. 

G.  Artificial Neural Networks 

Among the strengths of ANNs is the ability to 
generate polyphonic music [46] as well as four-part 
chorales [9, 45]. RNNs and CRBMs are excelling in 
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music composition applications due to their capability of 
capturing long-term dependencies as is the case between 
musical notes. Thus, these types of networks succeed in 
generating notes that are consonant with their previous 
ones. 

Challenges: most challenging design feature in any 
ANN music composition application is the network 
architecture that best suits the musical task to be 
performed. This is sometimes problematic and even 
contradictory; as shown in the comparison between RNNs 
and BNs for chorale generation in [9]. The comparison 
could not favor one network over the other since the used 
BN failed to produce smooth basslines despite producing 
consonant harmonies in general, while the used RNN 
produced almost monotonous alto and tenor lines, but 
produced smooth basslines. Another challenge for ANNs 
is the type of data they deal with. Cottrell et al. [72] 
devised a study that gives insight and hints about how 
ANNs can deal with complex data. Another problem with 
using ANNs in music composition is the large energy and  
time consumption of some network types such as 
dependency networks [45]. 

 Future Directions: The design architecture challenge 
opens the door for more research comparing the effect of 
different types of networks when implemented in each 
musical task. On the other hand, ANNs are already 
employed for GA’s fitness, and thus, they are worth 
exploring for AIS evaluation as well.  

H. Deep Neural Networks 

Similar to shallow ANNs, DNNs were shown to 
produce appealing music to the ears of human listeners to 
a great extent [46, 55]. Furthermore, DNNs excel in 
extracting musical features only from the provided 
(training) data without any prior musical knowledge, thus 
offering a successful data-driven model. DNNs prevail to 
produce compositions of the same style based on the 
extracted musical features, hence providing more 
generalization [49, 50, 51]. Additionally, CNNs in 
particular provide a realistic simulation for the whole 
composition process; revisiting and enhancing previously 
generated melody partials [8]. 

Challenges: In addition to ANN challenges, the main 
challenge of DNNs is that as they get deeper, they achieve 
better results at the cost of time and power consumption 
[51]. 

Future Directions: A hot and promising research 
direction in DNNs for music composition would be using 
“transfer learning” [73]. This concept of machine 
learning is based on reusing a model, that has been pre-
trained to perform a certain task, to perform another task. 
This method of using a pre-trained model as the starting 
point for another model, saves a lot of time and power. 
This method is popular in computer vision and language 
fields. It is of great interest to explore transfer learning in 
computer music composition field. 

I. Generative Adversarial Networks 

State-of-the-art GANs offer promising quality and 
appealing music. GANs aim to generate realistic musical 
pieces from complete random noise. 

Challenges: GANs need suitable optimization 
procedures and a lot of parameters tuning in order to 
coordinate the work between the different elements of the 
network and consequently achieve the best musical 
results. GANs are still not perfect in capturing notes 
velocity and duration [67]. We cannot deny the high 
computational power needed to work with GANs. Since 
GANs were primarily developed to work on image data, 
they need special adaptation to be able to work on musical 
data. 

Future Directions:  The door is wide open for research 
and experimentation with GANs in the field of computer 
music composition. Representing music as images for 
GANs to train on, is a promising research area. 
Specifically, it is interesting to devise creative 
representations for music into images other than the 
traditional symbolic representation to capture more 
musical data within them.   It is also worth further 
experimenting with increasing the number of 
discriminators such as the example in [67] (to handle 
more musical properties), or adding extra networks for 
musical quality control and even changing in the network 
architecture such as in [68]. It is also needed to handle 
more musical features in GANs such as velocities, note 
durations, and instrumentation. 

13. CONCLUSION  

In this paper we presented an informative survey about 
the most important algorithms that are frequently used in 
the field of computer music composition research. The top 
ten algorithms mentioned by order are: rule-based, case-
based reasoning, Markov chains, generative grammars, 
linear programming, biologically inspired algorithms such 
as; genetic algorithms, artificial immune systems, 
artificial neural networks, deep neural networks, and 
finally, generative adversarial networks.  

We started our survey by introducing the field of 
music composition, highlighting the main tasks involved 
in it. We then explored each of the aforementioned 
algorithms giving an overview and a description for each, 
supplying the needed explanatory diagrams and 
pseudocodes. We also focused on the application of each 
algorithm in the field of computer music composition. 
Moreover, we provided an insightful discussion and 
comparison between the presented algorithms shedding 
the light on their strengths, weaknesses, challenges, and 
future research directions. 

Our study aims for guiding researchers to the best 
research paths in the field, paving the way for more 
innovation. Our work highlights the most suitable 
algorithm or technique for performing each music 
composition task. In summary: Rule-based systems are 
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perfect for music theory representation. Case-based 
reasoning encapsulates musical experiences in the case-
base. Markov chains excel in predicting new musical 
notes given a previous one. Generative grammars enable 
fast generation of musical pieces that adhere to music 
rules. Linear programming is used for timbre synthesis. 
The biologically inspired algorithms enhance the quality 
of generated music and can apply various musical styles 
to it. 
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