

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Feb-2021)

E-mail: nermine.naguib@cis.asu.edu.eg, shorbaty@cis.asu.edu.eg, absalem@cis.asu.edu.eg

 http://journals.uob.edu.bh

Top 10 Artificial Intelligence Algorithms in Computer

Music Composition

Nermin Naguib J. Siphocly1, El-Sayed M. El-Horbaty1 and Abdel-Badeeh M. Salem1

 1Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

Received 02 Sep. 2020, Revised 28 Dec. 2020,, Accepted 24 Jan. 2021, Published 8 Feb. 2021

Abstract: Music composition is now appealing to both musicians and non-musicians equally. It branches into various musical tasks

such as the generation of melody, accompaniment, or rhythm. This paper discusses the top ten artificial intelligence algorithms with

applications in computer music composition from 2010 to 2020. We give an analysis of each algorithm and highlight its recent

applications in music composition tasks, shedding the light on its strengths and weaknesses. Our study gives an insight on the most

suitable algorithm for each musical task, such as rule-based systems for music theory representation, case-based reasoning for

capturing previous musical experiences, Markov chains for melody generation, generative grammars for fast composition of musical

pieces that comply to music rules, and linear programming for timbre synthesis. Additionally, there are biologically inspired

algorithms such as: genetic algorithms, and algorithms used by artificial immune systems and artificial neural networks, including

shallow neural networks, deep neural networks, and generative adversarial networks. These relatively new algorithms are currently

heavily used in performing numerous music composition tasks.

Keywords: Computer Music Composition, Machine Learning Techniques, Artificial Intelligence, Music Composition Tasks

1. INTRODUCTION

Thanks to the advancements in computer music
composition, it is of no surprise today to find non-
musicians composing very nice music, even on-the-go.
The desire to compose music with the aid of computers
returns back to the early days of computer invention. A
common belief is that the first musical notes produced by
a computer were heard in the late 50’s (Illiac Suite) by
Hiller et al. [1] through ILLIAC I computer at the
University of Illinois at Urbana–Champaign. However, a
recent research by Copland et al. [2] shows that musical
notes produced from computers were heard even earlier,
in the late 40’s, by Alan Turing; the father of modern
computer science himself. Although not intended
primarily to compose music, Turing emitted repeating
clicks from the loudspeaker of his Manchester computer
with certain patterns; which were interpreted by human
ears as continuous sound or musical notes. Building on
this and using the same Manchester computer,
Christopher Strachey, a talented programmer, succeeded
in 1951 to develop a program that plays Britain’s national
anthem “God Save the King” [3] along with other
melodies, which were then recorded and documented by
the BBC [4]. It is still undeniable that Hiller’s research [1]

results attracted researchers more to the field of computer
music composition.

Music composition is the task of devising a new
musical piece that contains three main components:
melody, accompaniment, and rhythm. Fig. 1 labels the
main musical tasks lying under the computer music
composition umbrella, further with their types. Melody
generation is devising the musical notes pitch; “melody”
is the group of consecutive notes forming the musical
piece while a note “pitch” [5] is the human interpretation
of the note’s frequency that distinguishes it from other
notes. Timbre [6], another aspect of the musical piece’s
melody, is defined by the American Standard Association
(ASA) to be “That attribute of sensation in terms of which
a listener can judge two sounds having the same loudness
and pitch are dissimilar” [7]. Thus, timbre generation
helps in the interpretation of musical instruments that play
the melody. Music accompaniment has four types:
counterpoint, chorales, chord, and bass. Counterpoint [8]
is a special type of music accompaniment that represents
the harmony between multiple accompanying voices
(typically two to four) generated by a set of strict rules.
Chorale [9] accompaniment is formed of four-part music
lines; soprano and three other lower voices. Chord [10]

http://dx.doi.org/10.12785/ijcds/100138

374 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

accompaniment is a prominent type of harmony where a
chord is the group of multiple harmonic notes that sound
agreeing when heard. Closely related to chord
accompaniment generation is bassline [11] generation.
Musical piece’s rhythm [12] controls its speed and style; it
is the beat of the piece.

Computers can aid, either fully or partially, in each of
the aforementioned musical tasks. Along the years,
research has been carried out for developing algorithms
that automates each of these musical tasks, which lead to
the term “algorithmic composition”. Artificial Intelligence
(AI) had a great share of the research in algorithmic
composition since teaching computer the various music
composition tasks needs high levels of creativity.
Computer music composition is all about emulating
human creativity in music and that specifically is the
challenge of AI [13].

The machine learning field is a subset of AI that is
concerned by how computers learn from the given data.
Instead of explicitly instructing computers how to perform
tasks step-by-step, machine learning techniques enables
computers to interpret relationships from the given data
and accordingly perform tasks such as classification,
clustering, regression, and prediction.

In this paper, we study the top ten AI algorithms used
in computer music composition with their applications.
Also, the most recent machine learning techniques used in
music composition for automating the various musical
tasks are discussed. We first give an overview of each
algorithm; its description, technical background, or
pseudocode as needed. Then, we discuss its applications
in the field of music composition. Our main focus is on
the applications that have been developed in the last ten
years. We consider very few older papers due to their high
impact in the field. Finally, we list the strengths and
weaknesses of each algorithm. Kindly note that we only
focus on the music composition field; there are other
fields of computer music generation that are not of interest

in this work; such as improvisation (where the computer
plays on-the-go harmonic music with human players) and
expressive performance (which is concerned with
simulating the personal touch of music players).

The rest of this paper is organized as follows: Sections

2 to 11 list each of the algorithms under study along with

their recent applications in computer music composition.

More specifically: Section 2 describes rule-based systems,

Section 3 discusses case-based reasoning systems, Section

4 describes Markov chains generally focusing on the

hidden Markov model. Section 5 describes generative

grammars focusing on the Chomsky hierarchy. Section 6

describes linear programming. Section 7 elaborates on

genetic algorithms. Section 8 discusses artificial immune

systems. Sections 9 and 10 cover shallow and deep

artificial neural networks respectively. Finally, Section 11

sheds the light on one of the most recent and promising

machine learning techniques used in music composition

which is the use of generative adversarial networks. We

compare the presented algorithms and discuss their merits

in Section 12. Finally, we conclude our survey in Section

13.

2. RULE-BASED SYSTEMS

Rule-Based systems (sometimes known as knowledge-
based or expert systems) are means of capturing human
knowledge in a format comprehensible by computers.
Rule-based systems mainly aim to aid humans in decision
making; for example, medical expert systems help doctors
in reaching the right diagnosis for patients based on the
given symptoms.

2.1 Overview and Description

A rule-based system has three main components:

1. Knowledge Base (KB): set of IF-THEN rules

representing the captured knowledge. The IF part

of a rule is called antecedent and the THEN part

is called consequence. The KB might also

contain facts (known assertions).

2. Inference Engine (IE): component responsible for

inferring or deducing new information from the

knowledge base according to the system input. It

matches the rules in the knowledge base with the

current state of the world present in the working

memory.

3. Working Memory (WM): storage holding

temporary data (assertions) about the current

state.

Figure 1. Computer Music Composition Tasks

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 375

http://journals.uob.edu.bh

The inference engine can infer data through either
forward or backward chaining. Pseudocode of the forward
chaining inference algorithm is listed in Fig. 2. The idea
behind forward chaining is simply to find all the possible
matches from the knowledge base that are relevant to the
current state of the working memory. The forward
chaining algorithm then makes sure that a matched rule
only fires if its consequences will affect the working
memory (change its current state). After marking all the
defunct rules; which are rules that will not affect the
working memory, the algorithm will continue only if the
number of unmarked matches is not equal to zero. A
conflict resolution technique might be needed if there are
more than one unmarked match. Conflict resolution helps
to select only one matched rule to fire. The selected rule
then fires, and its consequences are asserted in the
working memory. The process repeats until no more
matches will affect the working memory. Forward
chaining is known as data-driven approach since it starts
from the already given facts to extract more information.
Thus, it is seen as a bottom-up approach.

On the other hand, backward chaining aims to prove
whether a goal is true or not. Backward chaining
pseudocode is listed in Fig. 3. The algorithm first
matches the goal with the knowledge base facts; if a
match is found, it returns true. If no fact matches the goal,
all rules consequences are checked whether they match
the goal. If the goal does not match any of the rules’
consequences, the algorithm returns false. Else, backward
chaining is called recursively on all the matched rules
antecedents keeping track of all the bound variables in the
recursion process. If all the recursive calls return true, the
algorithm is said to succeed and returns true. Backward
chaining is called goal-driven inference approach since it
starts with the goal and searches for a possible match in
the knowledge base, which makes it a top-down approach.

2.2 Rule-Based Systems in Algorithmic Composition

Rule-based systems are convenient for counterpoint
type of harmony since it is based on rigid rules for
generating harmonic voices. Aguilera et al. [14] coded
counterpoint rules with the help of probabilistic logic

using Derive 6 software which is a computer algebra
system. Navarro-Cáceres et al. [10], encoded rules about
chord construction and progression in a penalty function.
Then, they employed an Artificial immune system
(discussed in Section 8) to suggest the next chord in a
given sequence such that this chord minimizes the penalty
function.

3. CASE-BASED REASONING

The most common definition for Case-Based
Reasoning (CBR) is that it is an approach for solving
problems by means of previous experiences. CBR aims
for simulating human reasoning and learning from past
experiences. Hence, it is a method of retrieving and
reusing successful solutions from past problems. Unlike
rule-based systems that keep general knowledge about the
problem domain, CBR employs the knowledge of
previous solutions for specific problems in the domain.
Moreover, CBR systems keep adding new knowledge
from learned experiences of newly solved problems.

3.1 Overview and Description

A CBR system keeps information about previous
problems in what is called a case base. A “case” has the
description of a previously solved problem along with its
solution. The three main operations in the CBR cycle are:
case retrieval, adaptation, and storing. Fig. 4 shows a
diagram for the CBR cycle. When a new problem is
presented to the system, the similar cases to that problem
are retrieved from the case base. The next step is to adapt

Figure 4. CBR cycle diagram

While TRUE do

 Find all matches between KB and WM

 for each match M do

 if M does not change WM then

 Mark M as defunct

 end if

 end for

 if Number of unmarked matches = 0 then

 TERMINATE

 end if

 if Number of unmarked matches > 1 then

 Call Resolve_Conflict

 end if

 Fire matched rule

 Assert rule consequence in WM

end while

Figure 2. Forward Chaining Algorithm

Match Goal with KB

if a match is found then

 return TRUE

end if

Match Goal with rules consequences

if Match(es) is/are found then

 for each matched rule antecedent A do

 Call Backward Chaining(A)

 end for

 if all recursive calls return TRUE then

 return TRUE

 else

 return FALSE

 end if

else

 return FALSE

end if

Figure 3. Backward Chaining Algorithm

376 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

the retrieved cases and their solutions to meet the
demands of the new problem. Finally, the newly solved
problem is stored in the case base for future retrievals.

Design decisions of CBR systems include how to
represent the case, which also affects the retrieval quality.
Case representation includes mainly some parameters or
descriptors for the state of the world when the problem
happened accompanied by the solution that worked for
solving the problem. Another design issue in the retrieval
process is the matching algorithm for comparing the new
problem with the previous cases. The simplest way of
matching is to apply nearest neighbor between each
attribute in the new problem and its corresponding in the
current case from the case base, then the cases having the
largest weighted sum of all attributes, are retrieved. The
case adaptation technique is chosen according to how
close the matched case is to the current problem.

