&P International Journal of Computing and Digital Systems
g > ::} ISSN (2210-142X)
Int. J. Com. Dig. Sys. 11, No.1 (Jan-2022)

Ay

s,
KTt

https://dx.doi.org/10.12785/ijcds/110117

A Lightweight Optimized Deep Learning-based Host-Intrusion
Detection System Deployed on the Edge for IoT
Idriss Idrissi', Mostafa Azizi' and Omar Moussaoui'
IMATSI Research Lab, ESTO, Mohammed First University, Oujda, Morocco

Received 18 Apr. 2021, Revised 19 Jun. 2021, Accepted 8 Jul. 2021, Published 9 Jan. 2022

Abstract: The Internet of Things (IoT) is now present in every domain from applications in smart homes, Smart Cities, Industrial
Internet of Things (IIoT), such as e-Health, and beyond. The wide use of Internet of Things is making its security a real concern.
Techniques based on artificial intelligence (AI) and its subsets machine learning (ML) and deep learning (DL) are commonly
used to develop a secure Intrusion Detection System (IDS) for IoT. Researchers and industrialists are commonly using commercial
Internet of Things devices, broadly available on the market. In this paper, we present an analysis of the possibility to deploy a
Deep Learning-Based Host-Intrusion Detection System (DL-HIDS) on some specific commercial IoT devices. We performed multiple
optimizations regarding the types of our used devices to meet their limited hardware specifications. In our conducted analysis,
we consider such criteria, as memory consumption and inference timing (attacks prediction timing), to conclude which model fits
better to our proposed lightweight DL-HIDS for each studied device, and to anticipate about which IDS we must generate and
expectedly deploy based on the characteristics of the devices we possess. The paper also discusses the proposed methodology
for such deployment in a real IoT environment. The obtained results about the implementation of our DL-HIDS on different
considered devices (up to 99.74% in accuracy and an inference of not more of lus for attacks prediction) are promising and prove
that we can manage to install a suited IDS for each device, but it should be minutiously supported by a central IDS in fog or cloud layers.

Keywords: 10T, IIoT, IDS, HIDS, Deep Learning, CNN

1. INTRODUCTION

The Internet of Things (IoT) continues to hold promise
for a larger and more powerful ecosystem of many devices
[1]. IoT has applications in every field [2] like Smart homes.
These residences use devices connected to the Internet
which allow remote monitoring and management of devices
and systems, such as lighting and heating. Also, Smart
Cities cover from traffic management to water distribution,
to waste management, urban security, and environmental
monitoring. Industrial IoT (IIoT) that refers to the use of
IoT in industrial production under the concept of Industry
4.0. However, complexity and requirements are much higher
in IIoT than in IoT, and also in Connected Health; (e-
Health, Digital health, Telehealth, or Telemedicine) where
IoT wits in healthcare turned into improving healthcare as
such with remote monitoring and telemonitoring as the main
applications in the wider field of telemedicine especially in
the outbreak of epidemics like COVID-19 [3].

With a big demand for IoT devices, and according to
statistics estimations [4], IoT connected devices are more
than billions of online devices today, they make more than
billion dollars in profits, and projects to grow to over
trillion dollars by 2026. However, these devices can create

a significant security danger if not secured and managed
suitably.

The COVID-19 outbreak is leading to a rush in IoT
security adoption [5]. Researchers are trying to achieve
a good level in for IoT security, among the most used
techniques is the use of artificial intelligence (Al) and its
subsets machine learning (ML) and deep learning (DL)
[6][7]. While these techniques are achieving astonishing
results, securing IoT devices doesn’t have to be excessively
complex or costly. Published papers on IoT security using
artificial intelligence [6] are mostly theoretical like propos-
ing and benchmarking Intrusion Detection Systems (IDS)
models on different datasets. In this paper we experiment,
an optimized DL-based IDS on some lightweight connected
devices in the fog computing.