3.2 CBR in Algorithmic Composition

CBR is a very suitable approach for melody
generation systems as these mainly aim to emulate the
experience of human composers. CBR systems give the
ability to apprehend previous composition experiences to
be utilized in the generation of new compositions of the
same style. To our knowledge, the recent applications of
CBR in music composition are few. Instead, CBR is
applied extensively in the field of expressive performance
which is outside the scope of this paper as previously
mentioned.

Ribeiro et al. [15] developed a system that generated
melody lines given a chord sequence as an input. Each
case in the case-base contains a chord along with its
corresponding melody line and rhythm. Case matching is
through comparing chords based on “Schöenberg’s chart
of the regions”. The system enables a set of
transformations to modify the output melody before
adapting the case and storing the produced solution in the
case base. Navarro-Cáceres et al. [5] developed a system
whose purpose is to assign probabilities for given notes
following the last note of the melody. Their system was
built upon a CBR architecture accompanied by a Markov
model. The case base holds past solutions and melodies
and cases are retrieved according to the user’s choices of
the desired style, composer, etc. The adaptation step

consists of training the Markov model with the retrieved
cases. The adapted case is then evaluated and stored in the
case base for future retrievals. Within the case adaptation
phase, their system depended on user feedback to guide
pitches and note duration. Generally speaking, CBR needs
external guidance to successfully compose the desirable
melodic pieces.

4. MARKOV CHAINS

Before introducing Markov chains, we need to define
stochastic processes and chains. A stochastic process
describes a sequence of events that depend on the time
parameter t. The set of events is called the “state space”,
and the set of parameters is called the “parameter space”.
Stochastic chain refers to a stochastic process that
consists of a sequence of a countable number of states.

4.1 Overview and Description

A Markov chain can be defined as a special case of
stochastic chains in which the probability of a future event
X(t+1) (random variable X at time t+1) depends on the
current state X(t) according to the following equation:

P(Xtm+1 = j|Xtm = i) = pij(tm,tm+1)

This expression represents the transition probability of
state Xtm=i at a given time tm to the state Xtm+1=j. A higher
order Markov chain is a Markov chain where each state
depends on more than one past state such that the order
number indicates how many past states affect the current
state. A Markov chain can be represented as a state
transition graph (also known as a Markov state space
graph), where each edge shows the transition probability
as shown in Fig. 5(a). Note that the sum of all
probabilities on the edges leaving each state is always
one. Equivalently, a Markov chain can be represented by
a transition matrix as shown in Fig. 5(b).

Both figures describe the daily sportive activities of a
man. He randomly spends his daily workout running or
swimming and rests on some other days. By observing his
sportive patterns, it was found that if he spends his
workout on a certain day running, it is unlikely to see him
run on the following day (with probability 0.2). Instead, it
is more

Figure 5. (a) Markov state space graph example - (b) Markov transition matrix example

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 377

http://journals.uob.edu.bh

likely to see him either swim or rest on the following day
(both with an equal probability of 0.4). On the other hand,
if he spends his workout swimming on a certain day, it is
very probable to see him swim again on the following day
(with probability 0.7). It is very unlikely to see him run or
rest (with probabilities of 0.2 and 0.1 respectively). After
a day of rest, he will probably spend the next day running
or swimming (both with an equal probability of 0.4). He
will hardly rest the next day (with probability 0.2).

An advanced type of Markov chains is the Hidden
Markov Model (HMM) that allows us to predict a
sequence of unknown “hidden” variables from a set of
observable variables. That is to say that the set of
observable output symbols of the Markov model are
visible, but their internal states and transitions are not.
Each state generates an emission probability. An HMM
represents a coupled stochastic process due to the
presence of transition probabilities in addition to the state-
dependent emission probabilities of observable events.

Any HMM can be formally described by:

S = S1, S2, ..., SN. Set of N states
π = π1, π2, ..., πN. Initial state probabilities
A = aij. The transition probabilities from state i to state j
O = o1, o2, ..., oT. The set of T observable outputs

 belonging to the set of output symbols
 Ot ∈ v1, ..., vM

B = bit. The probability that observable output
 ot is generated from state i

There are three main algorithms for training HMM:

1 Forward algorithm: the probability of the observed
sequence is computed while all parameters are
known. The opposite to the forward is the backward
algorithms that computes probability in the opposite
direction.

2 Viterbi algorithm: the most likely sequence of
hidden path (Viterbi path) is calculated based on the
given observable sequence.

3 Baum-Welch algorithm: calculates the most likely
parameters of HMM based on the given observable
sequence.

Fig. 6, Fig. 7, and Fig. 8 - adapted from [16] - show
simple pseudocodes for the aforementioned algorithms.

4.2 Markov Chains in Algorithmic Composition

Markov chains have been extensively used in music
composition since the early research attempts in the field.
As previously mentioned, for HMM there is a given set of
observable events and we are to calculate the most
probable states leading to these events. Similarly, in
computer music, we have a set of desirable notes
sequence forming a nice musical piece and we try to
figure out the possible paths leading to this piece to
produce similar pieces in the future.

As for the applications of Markov chains in melody
pitch generation; as aforementioned in Section 3.2, María
Navarro-Cáceres et al. [5] combined a Markov model
with case-based reasoning in the adaptation step in order
that the Markov model is trained by the retrieved cases to
predict the successive notes probabilities. Markov models

viterbi[i,j] ← 0 for all i,j

viterbi[0,0] ← 1.0

for each time step t do

 for each state s do

 for each state transition s to s’ do

 newscore ← viterbi[s,t] ×

 a(s,s’) × b(s’,ot)

 if newscore > viterbi[s’,t + 1] then

 viterbi[s0,t + 1] ← newscore

 maxscore ← newscore

 end if

 save maxscore in a queue

 end for

 end for

end for

return queue

Notes

1. a(s,s’) is the transition probability from state s to s’

2. b(s’,ot) is the probability of state s0 given observation ot

Figure 7. Viterbi Algorithm

forward[i,j] ← 0 for all i,j

forward[0,0] ← 1.0

for each time step t do

 for each state s do

 for each state transition s to s’ do

 forward[s’,t + 1]+ = forward[s,t] ×

 a(s,s’) × b(s’,ot)

 end for

 end for

end for

return Σforward[s,tfinal+1] for all states s

Figure 6. Forward Algorithm

Notes

1. a(s,s’) is the transition probability from state s to s’

2. b(s’,ot) is the probability of state s’ given observation ot

Initialize HMM Parameters

Iterations = 0

repeat

 HMM ′ ← HMM ; Iterations ++

 for each training data sequence do

 Execute forward algorithm

 Execute backward algorithm

 Update HMM Parameters

 end for

until |HMM − HMM ′ | < delta OR iterations > MAX

Figure 8. Baum-Welch Algorithm

378 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

also aided in counterpoint accompaniment generation.
Padilla et al. [17] developed a recent emulative system
that generates two-voice counterpoint based on Palestrina-
style. Being trained on limited data, the Markov model
was not enough for capturing all the musical features
found in counterpoint. Hence, Padilla’s system worked on
discovering repeated patterns in each piece of the corpus
(template) from different viewpoints. The discovered
patterns were then fed into the Markov model for
generating a two-voice counterpoint in terms of those
patterns.

Wassermann and Glickman [18] have recently
developed two novel approaches for harmonizing chorales
in Bach style. In the first approach, the primary input into
a chorale-harmonization algorithm is the bass line, as
opposed to the main melody. Their second approach
combines music theory and machine-learning techniques
in guiding the harmonization process. They employ a
hidden Markov model in learning the harmonic structure
and apply a Boltzmann pseudolikelihood function
optimization for determining individual voice lines. They
incorporate musical constraints through a weighted linear
combination of constraint indicators. They evaluated their
model through a group of test subjects who could not
easily distinguish between the generated chorales and the
original Bach chorales. The bass-up approach
outperformed the traditional melody-down approach in
out-of-sample performance.

5. GENERATIVE GRAMMARS

Language, in its simplest definition, is a set of symbol
strings (sentences) whose structure abides to certain rules.
A formal language is that provided with mathematical
description of both its alphabet symbols and formation
rules. A grammar describes how a sentence is formed and
distinguishes between well-formed (grammatical) and ill-
formed (nongrammatical) sentences. A generative
grammar is a recursive rule system describing the
generation of well-formed sentences (expressions) for a
given language. String sequences in a generative grammar
are formed through rewriting rules where symbols on the
right-hand side replace symbols on the left-hand side of a
rule.

5.1 Overview and Description

In the following we give an example of generative
grammar which can be used to derive a simple English
sentence. The grammar rules are as follows:

 S → NP VP

 NP → Det NP

 NP → Adj N

 VP → V Adv

where S refers to “sentence” NP refers to “nominal
phrase”, VP refers to “verbal phrase”, Det is for article
(determiner), Adj is for adjective, N is for noun, and Adv
is for adverb. Fig. 9 shows the derivation of a sample
sentence using this generative grammar. The last row of
the derivation holds the terminal symbols that cannot be
further rewritten in contrast to the non-terminal symbols.
Terminal symbols (in our example: The, scared, boy,
runs, and furiously) are to be found in the language
lexicon.

 Noam Chomsky [19] classified generative grammars
into four types according to their restriction level from
type-0 (unrestricted) to type-3 (highly restricted). This
classification is now known as “the Chomsky hierarchy”.

Fig. 10 shows a visual representation of the Chomsky
hierarchy. From the figure it is clear that each type is
contained in the less restrictive types. In other words, a
type-3 grammar is also a type-2, a type-1, and a type-0
grammar. Similarly, a type-2 grammar is also a type-1 and
a type-0 grammar.

Table 1 compares the four types of grammars defined
by Chomsky. As we go down in the Chomsky hierarchy
(from type-0 to type-3), complexity and generative
capacity decrease while restrictions increase. Type-0
grammars produce the recursively enumerable languages
recognized by a Turing machine. It has the lowest level of
restriction and the highest generative capacity.

Deciding whether a string belongs to such a language
is an undecidable problem. The rules of type-0 grammars
are in the form: α →β such that α and β are any sets of
terminal and non-terminal variables.

Type-1 grammars define context-sensitive languages.
In this case, the number of symbols on the left-hand side
of a rule must be less than or equal to the number of those
on its right-hand side. Type-1 grammars are also highly
generative, of exponential complexity, and recognized by
linear bounded automata. Type-2 grammars, on the other
hand, describe context-free languages that are recognized
by pushdown automata which can make use of stack in
determining a transition path. They are of medium
generative capacity and of polynomial complexity.
Finally, Type-3 grammars or regular grammars are the
least generative and the most restrictive of all the four
types. Its rules are restricted to only one non-terminal on
the left-hand side and only one terminal on the right-hand
side possibly followed by a non-terminal. Type-3
grammars are of linear complexity and is recognized by
deterministic or non-deterministic finite state automata
(DFA or NFA).

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 379

http://journals.uob.edu.bh

On the other hand, a renowned grammar system is
Lindenmayer System or L-System [20] which is famous
for parallel rewriting. Parallel rewriting is finding all the
possible derivations for a given rule simultaneously.
These are especially suited for representing self-similarity.
L-Systems were used primarily in microbial, fungal, and
plant growth portrayal.

5.2 Generative Grammar in Algorithmic Composition

Forming music through grammars can be achieved by
replacing strings with music elements such as chords,
notes pitch, and duration. The major design concern in
composing music with grammars is the formulation of the
set of grammar rules itself, most of the time this step is
carried out manually then rules are fed into the system.
However, there exists other software where grammar rules
are extracted (inferred) from a previously composed
music corpus; a process that is called “grammatical
inference”. During the music composition process, a
human composer converges from the main piece theme
towards its individual elements and notes. Likewise,
music composition by grammar converges from level to
level in conjunction with the derivation of symbols and
musical elements.

One early work that extremely influenced music
composition by grammars, is the book named “A
Generative Theory of Tonal Music” [21]. The book
describes the relation between tonal music and linguistics
where the authors grammatically analyze tonal music. The
book was not intended for computer music composition,
nonetheless, the concepts within the book were further
utilized in this research field. Melody morphing by

Hamanaka et al. [22] is an example of the works inspired
by the book.

Cruz-Alcázar et al. [23] developed a grammatical
inference system for modeling a musical style which was
then used in generating automatic compositions. They
expanded on their work in [24] adding more comparisons
between different inference techniques and music coding
schemes (absolute pitch, relative pitch, melody contour,
and relative to tonal center).

A basic approach for employing L-Systems in music
composition applications was to interpret the graphical
representations produced by L-Systems into musical notes
such as in [25]. Kaliakatsos-Papakostas et.al. [12]
modified finite L-Systems to generate rhythm sequences.
Quick and Hudak [26] presented a novel category of
generative grammars in their work called Probabilistic
Temporal Graph Grammars (PTGGs), that handles the
temporal aspects of music and repetitive musical phrases.
Melkonian [27] expanded on Quick and Hudak's [26]
probabilistic temporal graph grammars in order to include
generating of melody and rhythm in addition to generating
harmonic structures.

6. LINEAR PROGRAMMING

Linear programming or linear optimization is a subset
of mathematical programming (optimization) where an
optimal solution is found for a problem with multiple
decisions about limited resources. In linear programming,
a problem is formulated as a mathematical model with

Type Language Automaton Complexity
Generative

Capacity
Production Rule

Type-0
Recursively

enumerable
Turing machine Undecidable Very high α → β

Type-1 Context sensitive
Linear-bounded

automaton
Exponential High αAβ → αγβ

Type-2 Context-free
Push-down

automaton
Polynomial Medium A → γ

Type-3 Regular DFA or NFA Linear Low A → b or A → bC

TABLE 1. COMPARISON OF GENERATIVE GRAMMARS

Figure 9. Derivation of a generative grammar

Figure 10 - Chomsky Hierarchy

380 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

linear relationships.

6.1 Overview and Description

In order to solve a problem using linear programming
the following steps are involved:

1. Modeling the problem mathematically

2. Examining all the possible solutions for the

problem

3. Finding the best (optimal) solution out of all the

possible ones

A linear programming model can be described as
follows:

1. Set of decision variables X = {x1,x2,...,xn}

2. Objective function Z = c1x1 + c2x2 + ... + cnxn or

 Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

3. Set of constraints:

a11x1 + a12x2 + ... + a1nxn ≤ b1

a21x1 + a22x2 + ... + a2nxn ≤ b2

.

.

.

am1x1 + am2x2 + ... + amnxn ≤ bm ,

where all elements in X ≥ 0
Finding a solution for a two-variable linear

programming model is simple; it can be solved
graphically via drawing straight lines that correspond to
each constraint in a two-dimensional space. The area
covered by each straight line contains the values of its
possible solutions and the area covered by all the lines
(area of intersection) represents the “feasible region” or
“feasible solution space”. The shaded area in the graph in
Fig. 11 is an example of a feasible region; where Con1,
Con2, and Con3 model the linear equations of each
constraint.

However, when there are more than two decision
variables, the “simplex method” is adopted for finding the
problem solution. Instead of exploring all the feasible
solutions, the simplex method deals only with a specific
set of points called the “extreme points” which represents
the vertex points of the convex feasible region containing
all the possible solutions. Fig. 12 is a basic version of the
simplex method described geometrically, for more
mathematical details please check [28] (P. 864 - 878).

The simplex algorithm starts by locating an extreme
point in the feasible region. Among all the edges
connected to the extreme point, the algorithm searches for
the edge with the highest rate of increase in favor of the
objective function. It then moves along this edge until it
reaches the next extreme point. The aforementioned step
might have two results; either a new extreme point is
found, or the edge turns out to be infinite which means
that this problem is unbound and has no solution. This
algorithm repeats until no more increasing edges are
found.

6.2 Linear Programming in Algorithmic Composition

Linear programming has been excessively employed
in timbral synthesis; the main idea is to distribute sounds
in what is called a timbral space. When the user enters
specific descriptors to describe the desired timbre
properties, these descriptors are given numerical values
and represented as linear equations in the timbral space.
The generated linear equations represent the boundaries of
the region containing the desired timbre, hence, solving
them using linear programming results in the optimal
sound.

Locate a starting extreme point EP

while TRUE do

 for all the edges containing EP do

 find the edge E that provides the greatest

 rate of increase for the objective function

 end for

 if E = NULL then

 RETURN EP % no more increasing edges found

 end if

 Move along E to reach the next extreme point

 if a new extreme point is found EP(new) then

 Let BFS = BFS(new)

 else

 RETURN FAIL % The edge is infinite;

 no solution found

 end if

end while

Figure 12. Simplex Algorithm (Basic version)

Figure 11. Graph of Linear Programming Model for a Two

Decision Variables Problem

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 381

http://journals.uob.edu.bh

Timbral synthesis has earlier been based on verbal
descriptions. However, Mintz [29] built his timbral
synthesis on a more standard format which is MPEG-7. In
his method, users can define the timbre they want using
standardized descriptors. His model contains a timbral
synthesis engine that turns these descriptor values into
control envelopes producing synthesis equations. The
coefficients of these equations are mapped as specific
points in the timbral space. Seago et al. [6] also worked
with timbral spaces. They proposed a timbre space search
strategy, based on Weighted Centroid Localization
(WCL). They expanded on their work in [30]. However,
the authors pointed out that this method suffers from slow
convergence.

7. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are a class of evolutionary
algorithms, they are also considered as stochastic search
techniques. GAs tend to emulate the natural system of
evolution on computers. Natural evolution is based on the
fact that organisms produce excess offspring than that
could survive. The large offspring compete over limited
resources; thus, only those individuals who are best suited
to their environment (best fit) will be able to survive. The
surviving offspring reproduces and transfers its traits to its
offspring creating a more fit generation each time.

7.1 Overview and Description

GAs portray natural evolution by working on a
population of artificial chromosomes. Each artificial
chromosome is formed of a number of genes, each is
represented by a “0” or “1”. Hence, mapping any problem
to be solved by GAs involves, first, encoding individuals
(representing potential solutions) into chromosomes. A
fitness function decides how fit the individuals in each
generation are. Genetic operations (crossover and
mutation) on the best fit chromosomes evolve a new
generation.

The steps of GA are demonstrated in more detail in
Fig. 13. The very first step is to formulate chromosomes’
binary genes. The population size is defined from the
beginning, same for the crossover and mutation
probabilities, Pc and Pm respectively. These probabilities
determine the applied ratio of the crossover and mutation
operations in each generation. A fitness function is then
defined according to the satisfying criteria of describing a
“fit” chromosome. Next, one generation of chromosomes
is generated (the first generation). The fitness function is
then applied to each chromosome to return its fitness
ratio. According to the returned fitness ratios, the best fit
chromosomes are selected, and genetic operators are
applied to each pair of them. The result is a new
generation of chromosomes that passes through the same
process over and over again until the desired fitness is
attained or until the maximum number of generations is
reached.

Other than selection, a GA mainly relies on the
crossover and mutation operators. Mutation is the
flipping of one randomly selected gene in the
chromosome, while crossover involves splitting a pair of
chromosomes at a randomly selected crossover point and
exchange the resulting chromosome sections. Fig. 14
gives an example of each operation.

7.2 GAs in Algorithmic Composition

GAs have been broadly used in the field of
algorithmic composition. GAs are suited for music
composition applications due to the following [31]:

1. They help in generating many segments

(generations) to form larger musical pieces.

2. Musical segments are continuously generated and

examined, which generally complies with the

composition process and concepts.

3. The generated music is always evaluated through

fitness metrics which improves the quality of the

generated music.

Represent chromosomes in binary format

Set Size of population to N

Set mutation probability to Pm

Set crossover probability to Pc

Define the fitness function: Fitness_Fn()

Produce the first generation of chromosomes

X1,X2,...,XN

repeat

 for each i do

 Call Fitness Fn(i) to GET the fitness ratio FX

 end for

 repeat

 Choose a pair of chromosomes Xi and Xj

 according to their fitness ratios FX1 and FX2

 Apply genetic operators on Xi and Xj according

 to Pc and Pm

 Add new Xi’ and Xj’ to the new generation

 until number of chromosomes of the new

 generation = N

 Replace old generation with the new one

until a chromosome with satisfying fitness is

 found or the maximum number of generations

 is reached

Figure 13. The Genetic Algorithm

Figure 14. Examples on mutation and crossover

382 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

4. The generated results are also affected by how

music is encoded.

Music is encoded either in the form of absolute or
relative pitch; absolute pitch encoding specifies the
concrete note pitch value in binary, while relative pith
encodes the distance between two consecutive notes.
Table 2 compares between absolute and relative pitch.

Genetic operators are twisted to be applied to music;
for example, mutation and crossover are changed into
mirror and crab. However, these twists can be applied to
western music only where the distance between notes in
the scale are constant. These transformations, on the other
hand, are supposed to work on musical segments
primarily musically related. This is, nonetheless,
problematic in GAs due to the continuous generation of
new fragments through rearranging chromosomes, and
thus, losing their musical structure in the process. Large
musical fragments are problematic because the musical
context is completely changed with every genetic
operator, resulting in a possibly undesirable abrupt
modulation. To overcome this issue, we can use rule-
based techniques to control and guide the operators
according to the musical domain modeled in the rules.
Moreover, since we are dealing with context-dependent
information, Markov chains and generative grammars can
be used as promising potential aids to GAs for better
handling such information.

Fitness evaluation also represents a challenge for GAs
in music. At first, human user evaluation has been
adopted for GAs; this however, caused the algorithm to be
delayed waiting for the user input. Consequently,
techniques such as rule-based and neural networks were
utilized in fitness functions as a weak alternative to human
evaluation. Nonetheless, research involving more than one
fitness function proved to produce better results.

There are plenty of applications of GAs in the
different music composition tasks. As for melody
generation, the work of Pedro J. Ponce de León et al. [32]
enhanced the selection process through developing a

multi-objective fitness function. Moreover, they proposed
a new data structure; “Melodic Trees” for chromosomes
representation. For the task of timbre synthesis, Carpentier
et al. [33] developed an evolutionary algorithm that, not
only discovers optimal orchestration solutions, but also
indulges in the examination of non-spontaneous mixtures
of sounds.