The rest of this paper is structured as follows. In
the second section we describe the background, the third
section present the related works, fourth section present our
proposed method, the fifth section we present and discus the
obtained results, and finally a conclusion as a sixth section.

E-mail address: idrissi@ump.ac.ma, azizi.mos@ump.ac.ma, o.moussaoui@ump.ac.ma

http://journals.uob.edu.bh

https://dx.doi.org/10.12785/ijcds/110117
http://journals.uob.edu.bh

210
Deployed on the Edge for IoT

Idriss Idrissi, et al.: A Lightweight Optimized Deep Learning-based Host-Intrusion Detection System

2. BACKGROUND
A. Intrusion Detection System (IDS)

IDS is a software application or a device that defends a
system utilizing alarms that alert a security breach, and can
acts to block the attacker [8]. There are numerous IDS that
can be organized into three main classes: the first is “Host-
based” (H-IDS) that monitors vital operating system (OS)
files; second is “Network-based” (N-IDS) that examines the
network traffic; and the third is “Hybrid” which examines
both files in the operating systems and traffic in the network.
They can also be organized according to their techniques
used into two main classes: “Signature-based” that recog-
nize bad patterns and “Anomaly-based” that differentiate
deviations; that are usually based on Machine Learning
(ML) [9] or Deep Learning (DL) techniques [10].

B. Deep Learning (DL)

DL is a Machine Learning (ML) based on the artificial
neural networks (ANN); it is considered as a computing
system inspired by the information processing and dis-
tributed communication nodes in biological brain where the
machine can learn from several data instances, letting it to
classify other instances [11]. Deep learning is widely used
in various research fields, it is well known by its detecting
capacity for the perfect features in raw data over consecutive
nonlinear transformations, with each adjustment attaining
further high level of complexity and abstraction [12][13].
Some of the most known deep learning algorithms are CNN
(Convolutional Neural Networks), RNN (Recurrent Neural
Networks), LSTM (Long Short-Term Memory), and GRU
(Gated Recurrent Unit) [14].

C. Convolutional Neural Networks (CNN or ConvNets)

CNN are a class of deep neural networks that are
used in many fields [15]. They are specifically a class of
neural networks that uses the convolution and the pooling
layers instead of the fully connected hidden layers [16].
Contrariwise to the other machine learning algorithms CNN
has the ability to learn automatically the better features and
categorize the traffic [17].

Moreover, CNN can achieve better classification and
learn further features with more traffic data for the reason
that it shares the same convolution matrix (mask), that
would decrease the number of parameters and calculation
summation of training significantly (see Figure 1) [18].

Input

[

| —
—
‘

I
I
[

Output

Figure 1. CNN architecture
D. Fog computing
Fog computing [19][20] is a new computing model that
exists near the IoT devices and extends the cloud-based

computing, storage and networking facilities. It acts as
a layer intermediating between the IoT devices and the
Cloud datacenters. Though, the computational nodes are
distributed and heterogeneous (see Figure 2).

E. Edge computing

Edge computing [21] is a paradigm in where the
data processing happens in the network edge so that
computing occurs near data sources, rather than the
cloud or the fog computing. An edge device is a com-
puting or networking resource placed in between the
data sources and the cloud nodes (see Figure 2) [10].

Edge Node Fog Node Cloud Node
SFSl) 2
1 M T (

om0l e
s i A BE = e
& = @ B X e

i | 3‘@

Figure 2. Edge, Fog, and Cloud nodes
FE Dataset

Dataset is a set of collected and managed data in a
specific context for a specific purpose. Datasets are impor-
tant ingredient for deep learning, they are base knowledge
for model training. For the cybersecurity there are many
datasets available some for general purposes and other spe-
cific for IoT, in our experiment we worked with the MQTT-
IOT-IDS2020 dataset “uniflow features” version [22]. This
dataset was generated with a simulated MQTT network
architecture that contains 12 sensors, a broker, a camera
(simulated), and an attacker, the dataset holds five labels,
four of them are attacks; aggressive scan, UDP scan, Sparta
SSH brute-force, and MQTT brute-force attack, and the fifth
label is for normal traffic [23].