GAs were also employed in chord generation, such as
the polyphonic accompaniment generation (formed of
main, bass, and chord) system of Liu et al. [34]. In their
system they implemented a fitness function that is built
upon evaluation rules inspired by music theory. Later,
they enhanced their system in [35] by mining and
extracting chord patterns from specific composer’s music
to be introduced as genes in the GA. In addition to chords,
Liu’s work included bassline and rhythm generation,
through the merging of GAs and data mining.

Recently, R. De Prisco et al. [36] developed an
algorithm for automatic music composition using an
evolutionary algorithm. They work on chorales of four
voices. Their algorithm takes one of the voices as input
and produce the rest of the four voices as output. they aim
to finding both; suitable chords, in addition to the melodic
lines. They not only proposed a novel representation for
the chromosomes, but also, they enhanced the quality of
the new generations through customizing operators to
make use of music theory and musical statistical analysis
on a Bach’s chorales corpus. As for the fitness function,
the authors used a multi-objective fitness function dealing
with both the harmonic and the melodic aspects.

Abu Doush and Sawalha [37] combined GAs and
neural networks for composing music. They implemented
a GA to generate random notes and used neural networks
as the fitness function for that algorithm. The authors
compared between four GAs with different combinations
of parameters such as; tournament and roulette-wheel for
the selection phase and one-point and two-point
crossovers. Their experiments showed that using
tournament selection and two-point crossover generate
music compositions of higher quality.

8. ARTIFICIAL IMMUNE SYSTEMS

Researchers developed Artificial Immune Systems
(AIS) aspiring to find solutions for their research
problems based on concepts inspired by the biological
immune system. The biological immune system protects
our bodies from pathogen attacks (harmful
microorganisms that stimulate immune response). Unlike
the centralization of the neural system that is controlled by
the brain, the biological immune system is decentralized
and distributed throughout the body.

Absolute Pitch Relative Pitch

When a chromosome is

modified the following

sequence stays intact.

When a chromosome is

changed all the following

notes are affected.

Preferred if transpositions

apply to one voice of

polyphonic movement.

Allows for transposition for

whole segment.

Mutation produces larger

modification.

Mutation causes less

modification.

TABLE 2. COMPARISON BETWEEN ABSOLUTE AND RELATIVE

PITCH

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 383

http://journals.uob.edu.bh

 The immune system has the advantage of being
robust, self-organized, and adaptive. It has pattern-
recognition and anomalies detection capabilities, and it
keeps track of previous attacks for better future responses.
When a body is attacked by pathogens, the immune
system detects them and instantiates a primary defense
response. If the attack repeats later, the immune system
remembers that past experience and consequently
launches a secondary response quicker than the primary
one. The immune system has the ability to differentiate
between self (those belong to the body) and non-self cells
(invaders). The term “B cell” refers to a part of the
immune system that produces antibodies targeting the
pathogens to be diminished from the body. Antibodies are
produced when B cells clone and mutate after a process of
recognition and stimulation.

8.1 Overview and Description

Prior to solving problems by AIS, the “antigens” and
“antibodies” need to be defined in terms of the problem
domain, and then encoded in binary format. An important
design choice is the “affinity metric” (also called the
“matching function”) which is pretty similar to the
“fitness function” in GAs. Selection and mutation
operations also need to be determined (mutation is also
very similar to that in GAs, based on flipping bits). When
all the above is well defined the algorithm can then be
executed.

The most famous selection algorithms in AIS are

“negative selection” and “clonal selection” algorithms.
The negative selection algorithm proposed by Forrest et
al. [38], is shown in Fig. 15 reproduced from [39]. Its
idea is to differentiate between self and non-self cells and
to react differently to them. The input to this algorithm is
a set of self strings that are stored and marked as friendly
normal data. The first phase of the algorithm is the
generation of string detectors. Detectors are generated as
random strings and matched with the list of self strings
keeping only those that do not match. The second phase is
to monitor the system for detection through continuously
matching the input strings with the detector strings and
streaming out those that match.

Clonal selection is based on the idea of cloning the B
cells that are proved to be of the highest match with the
antigens (highest affinity). The cloned B cells act as an
army for defending the body against antigens; because
they have the correct antibodies inside them. The clonal
selection algorithm is shown in Fig. 16 reproduced from
[39]. The first step in the algorithm is to generate a
random group of B cells. The affinity is then calculated
between each antigen and all the B cells. The B cells of
the highest affinity are cloned proportionally to the
affinity measure. The cloned cells are mutated with a
probability that is inversely proportional to the affinity
measure. The affinity of the mutated clones, with respect
to the antigen, is then calculated. The B cell clones of
higher affinity replace the B cells of lower affinity in the
old generation. Furthermore, a copy of the clones with the
highest affinity is kept in memory.

input: S = a set of antigens, representing data

 elements to be recognized.

output: M = set of memory B-cells capable of

 classifying unseen data elements.

Generate set of random specificity B-cells B.

for all antigens ag ∈ S do

 Calculate affinity of all B-cells b ∈ B with ag.
 Select highest affinity B-cells, perform

 affinity proportional cloning, place clones

 in C.

 for all B-cell clones c ∈ C do
 Mutate c at rate inversely proportional to

 affinity.

 Determine affinity of c with ag.

 end for

 Copy all c ∈ C into B.

 Copy the highest affinity clones c ∈ C into
 memory set M.

 Replace lowest affinity B-cells b ∈ B with
 randomly generated alternatives.

end for

Figure 16. Clonal Selection Algorithm (Reproduced from [39])

input: S = set of self strings characterizing

 friendly, normal data.

output: A = Stream of non-self strings detected.

Create empty set of detector strings D.

Generate random strings C.

for all random strings c ∈ C do
 for all self strings s ∈ S do
 if c matches s then

 Discard c

 else

 Place c in D

 end if

 end for

end for

while there exist protected strings p to check do

 Retrieve protected string p

 for all detector strings d ∈ D do
 if p matches d then

 Place p in A and output.

 end if

 end for

end while

Figure 15. Negative Selection Algorithm (Reproduced from [39])

384 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

8.2 AIS in Algorithmic Composition

As previously mentioned in Section 2.2, AIS has been
used for chord generation by Navarro-Cáceres et al. [10]
to provide a recommendation for the following chord in a
sequence. AIS is unique in that it provides more than one
suggested solution (chord) because multiple optima are
found in parallel. In the case of chord generation, the
suggested multiple optima need to be filtered to offer a
threshold for generating the good chords only. Navarro-
Cáceres et al. expanded on their work in [40] and
enhanced their AIS so as to optimize an objective function
that encodes musical properties of the chords as distances
in the so called Tonal Interval Space (TIS). Chord
selection is viewed as a search problem in a the TIS
geometric space in which all chords are represented under
certain constraints. Navarro-Cáceres’ work is centered
about generating the next candidate chord given the
previous two chords as an input; thus, their system
captures short-term dependencies only and need
enhancements to generate a chord that depends on the
whole music context rather than the previous few chords
only.

For the task of computer aided orchestration, Caetano
et al. [41] developed a multi-modal AIS that comes up
with new combinations of musical instrument sounds as
close as possible to the encoded sound in a penalty
function. In contrary to chord generation, the nature of the
orchestration problem is that it may hold more than one
possibility, hence the aim of Marcelo’s system was to
maximize the diversity in the solution set of the multi-
modal optimization problem. This approach led to the
existence of various orchestrations for the same reference
sound and actually embraced the multiple optima
phenomena in AIS.

Navarro‑Cáceres et al. [42] have recently introduced
an interesting application for chords generation based on a
neurological phenomenon called Synesthesia. In this
phenomenon, the stimulation of one sensory, results in
automatic, involuntary experiences in a second sensory.
Inspired by this phenomenon, the authors extract sound
from colors for chord progressions generation utilizing an
AIS. They extract the main colors from a given image and
feed them as parameters to the AIS. They developed an
optimization function to come up with best candidate
chord for the progression, according to its consonance and
relationship with the key and the previous chords in the
progression.

9. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) aim for simulating
the biological neural system controlled by the brain. A
biological neural system is composed of small
interconnected units called neural cells or neurons. A
biological neuron is a special type of cells that processes
information. A neuron has four parts: Dendrites, Soma,

Axon, and Synapses. Dendrites help the neuron receive
information from other neurons. Soma is the cell body
that is responsible for information processing. A neuron
sends information through Axon. Synapses help a neuron
to connect with other neurons in the network.

9.1 Overview and Description

An Artificial Neuron (AN) models the biological
neuron; it also has inputs, a node (body), weights
(interconnections) and an output. Fig. 17 adapted from
[43] shows a diagram of an artificial neural.

The variables in the figure are:

1. Input variables {x1,x2,...,xN}: features or attributes

coming from other neurons connected to the current

neuron.

2. Weights {w1,w2,...,wN} : factors multiplied by the

inputs to control how much each input is affecting

the result.

3. Summation result a: It is the weighted sum of all

inputs.

4. Bias b: A constant affecting the activation function

f(u) where 𝑢 = 𝑎 + 𝑏 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑁
𝑖=1

5. Error threshold θ = -b which is applied to the neuron

output to decide whether the neuron will fire or not.

6. Neuron output Y = f(u)

7. Activation Function f(u): It is the function applied to

u to determine the final output Y. f can be a linear,

step, or sigmoid function, among others.

One of the building blocks of neural networks design
is the “network topology” which is how the neurons are
organized in the network. There are two main types of
topology:

1. Feedforward networks: In a feedforward network

signals move in one direction from input to output. A

feedforward network can either be:

(a) A single layer feedforward network (single layer

perceptron): A network having only one layer of

nodes connected to the input layer. This type of

network is typically used to solve linearly

separable classification problems.

Figure 17. Artificial neuron (Adapted from [43])

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 385

http://journals.uob.edu.bh

(b) A multilayer feedforward network: A network

having one or more layers between the input and

the output layer. Multilayer networks are fully

connected which means that each neuron in one

layer is connected to all the neurons in the next

layer. This type of networks is typically used to

solve non-linearly separable classification

problems.

2. Feedback Networks: In a feedback network signals

can flow in both directions such as in the case of

Recurrent Neural Networks (RNNs) which have

closed loops in their architecture. They have

connections from units in a layer leading to the same

layer or to previous ones through what is called

“context neurons”. This kind of networks is dynamic

and keeps changing until it reaches an equilibrium

state. RNNs provide a means of storing information

from previous epochs (training cycles) and using

them in future ones, i.e. they support long-term

dependencies. For even more support of long-term

dependencies, Long Short-Term Memory (LSTM)

networks add memory block units to recurrent

networks.

ANNs are trained (they learn) to perform the desired
tasks. There are three ways an ANN can learn with:

1. Supervised learning: A dependent type of

learning in which the output of the network is

compared with the desired output. According to

the difference between the actual output and the

desired output, the weights of the network are

updated until the neuron’s output match the target

output. Supervised learning examples include:

the delta rule for training single layer perceptrons

and the backpropagation algorithm to train

multilayer networks.

2. Unsupervised learning: An independent type of

learning typically used for clustering input data

of similar types or for dimensionality reduction.

3. Reinforcement learning: A semi-dependent type

of learning based on reward and punishment.