G. TensorFlow Lite

TensorFlow Lite [24] is Google’s open-source software
stack specifically for edge computing. It is a cross-platform
deep learning framework that converts TensorFlow pre-
trained models into an optimized format in speed and
storage, that can be deployed on edge devices like Linux
based embedded such as Raspberry Pi or Microcontrollers,
and also on Android or iOS devices to make the inference
at the Edge.

3. Prorosep METHOD

Our proposed Deep Learning-based Host-based Intru-
sion Detection System will be deployed in a lightweight
IoT device at the fog node (Figure 3) with much less

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 209-216 (Jan-2022) . 211

Figure 3. DL-IDS proposed deployment in real IoT environment (Fog node scenario)

computation power than classical servers or firewalls. It is
planned to be placed in a real IoT environment at the edge
on enabled-Al chips and preferably connected directly to
a power source like cameras. At the Edge node, our DL-
HIDS can have a faster inference regardless of the network
connectivity, as the reasons are made on the Edge device,
a data traffic transferred from and to the cloud server will
be eliminated, making inferences faster, and in the security
side of our DL-HIDS, there is no data leakage of any
sort. The deployed model needs to take the minimum space
possible, and runs on just a little memory to make a faster
inference though improves the latency, but the outdraw of
optimization is that there is a balance between the model
size and its accuracy.

Our proposed DL-HIDS will analyze only inbound
traffic, where we are assuming that this device is legit
and trustworthy, otherwise, a second Network IDS “DL-
NIDS” needs to be deployed on the fog node to reinforce
the security on a device with more computation power
preferably connected to a lightweight hardware accelerator
for deep neural networks (like the Intel Neural Compute
Stick 2 [25], Google Coral edge TPU [26], or Nvidia
jetson nano [27]), where it can analyze the inbound traffic
to/from and especially when the network is compromised
from the devices both inside and outside the network in
real time, inside by a lurking zombie device inside the
network (see Figure 3).

The deployment of the DL-HIDS was made on five
different steps using a trial-and-error cycle, by repeated,
multiple attempts beginning with the best accurate model
then optimized it once more until getting the best wanted
results for the tested IoT board (see Figure 4).

Pre-processing Model training d
~_~
{p®iH
® % eeo
[00
[o0
<=7
Model OptimizatiOIA Model conversion A
7,
S
[[J
[] [
Model deployment

Figure 4. DL-IDS preparation and deployment steps

http://journals.uob.edu.bh

http://journals.uob.edu.bh

%
Nﬁe“’\“*S
&

5%“‘_.
Qe g

212w
Deployed on the Edge for IoT

Idriss Idrissi, et al.: A Lightweight Optimized Deep Learning-based Host-Intrusion Detection System

A. First step (Pre-processing)

First of all, we need to alter the raw data on the dataset
by encoding the data, and normalize its values; meaning
scaling the vectors separately to unit form, and converting
the normalized output data into image data shape. Then
we split the resulting data randomly into a training subset
(60%), validation subset (20%), and a testing subset (20%).

Afterward, in a pre-optimization context (when needed
for some devices) we make a future selection in order to
decrease the number of features even though deep learning
doesn’t need this process but to produce a lightweight model
it is a needed process, where we decreased the number of
features from 16 to only 7.

In order to select the best features to build the model,
we utilize the chi-square test, a statistical test that allows us
to detect the relationship between the features. Chi-Square
estimate whether the class label is independent of a feature.
Chi-square score with “c” class and ”r” values [28], as
exposed in the formulas (1) and (2):

S o (= i)
X* = - — 7 (1
(;‘) (;Z::‘) Hij
Ny Nix
Where Mij = u 2)
n

n;; : is the number of samples value with the i’ value of
the feature;

n;. : is the number of samples with the i™" the feature value;
n,; : is the number of samples in class j;

n :is the number for samples.