Without labeled data items, the network receives

a feedback from the environment as an evaluation

to its performance.

Since backpropagation is one of the most powerful
learning algorithms that are widely used in different types
of ANNs, we provide a simplified version of this
algorithm in Fig. 18 (adapted from [44]), assuming the
network has only one hidden layer. The input training
samples (or vectors) are fed into the network and
transferred to the hidden layer as weighted sums. The
hidden layer units apply an activation function to these
sums, then they transfer the results to the output layer
units as another set of weighted sums. The output of the

 Initialize weights (small random values)

 repeat

 for each training sample do

 –FEEDFORWARD–

Each input unit receives an input signal Xi

∈ {x1,x2,...,xn} and broadcasts it to all

the hidden units in the next layer

Each hidden unit Zj ∈ {Z1,Z2,...,Zp} sums the
weighted input signals:

 𝑧_𝑖𝑛𝑗 = 𝑣0𝑗 + ∑ x𝑖𝑣𝑖𝑗
n
i=1

then applies the activation function to the

output zi = f(z_inj) then broadcast its

signal to all the units in the output layer

Each output unit Yk ∈ {y1,y2,...,ym} sums the
weighted input signals:

 𝑦_𝑖𝑛𝑘 = 𝑤0𝑘 + ∑ z𝑖𝑤𝑗𝑘
p
j=1

then applies the activation function to

the

output 𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘)

–BACKPROPAGATION–

For each output unit Yk ∈ {y1,y2,...,ym}, the
error σk is computed between the output

signal and the target sample corresponding

to the

training input sample

 𝜎𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓′(𝑦_𝑖𝑛𝑘)
where f0 is the derivative of the

activation function. The weight correction

term is then

calculated

∆𝑤𝑗𝑘 = 𝛼𝜎𝑘𝑧𝑗

and the error σk is transferred to all the

hidden units in the previous layer

For each hidden unit Zj ∈ z1,z2,...,zp the
weighted sum of the transferred error is

calculated

 𝜎_𝑖𝑛𝑗 = ∑ 𝜎𝑘𝑤𝑗𝑘
𝑚
𝑘=1

The error information is then calculated:

 𝜎𝑗 = 𝜎_𝑖𝑛𝑗𝑓′(𝑧_𝑖𝑛𝑗)

and the weight correction term is

calculated:

 ∆𝑣𝑖𝑗 = 𝛼𝜎𝑗𝑥𝑖 where α is the

 Learning rate

Weights of the hidden layer are updated

𝑣𝑖𝑗(𝑛𝑒𝑤) = 𝑣𝑖𝑗(𝑜𝑙𝑑) + ∆𝑣𝑖𝑗

Weights of the output layer are updated

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + ∆𝑤𝑗𝑘

 end for

 until Error threshold is reached

Figure 18. Backpropagation Algorithm (Adapted from [44])

386 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

network is the result of applying the activation function in
the output layer. The difference between the output and
the corresponding target sample data is calculated which
serves as the error factor. The weighted error sum is
propagated backward from the output layer to the hidden
layer and from the hidden layer to the input layer.
Meanwhile, the weight correction factor is calculated for
each unit (in terms of the error factor) which is then used
to update the network weights. The whole process is
repeated until the error becomes less than a given
threshold.

9.2 ANNs in Algorithmic Composition

There are many examples of using ANNs in musical
tasks. For chorale music, Hadjeres et al. [45] aimed for
imitating Bach’s chorales in their system using a
dependency network and pseudo-Gibbs for the music
sampling. On the other hand, Yamada et al. [9] set up a
comparison between adopting Bayesian Networks (BNs)
and recurrent neural networks in chorale music generation
to show the strengths and weaknesses of each.

Recent research about chord generation using ANNs
include that of Brunner et al. [46] and of Nadeem et al.
[47]. The former’s system produces polyphonic music
based on combining two LSTMs. The first LSTM
network is responsible for chord progression prediction
based on a chord embedding. The second LSTM then uses
the predicted chord progression for generating polyphonic
music. The latter’s system produces musical notes
accompanied by their chords concurrently. They use a
fixed time-step with a view to improve the quality of the
music generated. To produce new music, chords and notes
networks are trained in parallel and afterwards their
outputs are combined through a dense layer followed by a
final LSTM layer. This technique ensures that both inputs,
notes and chords, are being dealt with along all the steps
of generation, and thus, become closely related. As
mentioned earlier in Section 7.2, Abu Doush and Sawalha
[37] employed neural networks to compute the fitness
function for a GA. They were trained to learn the
regularity and patterns of a set of melodies.

10. DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs) are distinguished from
single hidden layer ANNs by their depth. The network’s
depth means the number of layers that an input has to pass
through until it reaches the output layer.

10.1 Overview and Description

A famous type of deep neural networks is the
Convolutional Neural Network (CNN). CNNs apply the
convolution operation instead of general matrix
multiplication (weighted sum) in at least one of its layers.
Fig. 19, adapted from [48], shows the general architecture
of a CNN. The main building blocks of a CNN are the
input, output, convolutional, pooling, and fully connected
layers. The idea behind CNNs is to decompose a given
problem into smaller ones and work on solving each. the

convolution layer in a CNN applies several filters on the
input data such that each filter extracts a specific feature
from it. The maxpooling layer performs dimension
reduction by keeping only data items of highest values
within the pooling size. The output from maxpooling is
then flattened to be introduced to a fully connected neural
network which in turn produces the final output.

The convolutional layer performs the computation
defined by the following mathematical equation (the dot
product between the input data and a given filter):

 (𝐼 ∗ 𝐹)(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑢, 𝑣)𝐹(𝑥 − 𝑢, 𝑦 − 𝑣)𝑥+𝑤
𝑢=𝑥−𝑤

𝑦+ℎ
𝑣=𝑦−ℎ

where I is the input, F is the filter of width 2w + 1 and
height 2h + 1. F is defined over [−w,w] × [−h,h]. A simple
pseudocode for the convolution process is described in
Fig. 20 adapted from [49]. This can be interpreted
visually as a window scanning the input data from left to
right and from up to down moving one cell at a time. At
each step, a dot product is computed between the
window’s values and the current values of the input data
that corresponds in position to the window. These steps
repeat until the algorithm finishes scanning the input data.
Training the CNN can be done through applying the
backpropagation algorithm on the features map produced
from the convolution process in the fully-connected layer.

10.2 DNNs in Algorithmic Composition

Given the filter array F of size Fw ×Fh and the

input data array I of size Iw × Ih

for y from 0 to Ih do

for x from 0 to Iw

do sum = 0

 for j from 0 to Fh do

 for i from 0 to Fw do

 sum += I[y + j][x + i] ∗
F[j][i]

 end for

end for

C[y][x] = sum/(Fw ∗ Fh)

 end for

end for

return C

Figure 20. Convolution Pseudocode (Adapted from [49])

Figure 19. Convolutional Neural Network Architecture

(Adapted from [48])

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 387

http://journals.uob.edu.bh

CNNs were employed by Huang et al. [8] for
composing music in a nonlinear fashion closer to human
composers’ style of composition, rather than the
chronological style. Their CNN was trained to generate
partial musical scores. Moreover, they introduced the use
of blocked Gibbs sampling as an equivalent to music
rewriting.

Deep RNNs implemented by Colombo et al. [50] for
the purpose of melody generation, had the ability to
capture the long range temporal structure of music.
Temporal dependencies were also modeled in Benjamin
Smith’s [51] work through the help of a Convolutional
Restricted Boltzmann Machine (CRBM). They could
achieve full reconstructions of musical pieces just from a
starting seed note. BachBot is a recent research project by
Liang et al. [52] that imitates Bach’s chorales style
through a deep LSTM generative model. Inspired by
CNNs, Johnson [53] developed two deep networks
architectures for polyphonic music composition; Tied
Parallel LSTM-NADE (TP-LSTM-NADE) as well as Bi-
Axial LSTM (BALSTM). Johnson designed his models so
as to be transposition invariant; i.e., making the training
independent from the musical key. In brief, he divides the
process of music generation into a set of tied parallel
RNN networks with tied weights between them such that
each network is responsible for a single note prediction.
Since all the networks use the same procedure to calculate
their outputs, a shift in the input will cause an equal
amount of shift in the output; thus, the process is
transposition invariant. The name Bi-axial comes from the
combination of LSTMs with recurrent connections along
two different axes: First along the time axis and then
along the note axis. This architecture eliminated the need
for windowing the input notes before introducing them to
the networks, and thus, the captured dependencies
between notes became not limited to the bunch of notes
inside the window. Mao et al. [54] enhanced the biaxial
model developed by Johnson [53] so as to include musical
styles and music dynamics. They based their architecture
on the bi-axial model nonetheless they added conditioning
for style enforcement at every layer. However, both
systems [53] and [54] lacked long term structure between
notes and lacked central themes in the generated music.

One of the powerful recent applications of DNNs in
music is WaveNet [55] which is a deep neural network for
generating raw audio waveforms. Although principally
developed for speech synthesis purposes, WaveNet was
able to produce reasonable musical waveforms when
tested on musical piano pieces. The problem with
WaveNets is that they are rather slow; producing 0.02
seconds of audio in one second of time, and thus, not
suitable for real time applications. Vasquez and Luis [56]
developed an audio generative model based on WaveNet
in the frequency domain. They work on spectrograms and
their model is based on autoregression. Accordingly, it
estimates a distribution element-by-element over the time
and frequency. Their results were very promising on a

wide range of applications not only music generation and
the music generated by their system was of a rather high
quality.

Cífka et al. [57] have recently presented a one-shot
style transfer approach. The authors clarify the meaning of
one-shot learning to be the process of learning the concept
of a class from a single example. They target
accompaniment style transfer in their work. They
introduce an encoder-decoder neural network that consists
of two encoders one for content and one for style in
addition to a decoder for the output generation.

One year after developing WaveNet, the authors; Oord
et al. [58], developed a much more advanced version of
WaveNet. The new version uses probability density
distillation which is a new method for training a parallel
feed-forward network. It takes the new WaveNet only one
second to produce twenty seconds of audio which is a
thousand times faster than the original version. The new
WaveNet has a reference (teacher) network that works
correctly but slowly and is another (student) network that
tries to mimic the teacher network but more efficiently.
This architecture has somehow similar vibes as the
generative adversarial networks described in the next
section.

11. GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) were
invented by Ian Goodfellow [59] in 2014. They are
designed to put two ANNs in a competition with each
other. GANs aims for imitating any distribution of data.

11.1 Overview and Description

The two main components of a GAN are a generator
network G and a discriminator network D. Fig. 21,
adapted from [60], shows the basic architecture of a GAN.
The generator takes as an input randomly sampled data
taken from a previously generated distribution and
generates a fake sample. The input to D is either a real
sample (taken from the prior distribution) or a fake sample
(generated from G). The networks are trained such that D
learns to distinguish between real and fake samples while
G learns to deceive D. The objective function of a GAN

Figure 21. Generative Adversarial Network Architecture

(Adapted from [60])

388 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

is:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉 (𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)]

 +𝔼𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]

This formulation, in brief, suggests that G and D are
playing a minmax game over an objective; that is to
support D to assign the label ‘one’ to the real data and
‘zero’ to the fake data. This is the objective that G aims to
minimize, while D tends to maximize. G and D in the first
GAN version were multilayer perceptron neural networks,
nonetheless, these networks were later on replaced by
convolutional deep neural networks. Two particularly
interesting variations of GANs are the pix2pix [61] and
cycleGAN [62]. These GANs generate images based on
condition images rather than on random noise. Pix2pix
and cycleGANs are used for supervised and unsupervised
image style transfer respectively.

11.2 GANs in Algorithmic Composition

The field of computer music generation, among other
fields, has excessively benefited from the invention of
GANs. Yang et al. [63] were able to generate melody
employing GANs; however, they worked on MIDI
sequences in the symbolic musical space rather than
working on waveforms. Dong et al. [64] succeeded in
developing a multi-track music generation system
utilizing GANs. They worked with piano-rolls music
representation format which encodes music as binary-
valued time-pitch matrices. While convolutional GANs
normally produce real values, they subsequentially
enhanced their GAN, in [65], to overcome the problem of
the resulting real-valued piano-rolls by incorporating
binary neurons. They introduced a refiner network that is
applied to the generator’s output. The output layer of the
refiner network is formed of binary neurons. This
approach achieved better results than the naïve
binarization post-processing of the network’s output. Oza
et al. [66] expanded on Dong’s work [65] by applying
progressive training such that new layers are successively
added to the pretrained, already converged, network. They
start their training by small time-step values and pitch
range, then they progressively enlarge these by adding
more layers to the network. The total number of layers in
their network after all the progressive training phases is 12
layers in the shared generator and discriminator network
and 8 layers in the refiner network. Progressive training in
[66] lead to musically better results than [65] having
lesser fragmentation of the notes and improving
periodicity and melodic perception.

Brunner et al. [67] developed a system for music style
transfer utilizing cycleGANs. They perform music
transfer between Classic, Jazz, and Pop styles. They
trained their network with binary piano-rolls; however,
they compressed all music tracks into one instrument

removing drums track. Their network contained multiple
discriminators in order to improve the fidelity of the input
music to the input music structure. Their system generates
music that is harmonic in general; nonetheless, this
method is limited to musical files having few tracks and
still does not capture notes velocities, correct duration,
and instruments’ variations.

Most recently, Jin et al. [68] developed a style-specific
music generation system inspired from GAN and based on
reinforcement learning. Their system consists of a
generator, a control network, and a probability network
(discriminator). The novelty of their system lies in the
addition of a control network mediating between the
generator and the discriminator, in addition to taking
advantage of LSTM in the generator. There are three main
tasks for the control network: 1. Introducing music rules
to restrict the generated music to a specified style, 2.
Calculating a loss function according to music theory
constraints to generate high-quality music, and 3.
Assigning a scoring to the music generated by the
generator network by means of a reward function
algorithm. Their system generated music that was
evaluated to be of high quality but needed more
enhancement to match the specified style.

All the GAN applications mentioned so far in this
section train on piano-rolls (binary-valued time-pitch
matrices). Liu et al. [69] developed a GAN music
generator that works on mel-spectograms, which they
enhanced in [70]. In their system, the generator takes a
variable-length sequence of noise vectors as input and
generates variable-length mel-spectrograms.

12. COMPARISON AND DISCUSSION

Table 3 compares all top ten AI algorithms we

covered. The table lists the recent applications of the

algorithms for each computer music composition task.

The table also highlights the strengths and weaknesses of

each algorithm. In this section, we delve into a deeper

discussion of their challenges and future directions.

A. Rule-Based Reasoning

 Our analysis shows that rule-based systems are
suitable for representing music theory and rules. Adopting
rule-based systems in music composition is
straightforward due to the nature of music theory that is
composed of rules.

Challenges: In real life, it is not enough to have
knowledge about music theory for composing music, yet
musical skills and experiences are essential to accomplish
the task. Similarly, the rule-based approach cannot be
used alone for producing the desired musical
compositions. Instead, they would achieve better results if
used to assist other algorithms.

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 389

http://journals.uob.edu.bh

Future Directions: Rule-based systems can serve as
pre- or post-processing tools within other music
generation systems either for data selection or
enhancement. We already gave an example for rule-based
utilization in the evaluation function of AIS [10]. It would
be interesting to study rule-based fitness functions in GAs
as well. Basically, a study is needed to define the musical

rules that can be used to compute a chromosome’s fitness.
Additionally, rule-based algorithms can be integrated with
neural networks, whether shallow or deep, to guide the
overall convergence of the network according to musical
guidelines. The same idea can also be applied to GANs
where extra penalties can be added to the loss functions to
generate images that are musically correct.

Algorithm Composition Task Reference(s) Strengths Weaknesses

(1) Rule-Based

Counterpoint [14] (2010) Simple to implement because

musical rules are already
available, can serve as a

guidance for other techniques.

Insufficient alone for getting

acceptable results.

Chord [10] (2015)

(2) Case-Based

Reasoning
Melody Pitch [15] (2002), [5] (2017)

Excellent for learning by
example.

Insufficient for obtaining
pleasing results. Requires

external guidance or

association with other
techniques. Lacks creativity.

(3) Markov Chains

Melody Pitch [5] (2017)
Predicts new successive notes

based on previous knowledge.

Predicts one note at a time.

Lacks long term musical
dependencies. Not suitable

for polyphonic music.
Counterpoint [17] (2018), [18] (2020)

(4) Generative

Grammars

Melody Pitch

[22] (2008), [23] (2003),

[24] (2008), [25] (2009),

[27] (2020)

Fast compositions.

Compositions conform to
musical rules.

Sometimes grammatical rules

derivation is done manually.
Various grammatical

inference techniques affect

the produced music quality.
Accompaniment [26] (2013)

Rhythm [12] (2012), [27] (2020)

(5) Linear Programming Timbre
 [29] (2007), [6] (2010),

 [30] (2013)

More successful than earlier

verbal descriptors. Offers

standardization through timbral
spaces.

Does not perform well in

high dimensional timbral

spaces. Slow convergence.

(6) Genetic Algorithm

Melody Pitch
[32] (2016)

[37] (2020)

Simulates the natural

composition process. Aids in

concurrently executing multiple
musical composition tasks.

Single fitness function is

insufficient for getting

satisfying musical results,
while multi-objective fitness

functions are sometimes
contradictory and need

optimization techniques to be

combined.

Timbre [33] (2010)

Chord [34] (2012), [35] (2015)

Bass [34] (2012), [11] (2015)

Rhythm [35] (2015)

Chorales [36] (2020)

(7) Artificial Immune

System

Timbre Orchestration [41] (2019) Suggests more than one
solution.

Might need a means of

filtration if fewer solutions

are needed, captures short-

term dependencies.
Chord

[10] (2015), [40] (2019),

[42] (2020)

(8) Artificial Neural

Networks

Chorale [45] (2017), [9] (2018) Can produce polyphonic music
and four-part harmonization.

RNNs and CRBM can capture
long term dependencies in

music.

Contradicting results when
adopting different networks

for the same musical task.
Dependency networks

(among other types) are time

consuming.

Chord and

 Pitch

(Polyphonic)

[46] (2017), [47] (2019)

[35] (2015)

Melody [37] (2020)

(9) Deep Neural

Networks

Pitch [50] (2016), [51] (2017) Shown to produce appealing
music. Capable of training on

large musical corpus. Performs

multiple compositional tasks
concurrently. Excels in musical

features extraction from data,

enhancement of generated
compositions through revisiting

(in case of CNNs).

As networks get deeper, the
results get better at the cost

of computational power.

Some DNNs lack long-term
relative dependencies

between notes.

Chorale [52] (2017)

Counterpoint [8] (2019)

Chord and pitch

(polyphonic)

[53] (2017), [54] (2018),

[54, 56] (2016, 2017),

[56] (2019)

Accompaniment [57] (2020)

(10) Generative

Adversarial Networks

Pitch

[63] (2017),

[63, 64] (2018),

[66] (2019)

The generated music is voted

for as high quality.

Consumes high energy rates.

Needs special handling for

music data. Still not perfect
in capturing notes velocities

and duration. Polyphonic [67] (2018), [68] (2020)

TABLE 3. COMPARISON BETWEEN THE TOP 10 AI ALGORITHMS IN COMPUTER MUSIC

390 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

B. Case-Based Reasoning

CBR systems are very good for resembling human’s
way of learning from previous musical experiences.

Challenges: CBR alone is rather limited and not
sufficient for generating pleasing compositions. When
applying CBR in music composition, the resulting musical
pieces lack creativity as they are copies of previously
composed musical pieces stored in the case-base.

Future Directions: CBR can assist other algorithms
in music composition. We already gave an example
combining CBR and Markov chains [5]. Further study is
needed to combine CBR with other algorithms such as
GAs and AIS in the fitness evaluation. It would also be of
interest to incorporate CBR with GANs. For example,
GANs would be responsible for generating melody lines
and CBR would be responsible for fetching suitable
accompaniments for the generated melodies. This can
produce more creative musical pieces. Additionally, CBR
needs to be further exploited in the automation of music
composition tasks other than melody pitch generation,
such as accompaniment music or rhythm generation.

C. Markov Chains

 Markov chains were proven to be suitable for melody
generation as they excel in predicting new notes from
previous knowledge.

Challenges: Markov models can only predict one note
at a time. As such, they lack long term dependencies; a
key feature of musical pieces. On the other hand, Markov
models are more suitable for composing monophonic
music rather than polyphonic ones. This is because
Markov models grow significantly in complexity as the
number of musical voices increase.

Future Directions: Markov models might be a
suitable candidate to replace or assist the generator
network of a GAN since it has the ability to predict the
next musical notes.

D. Generative Grammars

 They provide for fast composition of musical pieces
that conform to music rules.

 Challenges: Generative grammars need wise
decisions for each design issue such as how to formulate
grammar rules, which grammatical rules to apply, etc.
Most of the time the composition grammatical rules are
formulated manually and fed into the system. This manual
formulation of rules constitutes a severe overhead. On the
other hand, grammatical inference techniques adopted
produce rules of diverse quality potentially harming the
quality of the produced music.

Future Directions: Further research is needed in the
automation of generative grammars derivation for music.
Since current grammars are restricted to melodic and

harmonic structures, it is encouraged to devise grammars
for style and genre specific music generation.

E. Linear Programming

Linear programming aids a lot in timbre synthesis over
the early verbal descriptors due to the idea of timbral
spaces.

Challenges: linear optimization works better for small
dimensional spaces. In [6] it is stated that the WCL
method performs significantly better in relatively simple
three-dimensional spaces (in this case the formant space
and the SCG-EHA spaces) than in spaces where the
dimensionality is greater (the MDS space).

Future Directions: research is needed for speeding up
the convergence process in the WCL method. Another
research direction would be to consider applying linear
programing for different music composition tasks other
than timbre synthesis devising spaces having the same
style as timbral spaces but for notes or chords. Linear
programming might also be a good candidate for being
embedded in fitness evaluations for GA and AIS.

F. Genetic Algorithms

GAs already provide enhancements in various music
composition tasks such as melody generation, timbre
synthesis, chord, bass, and rhythm generation. GAs are
pretty similar to the natural process of music composition
as quoted in [71]: “For composers, it provides an
innovative and natural means of generating musical ideas
from a specifiable set of primitive components and
processes. For musicologists, these techniques are used to
model the cultural transmission and change of a
population’s body of musical ideas over time”.