B. Second step (Model training)

While we build our model (on a conventional machine
[1]), we try to minimize the number of layers as possible
without losing the depth of the deep learning model to
just a shadow learning model. We build our model on
CNN, initially with multiple layers and then we narrowed it
down to five layers (a Convolution1D layer, MaxPooling1D
layer, Flatten layer, and an output layer), and train it
in 10 epochs with a batch size of 32. With these pre-
optimizations; decreasing the layers number the features
number, we reduce the number of model’s parameters from
26,365 to just 645 parameters (see Figure 5).

[Model: "sequential™

Imax_poolingld (MaxPoolinglD) (None, 3, 32) 0

flatten (Flatten) (None, 96) (0]

Trainable params: 645
[Non-trainable params:

Figure 5. Optimized DL-HIDS Model summary

C. Third step (Model conversion)

After getting a trained model, we will convert it to a
TensorFlow Lite version. TensorFlow lite model is on a
special format model called Lite flat buffer file (.tflite); an
efficient one in the accuracy, and a light-weight one with
less space. The “tflite” model contains the architecture of
the original model with its weights and biases, and the
training configuration (see Figure 6) [29];

High Level APIs Low Level APIs
tf.keras.* tf.*

Keras Model SavedModel Lo re e
Functions

TFLite
Converter

!

TFLite
Flatbuffer

D File format |:| Data Type |:| Infrastructure

Figure 6. TensorFlow Lite converter [29]

D. Fourth step (Model Optimization)

In order to deploy a truly tiny HIDS on an Edge device
with limited resources, optimization is necessary for some
devices (not all of them). In this step, we worked with
several optimizations [30]:

1) Weights Pruning

Here, we set separate parameters to zero to make the
network thin by dropping the parameters number in the
model while keeping its original architecture, and by esti-
mating the saliency of each weight, which is defined by the
alteration in the loss function upon the perturbation of the
weight. We obtain the pruned model by setting the values
of the dropped weights to zero and then keep it there for
the rest of the process. The algorithm retrains the pruned
model multiple times until it got the best results.

2) Post-training Quantization

Due to the hardware constraints of the edge device
(mostly microcontrollers), post-training quantization helps
improving the optimization process using a conversion
technique that reduces the model size and improves the
hardware accelerator latency, but with a slight decrease
in the accuracy. In our experiment, we performed a “full-
integer quantization”; it converts all the weights and the

http://journals.uob.edu.bh

http://journals.uob.edu.bh

0
£y

A0)

Ll faas

2,

10 Allgy

Int. J. Com. Dig. Sys. 11, No.1, 209-216 (Jan-2022) . 213

activation outputs into only 8-bit integer data, because it has
the compatibility with the integer only hardware devices or
accelerators such as microcontrollers.

3) Weight clustering

Also called “weight sharing”, it is an optimization tech-
nique that decreases a model’s quantity of unique weight
values, which benefits the model deployment. It works
by clustering the weights of each layer into N clusters,
afterwards it shares the cluster’s centroid value for all the
cluster’s weights. The weight clustering advantage resides
in the compression of the model, which is vital for the
deployment on IoT objects with limited resources. But it can
have some decrease in the performance for the convolution
and dense layers.

E. Fifth step. (Model Deployment)

We wrote and deployed our DL-IDS model using python
for the Raspberry Pi and Arduino Integrated Development
Environment (IDE) for the microcontroller boards. For
the model inference, we used the “TensorFlow Lite for
Microcontrollers”; a library written in C++. It can be
implemented into various microcontrollers with many 32-
bit processors based on the ARM Cortex-M Series ar-
chitecture, such as Arduino nano, Espressif ESP32, and
many other microcontrollers. This library does not depend
on dynamic memory allocation, therefore it necessitates to
supply a memory arena “TENSOR ARENA SIZE” when
the interpreter is created [31]. In our experimentation, we
reserved an arena of “10*1024” for the ESP-32, “5%*1024”
for the Nodemcu v3 (the dynamic memory allocation size
required depends on the used model, and it is determined
by experimentation).