Challenges: GAs have challenges such as the
challenge of designing the most convenient fitness
function. Due to the multiple featured nature of music,
single fitness functions are often not sufficient for a
proper evaluation. This brought up the need for multi-
objective fitness functions; however, this approach excels
only if suitable optimization is achieved among all the
(sometimes contradictory) fitness criteria.

Future Directions: In GAs, there is a need for
research in fitness function enhancement to cope with the
nature of musical notes and generate music from different
genres. Additionally, the door is open for more research in
applying other algorithms in the fitness computation, such
as linear programming and rule-based algorithms. We
already gave an example for employing ANNs to do so
[37]. Further research can include experimenting with
different types and architectures of ANNs and comparing
the results.

G. Artificial Neural Networks

Among the strengths of ANNs is the ability to
generate polyphonic music [46] as well as four-part
chorales [9, 45]. RNNs and CRBMs are excelling in

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 391

http://journals.uob.edu.bh

music composition applications due to their capability of
capturing long-term dependencies as is the case between
musical notes. Thus, these types of networks succeed in
generating notes that are consonant with their previous
ones.

Challenges: most challenging design feature in any
ANN music composition application is the network
architecture that best suits the musical task to be
performed. This is sometimes problematic and even
contradictory; as shown in the comparison between RNNs
and BNs for chorale generation in [9]. The comparison
could not favor one network over the other since the used
BN failed to produce smooth basslines despite producing
consonant harmonies in general, while the used RNN
produced almost monotonous alto and tenor lines, but
produced smooth basslines. Another challenge for ANNs
is the type of data they deal with. Cottrell et al. [72]
devised a study that gives insight and hints about how
ANNs can deal with complex data. Another problem with
using ANNs in music composition is the large energy and
time consumption of some network types such as
dependency networks [45].

 Future Directions: The design architecture challenge
opens the door for more research comparing the effect of
different types of networks when implemented in each
musical task. On the other hand, ANNs are already
employed for GA’s fitness, and thus, they are worth
exploring for AIS evaluation as well.

H. Deep Neural Networks

Similar to shallow ANNs, DNNs were shown to
produce appealing music to the ears of human listeners to
a great extent [46, 55]. Furthermore, DNNs excel in
extracting musical features only from the provided
(training) data without any prior musical knowledge, thus
offering a successful data-driven model. DNNs prevail to
produce compositions of the same style based on the
extracted musical features, hence providing more
generalization [49, 50, 51]. Additionally, CNNs in
particular provide a realistic simulation for the whole
composition process; revisiting and enhancing previously
generated melody partials [8].

Challenges: In addition to ANN challenges, the main
challenge of DNNs is that as they get deeper, they achieve
better results at the cost of time and power consumption
[51].

Future Directions: A hot and promising research
direction in DNNs for music composition would be using
“transfer learning” [73]. This concept of machine
learning is based on reusing a model, that has been pre-
trained to perform a certain task, to perform another task.
This method of using a pre-trained model as the starting
point for another model, saves a lot of time and power.
This method is popular in computer vision and language
fields. It is of great interest to explore transfer learning in
computer music composition field.

I. Generative Adversarial Networks

State-of-the-art GANs offer promising quality and
appealing music. GANs aim to generate realistic musical
pieces from complete random noise.

Challenges: GANs need suitable optimization
procedures and a lot of parameters tuning in order to
coordinate the work between the different elements of the
network and consequently achieve the best musical
results. GANs are still not perfect in capturing notes
velocity and duration [67]. We cannot deny the high
computational power needed to work with GANs. Since
GANs were primarily developed to work on image data,
they need special adaptation to be able to work on musical
data.

Future Directions: The door is wide open for research
and experimentation with GANs in the field of computer
music composition. Representing music as images for
GANs to train on, is a promising research area.
Specifically, it is interesting to devise creative
representations for music into images other than the
traditional symbolic representation to capture more
musical data within them. It is also worth further
experimenting with increasing the number of
discriminators such as the example in [67] (to handle
more musical properties), or adding extra networks for
musical quality control and even changing in the network
architecture such as in [68]. It is also needed to handle
more musical features in GANs such as velocities, note
durations, and instrumentation.

13. CONCLUSION

In this paper we presented an informative survey about
the most important algorithms that are frequently used in
the field of computer music composition research. The top
ten algorithms mentioned by order are: rule-based, case-
based reasoning, Markov chains, generative grammars,
linear programming, biologically inspired algorithms such
as; genetic algorithms, artificial immune systems,
artificial neural networks, deep neural networks, and
finally, generative adversarial networks.

We started our survey by introducing the field of
music composition, highlighting the main tasks involved
in it. We then explored each of the aforementioned
algorithms giving an overview and a description for each,
supplying the needed explanatory diagrams and
pseudocodes. We also focused on the application of each
algorithm in the field of computer music composition.
Moreover, we provided an insightful discussion and
comparison between the presented algorithms shedding
the light on their strengths, weaknesses, challenges, and
future research directions.

Our study aims for guiding researchers to the best
research paths in the field, paving the way for more
innovation. Our work highlights the most suitable
algorithm or technique for performing each music
composition task. In summary: Rule-based systems are

392 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

perfect for music theory representation. Case-based
reasoning encapsulates musical experiences in the case-
base. Markov chains excel in predicting new musical
notes given a previous one. Generative grammars enable
fast generation of musical pieces that adhere to music
rules. Linear programming is used for timbre synthesis.
The biologically inspired algorithms enhance the quality
of generated music and can apply various musical styles
to it.

REFERENCES

[1] L. Hiller and L. Isaacson, “Machine models of music,”

S. M. Schwanauer and D. A. Levitt, Eds. Cambridge,

MA, USA: MIT Press, 1992, pp. 9–21.

[2] B. J. Copeland and J. Long, Eds., Turing and the

history of computer music. Springer, Cham, 2017.

[3] N. Foy, “The word games of the night bird (interview

with Christopher Strachey),” Comput. Eur., pp. 10–11,

1974.

[4] Dean and R. T. (ed.), Eds., The Oxford handbook of

computer music. New York: Oxford University Press,

2009.

[5] M. Navarro-Cáceres, S. Rodríguez, D. Milla, B. Pérez-

Lancho, and J. M. Corchado, “A user controlled

system for the generation of melodies applying case

based reasoning,” in Case-Based Reasoning Research

and Development, 2017, pp. 242–256.

[6] A. Seago, S. Holland, and P. Mulholland, “A novel

user interface for musical timbre design,” in Audio

Engineering Society Convention 128, May 2010.

[7] “Acoustical terminology,” New York: American

Standard Association, 1951, p. 25.

[8] C.-Z. A. Huang, T. Cooijmans, A. Roberts, A. C.

Courville, and D. Eck, “Counterpoint by convolution,”

CoRR, vol. abs/1903.0, 2019.

[9] T. Yamada, T. Kitahara, H. Arie, and T. Ogata, “Four-

part harmonization: comparison of a Bayesian network

and a recurrent neural network,” in Music Technology

with Swing, 2018, pp. 213–225.

[10] M. Navarro-Cáceres, M. Caetano, G. Bernardes, L. N.

de Castro, and J. M. Corchado, “Automatic generation

of chord progressions with an artificial immune

system,” in Evolutionary and Biologically Inspired

Music, Sound, Art and Design, 2015, pp. 175–186.

[11] K. Kunimatsu, Y. Ishikawa, M. Takata, and K. Joe, “A

music composition model with genetic programming -

a case study of chord progression and bassline,” in

International Conference on Parallel and Distributed

Processing Techniques and Applications, PDPTA’15,

Jul. 2015, pp. 256–262.

[12] M. A. Kaliakatsos-Papakostas, A. Floros, and M. N.

Vrahatis, “Intelligent generation of rhythmic sequences

using finite L-systems,” in 2012 Eighth International

Conference on Intelligent Information Hiding and

Multimedia Signal Processing, Jul. 2012, pp. 424–427.

[13] R. L. de Mántaras, “Making music with AI: some

examples,” in Rob Milne: A tribute to a Pioneering AI

Scientist, Entrepreneur and Mountaineer, A. Bundy

and S. Wilson, Eds. IOS Press, 2006, pp. 90–100.

[14] G. Aguilera, J. L. Galán, R. Madrid, A. M. Martínez,

Y. Padilla, and P. Rodríguez, “Automated generation

of contrapuntal musical compositions using

probabilistic logic in Derive,” Math. Comput. Simul.,

vol. 80, no. 6, pp. 1200–1211, 2010.

[15] P. Ribeiro, F. C. Pereira, M. Ferrand, and A. Cardoso,

“Case-based melody generation with MuzaCazUza,” in

AISB’01 Symposium on Artificial Intelligence and

Creativity in Arts and Science, 2002, pp. 67–74.

[16] D. Jurafsky and J. H. Martin, Speech and language

processing: an introduction to natural language

processing, computational linguistics, and speech

recognition. Prentice Hall, 2008.

[17] V. Padilla and D. Conklin, “Generation of two-voice

imitative counterpoint from statistical models,” Int. J.

Interact. Multimed. Artif. Intell., vol. 5, pp. 22–32,

2018.

[18] G. Wassermann and M. E. Glickman, “Automated

harmonization of bass lines from Bach chorales: a

hybrid approach,” Comput. Music. J., vol. 43, no. 2–3,

pp. 142–157, 2020.

[19] N. Chomsky, Aspects of the theory of syntax. MIT

Press, Cambridge, Mass., 1965.

[20] A. L. P. Prusinkiewicz, “The algorithmic beauty of

plants,” Springer 1990. Springer-Verlag., pp. 101–107.

[21] F. L. and R. Jackendoff, “A generative theory of tonal

music.,” Cambridge, Mass. MIT Press, 1983.

[22] M. Hamanaka, K. Hirata, and S. Tojo, “Melody

morphing method based on GTTM,” in International

Computer Music Conference (ICMC), 2008, pp. 155–

158.

[23] P. P. Cruz-Alcázar and E. Vidal-Ruiz, “Modeling

musical style using grammatical inference techniques:

a tool for classifying and generating melodies,” in

Proceedings Third International Conference on WEB

Delivering of Music, 2003, pp. 77–84.

[24] P. P. Cruz-Alcázar and E. Vidal, “Two grammatical

inference applications in music processing,” Appl.

Artif. Intell., vol. 22, no. 1–2, pp. 53–76, Jan. 2008.

[25] L. F. R. Ralha and C. P. Brand, “L-systems, scores,

and evolutionary techniques,” in Proceedings of the

SMC 2009 - 6th Sound and Music Computing

Conference, Jul. 2009.

[26] D. Quick and P. Hudak, “Grammar-based automated

music composition in Haskell,” in Proceedings of the

First ACM SIGPLAN Workshop on Functional Art,

Music, Modeling & Design, 2013, pp. 59–70.

[27] O. Melkonian, “Music as language: putting

probabilistic temporal graph grammars to good use,” in

Proceedings of the 7th ACM SIGPLAN International

Workshop on Functional Art, Music, Modeling, and

Design, 2019, pp. 1–10.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to algorithms, third edition, 3rd ed.

The MIT Press, 2009.