4. ResuLrs aAND DiscussioN
A. Hardware characteristics

IoT based boards in the market today vary from micro-
controllers with kilobytes of RAM, to nanocomputers that
reaches gigabytes of RAM. Deploying a standard accurate
DL-IDS into one of these IoT devices is impossible. We
deliberately choose the following devices to try our DL-
IDS on; by the wide variety range of configurations between
them (see Table I):

Raspberry Pi 3B+ / 4 [32] is a credit card-sized ARM-
based single-board nano-computer, operated generally by
the Raspberry Pi OS (called formerly Raspbian OS, based
on the Debian OS, and optimized for the Raspberry Pi
hardware).

ESP-WROOM-32 a low-cost open source IoT platform
[33], from Espressif Systems. It targets a variety of ap-
plications, such as low-power sensor networks or to more
difficult tasks, like voice encoding.

NodeMCU v3 is a low-cost open source IoT platform
[34], that runs on the ESP8266 Wi-Fi SoC (cost-effective
and highly integrated Wi-Fi MCU, with TCP/IP stack and
microcontroller capability) from Espressif Systems [35].

Arduino UNO [36] is the most known, easiest, and
most economical microcontroller board based on the AT-
mega328P, it is equipped with both analog and digital
inputs/outputs that can be interfaced with various expansion
boards and other circuitry.

Arduino Portenta H7 [37] is a high-performance dual-
core development board, it instantaneously runs high-level
code (MicroPython / JavaScript) and Artificial Intelligence
(TensorFlow™ Lite) while performing low-latency opera-
tions on its customizable hardware.

In our experiments, we worked with TensorFlow Lite
(2.3.0) [24] Google’s open source deep learning framework
for IoT devices and mobiles (on-device inference).

B. Evaluating the results

We started by deploying the original converted Tensor-
Flow Lite model in all devices without any optimization. It
did not work on all devices due to their limited capabilities.
So, in order to ensure the best accuracy and memory
sufficiency, we repeated the loop steps (Figure 4) until
getting the suited model for each device.

Raspberry Pi 3B+/4, one of the most powerful IoT
devices, runs the original and the converted original “tflite”
model (26365 parameters) smoothly with its best accuracy
99.52%, and an inference of not more of lus for attacks
prediction (see Table II), we tested the optimized models
versions but we got a decrease in the accuracy concluding
that the accurate suited model for such resources is the
original model,

Arduino Portenta H7, also runs the original and the con-
verted original “tflite” model (26365 parameters) smoothly
with its best accuracy 99.52%, but with an inference close
to 2us for attacks prediction (see Table II).

ESP-WROOM-32, runs the original “tflite” model, but
it seizes too much memory (99.74%), a more optimization
was necessary (we used Weights Pruning, Post-training
Quantization and Weight clustering) in order to minimize
the memory consumption but with the cost of losing a
fragment of the accuracy (down to 97.21%) (see Table II),
and for the inference we got 2us for attacks prediction.

NodeMCU v3, a mini version-like of the ESP32, was
not able to handle the original “tflite” model nor the
optimized version. Subsequently we were forced to do a
pre-optimization phase by selecting just the minimal best
features possible, therefore the accuracy was dropped to
96.69% (see Table II), and the inference took around 2us
for attacks prediction.

Arduino UNO; despite all attempts to deploy a working
optimized model, neither the original nor the optimized
models were able to run on the device due to low resources
especially the RAM memory.

Figure 7 plays the role of a template to choose the suit-

http://journals.uob.edu.bh

http://journals.uob.edu.bh

214

Idriss Idrissi, et al.: A Lightweight Optimized Deep Learning-based Host-Intrusion Detection System
Deployed on the Edge for IoT

TABLE I. Hardware configuration of the investigated devices

IoT Device Manufacture Processor Cores Memory Storage Connectivity GPIO
Raspberry ~ Raspberry Cortex-A72 (ARMvVS) 4GB 16Gb Bl.uetooth:VS.O, BLE, 40
Pi 4 Pi 64-bit SoC 1.5GHz 4 LPDDRA (op.card) Wifl IEBE 802.11b/g/ac g
: SDRAM 2,4/5,0 GHz P
Raspberry ~ Raspberry Cortex-A53 (ARMvS) 1GB 16Gb Bluetooth: v4.2, BLE, 40
Pi 3B+ Pi 64-bit SoC 14GH LPDDR2 (SD-Card) Wifi IEEE 802.11b/g/n/ac ins
' ! ' it SDRAM 2,4/5,0 GHz Pl
Arduino Siﬁgff” dual-core SDRAM: Flash Memory: Bluctooth: 5.0, BLE, Dual
E(;rtenta Arduino Cortex M7.480 MHz 2 SMB 16MB z\glMl:lblliliEti?j.ll b/g/n S?HS
Cortex M4,240 MHz ps op P
5\/5156 OM.- Espressif Xtensa dual-core 2 SRAM: Flash Memory: ?X}?—?I)(I)g;ig L;gé]f} 12} o/n 48
3 Systems 32-bit LX6, 240 MHz 520 KB 4 MB BR/EDR pins
NodeMCU 32-bit RISC Tensilica SRAM: Flash Memory: - 17
V3 NodeMCU 10152 LX106 80 MHz 64 KB 4 MB Wi-Fi [EEE 802.11 bg/n 0
Arduino Ardui Ai’il\;legzlll':;%s bit RISC 1 SRAM: Flash Memory: N(:lrf (tciarilt have;n 16
UNO rduino single-chip 8- 2 kB 1 kB connectivity using pins
processor core external modules)
TABLE II. Hardware configuration of the investigated devices
Model Model’s depth Accuracy Model’s size
Original Model (OM) 7 layers, 16 Features 99.74% 343 Kb
Pre-Optimized Original Model (POM) 5 layers, 16 Features 98.75% 120 Kb
“tflite” Model (tM) 7 layers, 16 Features 99.74% 106 Kb
“tflite” Model Optimized (tMO) 5 layers, 7 Features ~ 97.21% 4237 bytes
“tflite” Model Optimized and Pre-Optimized (tMOP) 5 layers, 7 Features 96.69% 2704 bytes
—t—tMOP ——tMO tM
0,9974 0,9974 0,9974
0,9721 0,9721 0,9721 0,9721
- - 0
0,9669 0,9669 0,9669 0,9669 0,9669
4 4 4
r a
ARDUINO UNO NODE MCU ESP-32 ARDUINO RASPBERRY PI RASPBERRY Pl 4
PORTENTA H7 3B+

Figure 7. The suited model for each device

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 209-216 (Jan-2022) .

¥

A0)

Ll faas

Uy

10 Allgy

215

able and accurate model for a device based on its hardware
resources. For example, if we have a device with a close
resource to the NodeMCU or better, we suggest to choose
the “tflite Model Optimized and Pre-Optimized”; if we get
better resources than the ESP32, the best model is “tflite
Model Optimized”, but if we have resources close to the
Arduino Portenta H7 or even higher like the Raspberry Pi
3/4; the “tflite” or the original model will work sufficiently.

The used optimization techniques were effective to
achieve the right lightweight DL-HIDS model for each
studied device based on its resources.