[29] D. Mintz, Toward timbral synthesis: a new method for

synthesizing sound based on timbre description

schemes. University of California, Santa Barbara,

2007.

[30] A. Seago, “A new interaction strategy for musical

timbre design,” in Music and Human-Computer

Interaction, London: Springer London, 2013, pp. 153–

169.

[31] G. Nierhaus, Algorithmic composition: paradigms of

 Int. J. Com. Dig. Sys. 10, No.1, 373-394 (Feb-2021) 393

http://journals.uob.edu.bh

automated music generation, 1st ed. Springer

Publishing Company, Incorporated, 2008.

[32] P. J. P. de León, J. M. Iñesta, J. Calvo-Zaragoza, and

D. Rizo, “Data-based melody generation through

multi-objective evolutionary computation,” J. Math.

Music, vol. 10, no. 2, pp. 173–192, 2016.

[33] G. Carpentier, G. Assayag, and E. Saint-James,

“Solving the musical orchestration problem using

multiobjective constrained optimization with a genetic

local search approach,” J. Heuristics, vol. 16, no. 5, pp.

681–714, Oct. 2010.

[34] C.-H. Liu and C.-K. Ting, “Polyphonic

accompaniment using genetic algorithm with music

theory,” 2012 IEEE Congr. Evol. Comput., pp. 1–7,

2012.

[35] C.-H. Liu and C.-K. Ting, “Music pattern mining for

chromosome representation in evolutionary

composition,” 2015 IEEE Congr. Evol. Comput., pp.

2145–2152, 2015.

[36] R. De Prisco, G. Zaccagnino, and R. Zaccagnino,

“EvoComposer: an evolutionary algorithm for 4-voice

music compositions,” Evol. Comput., vol. 28, no. 3, pp.

489–530, 2020.

[37] I. A. Doush and A. Sawalha, “Automatic music

composition using genetic algorithm and artificial

neural networks,” Malaysian J. Comput. Sci., vol. 33,

no. 1, pp. 35–51, 2020.

[38] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri,

“Self-nonself discrimination in a computer,” in

Proceedings of 1994 IEEE Computer Society

Symposium on Research in Security and Privacy, May

1994, pp. 202–212.

[39] M. Read, P. S. Andrews, and J. Timmis, “An

introduction to artificial immune systems,” in

Handbook of Natural Computing, G. Rozenberg, T.

Bäck, and J. N. Kok, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 1575–1597.

[40] M. Navarro-Cáceres, M. Caetano, G. Bernardes, and L.

N. [de Castro], “ChordAIS: an assistive system for the

generation of chord progressions with an artificial

immune system,” Swarm Evol. Comput., vol. 50, p.

100543, 2019.

[41] M. Caetano, A. Zacharakis, I. Barbancho, and L. J.

Tardón, “Leveraging diversity in computer-aided

musical orchestration with an artificial immune system

for multi-modal optimization,” Swarm Evol. Comput.,

2019.

[42] M. Navarro-Cáceres, J. A. Castellanos-Garzón, and J.

Bajo, “An intelligent system to generate chord

progressions from colors with an artificial immune

system,” New Gener. Comput., vol. 38, no. 3, pp. 531–

549, 2020.

[43] Z. Waszczyszyn, “Fundamentals of artificial neural

networks,” in Neural Networks in the Analysis and

Design of Structures, 1999, pp. 1–51.

[44] L. Fausett, Ed., Fundamentals of neural networks:

architectures, algorithms, and applications. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[45] G. Hadjeres, F. Pachet, and F. Nielsen, “DeepBach: a

steerable model for Bach chorales generation,” in

Proceedings of the 34th International Conference on

Machine Learning - Volume 70, 2017, pp. 1362–1371.

[46] G. Brunner, Y. Wang, R. Wattenhofer, and J.

Wiesendanger, “JamBot: music theory aware chord

based generation of polyphonic music with LSTMs,”

in 2017 IEEE 29th International Conference on Tools

with Artificial Intelligence (ICTAI), Nov. 2017, pp.

519–526.

[47] M. Nadeem, A. Tagle, and S. Sitsabesan, “Let’s make

some music,” in 2019 International Conference on

Electronics, Information, and Communication

(ICEIC), Jan. 2019, pp. 1–4.

[48] V. Pavlovsky, “Introduction to convolutional neural

networks.” 2017.

[49] B. van Werkhoven, J. Maassen, H. E.Bal, and F. J.

Seinstra, “Optimizing convolution operations in

CUDA with adaptive tiling,” Futur. Gener. Comput.

Syst., vol. 30, pp. 14–26, Jan. 2014.

[50] F. Colombo, S. P. Muscinelli, A. Seeholzer, J. Brea,

and W. Gerstner, “Algorithmic composition of

melodies with deep recurrent neural networks,” in the

First Conference on Computer Simulation of Musical

Creativity (CSMC 2016), 2016.

[51] B. D. Smith, “Musical deep learning: stylistic melodic

generation with complexity based similarity,” in

Musical Metacreativity Workshop at the Eighth

International Conference on Computational Creativity,

2017.

[52] F. T. Liang, M. Gotham, M. Johnson, and J. Shotton,

“Automatic stylistic composition of Bach chorales

with deep LSTM,” in 18th International Society for

Music Information Retrieval Conference (ISMIR),

2017.

[53] D. D. Johnson, “Generating polyphonic music using

tied parallel networks,” in Computational Intelligence

in Music, Sound, Art and Design, 2017, pp. 128–143.

[54] H. H. Mao, T. Shin, and G. W. Cottrell, “DeepJ: style-

specific music generation,” CoRR, vol. abs/1801.0,

2018, [Online]. Available:

http://arxiv.org/abs/1801.00887.

[55] A. van den Oord et al., “WaveNet: a generative model

for raw audio,” ArXiv, 2016.

[56] S. Vasquez and M. Lewis, “MelNet: a generative

model for audio in the frequency domain,” CoRR, vol.

abs/1906.0, 2019, [Online]. Available:

http://arxiv.org/abs/1906.01083.

[57] O. Cífka, U. Şimşekli, and G. Richard,

“Groove2Groove: one-shot music style transfer with

supervision from synthetic data,” IEEE/ACM Trans.

Audio, Speech, Lang. Process., vol. 28, pp. 2638–

2650, 2020.

[58] A. van den Oord et al., “Parallel WaveNet: fast high-

fidelity speech synthesis,” CoRR, vol. abs/1711.1,

2017, [Online]. Available:

http://arxiv.org/abs/1711.10433.

[59] I. J. Goodfellow et al., “Generative adversarial nets,”

in NIPS, 2014.

[60] A. Damien, “Generative adversarial network

example.” .

[61] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-

to-image translation with conditional adversarial

networks,” CoRR, vol. abs/1611.0, 2016, [Online].

Available: http://arxiv.org/abs/1611.07004.

[62] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros,

394 Nermin Naguib J. Siphocly, et. al.: Top 10 Artificial Intelligence Algorithms in Computer…

http://journals.uob.edu.bh

“Unpaired image-to-image translation using cycle-

consistent adversarial networks,” CoRR, vol.

abs/1703.1, 2017, [Online]. Available:

http://arxiv.org/abs/1703.10593.

[63] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: a

convolutional generative adversarial network for

symbolic-domain music generation,” in International

Society of Music Information Retrieval (ISMIR), 2017.

[64] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H.

Yang, “MuseGAN: multi-track sequential generative

adversarial networks for symbolic music generation

and accompaniment,” in AAAI Conference on Artificial

Intelligence, 2018.

[65] H.-W. Dong and Y.-H. Yang, “Convolutional

generative adversarial networks with binary neurons

for polyphonic music generation,” CoRR, vol.

abs/1804.0, 2018, [Online]. Available:

http://arxiv.org/abs/1804.09399.

[66] M. Oza, H. Vaghela, and K. Srivastava, “Progressive

generative adversarial binary networks for music

generation,” ArXiv, vol. arXiv:1903, 2019.

[67] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao,

“Symbolic music genre transfer with CycleGAN,”

CoRR, vol. abs/1809.0, 2018, [Online]. Available:

http://arxiv.org/abs/1809.07575.

[68] C. Jin, Y. Tie, Y. Bai, X. Lv, and S. Liu, “A style-

specific music composition neural network,” Neural

Process. Lett., 2020.

[69] J.-Y. Liu, Y.-H. Chen, Y.-C. Yeh, and Y.-H. Yang,

“Score and lyrics-free singing voice generation.”

arXiv:1912.11747, 2020.

[70] J.-Y. Liu, Y.-H. Chen, Y.-C. Yeh, and Y.-H. Yang,

“Unconditional audio generation with generative

adversarial networks and cycle regularization.”

arXiv:2005.08526, 2020.

[71] E. Miranda and J. Biles, Eds., Evolutionary computer

music. Berlin: Springer, 2007.

[72] M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz, and

N. Villa-Vialaneix, “Neural networks for complex

data,” KI - Künstliche Intelligenz, vol. 26, 2012.

[73] J. Torrey, L., & Shavlik, “Transfer learning,” Handb.

Res. Mach. Learn. Appl. trends algorithms, methods,

Tech. IGI Glob., pp. 242–264, 2010.

Professor Abdel-Badeeh M. Salem:

Professor of Computer Science at Ain

Shams University, Cairo, Egypt, since
1989. Founder of the Artificial

Intelligence and Knowledge Engineering

Research Labs, Ain Shams University.
Chairman of Working Group on Bio-

Medical Informatics, ISfTeH, Belgium.

Published around 600 papers (105 of
them in Scopus). Has been involved in

more than 600 international conferences

and workshops as: keynote and plenary
speaker, member of program committee,

workshop/session organizer, session

chair, and tutorials. Member of the
editorial board of 50 international and

national journals. Member of many

international scientific societies and
associations. Elected member of Euro

Mediterranean Academy of Arts and

Sciences, Greece. Member of Alma
Mater Europaea of the European

Academy of Sciences and Arts, Belgrade

and European Academy of Sciences and
Arts, Austria.

Nermin Naguib J. Siphocly: M.Sc.

(2013) and B.Sc. (2008) in Computer

Science from Ain Shams University,
Cairo, Egypt. Teaching assistant since

2008 till now at the Faculty of Computer

and Information Sciences, Ain Shams
University. Taught various computer

science courses. Participated in several

projects at the same faculty. Published
multiple papers in the areas of GPU

Computing and Intelligent Computer

Music Generation.

Professor El-Sayed M. El-Horbaty:
received his Ph.D. (1985) in Computer

science from London University, U.K.,

his M.Sc. (1978) and B.Sc. (1974) in
Mathematics from Ain Shams University,

Egypt.

His work experience includes 46 years as
an academic in Egypt (Ain Shams

University), Qatar (Qatar University), and

Emirates (Emirates University, Ajman
University, and ADU University).

Prof. El-Horbaty’s current areas of

research are Distributed and Parallel
Computing, Cloud Computing, Edge

Computing, Mobile Cloud Computing, e-

health Computing, IoT, and Optimization
of Computing Algorithms.

His work appeared in many journals such

as: Parallel Computing, International
Journal of High performance and Grid

Computing, International Journal of

Information Security, Advances in
Intelligent System and Computing, Inter.

J. of Mobile Network Design and

Innovation, Inter. J. of Bio-Medical
Information and e-Health.