5. CoNcLUSIONS

This paper presents a resourceful methodology to how
prepare an appropriate lightweight DL-HIDS model speci-
fied by the resources of an IoT device using optimization
methods, and deployed it in a real IoT environment. Indeed,
each device has its specific architecture and we cannot
generalize an IDS to all of them. The solution of this issue
is to design a customized IDS for each class of similar
devices. So our findings recommend to choose a suitable
DL-HIDS for each typical device regarding its hardware
capabilities.

From our research investigations, we conclude that de-
ploying a generalized single DL-HIDS on any IoT device
is not practical. Due to the differences between available
devices on the market, ranging from small sensors to high-
definition cameras, we cannot make a generalization, but
we can customize this model to fit a specific device. Surely,
the reduction of the customized IDS could lightly decrease
some of its functionalities, but this will be balanced by the
remote available fog/cloud IDS.

ACKNOWLEDGMENT
This work is supported by the Mohammed First Univer-
sity under the PARA1 Program.

REFERENCES

[1] 1. Idrissi, M. Boukabous, M. Azizi, O. Moussaoui, and H. E. Fadili,
“Toward a deep learning-based intrusion detection system for IoT
against botnet attacks,” IAES International Journal of Artificial
Intelligence (1J-Al), vol. 10, no. 1, pp. 110-120, mar 2021.

[2] “The 10 most popular Internet
right now.” [Online]. Available:
10-internet-of-things-applications/

of Things applications
https://iot-analytics.com/

[3] M. S. Rahman, N. C. Peeri, N. Shrestha, R. Zaki, U. Haque,
and S. H. A. Hamid, “Defending against the Novel Coronavirus
(COVID-19) outbreak: How can the Internet of Things (IoT) help
to save the world?” Health Policy and Technology, vol. 9, no. 2, pp.
136-138, jun 2020.

[4] “Internet of Things Market Size — TIoT
Market Analysis, Trends, ans Forecast.” [On-
line]. Available: https://www.verifiedmarketresearch.com/product/
global-internet-of-things-iot-market-size-and- forecast-to-2026/

[5] “IoT Security Market Report 2020-2025 — IoT Plat-
forms/Software.” [Online]. Available: https://iot-analytics.com/
product/iot-security-market-report-2020-2025/

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

I. Idrissi, M. Azizi, and O. Moussaoui, “IoT security with Deep
Learning-based Intrusion Detection Systems: A systematic literature
review,” in 4th International Conference on Intelligent Computing
in Data Sciences, ICDS 2020. Institute of Electrical and Electronics
Engineers (IEEE), nov 2020, pp. 1-10.

M. Boukabous and M. Azizi, “Review of Learning-Based Tech-
niques of Sentiment Analysis for Security Purposes,” in Innovations
in Smart Cities Applications Volume 4. Springer, Cham, 2021, pp.
96-109.

S. Axelsson, “Intrusion Detection Systems: A Survey and Taxon-
omy,” Tech. Rep., 2000.

M. Boukabous and M. Azizi, “Crime prediction using a hybrid
sentiment analysis approach based on the bidirectional encoder
representations from transformers,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 25, no. 2, feb 2022.

I. Idrissi, M. Azizi, and O. Moussaoui, “An Unsupervised Gener-
ative Adversarial Network Based-Host Intrusion Detection System
for IoT Devices,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 25, no. 2, 2022.

A. Kherraki and R. E. Ouazzani, “Deep convolutional neural net-
works architecture for an efficient emergency vehicle classification
in real-time traffic monitoring,” JIAES International Journal of Arti-

ficial Intelligence (1J-Al), vol. 11, no. 1, pp. 110-120, mar 2022.

S. Vieira, W. H. Pinaya, and A. Mechelli, “Using deep learning to
investigate the neuroimaging correlates of psychiatric and neurolog-
ical disorders: Methods and applications,” pp. 58-75, mar 2017.

M. Berrahal and M. Azizi, “Review of DL-Based Generation Tech-
niques of Augmented Images using Portraits Specification,” in 4th
International Conference on Intelligent Computing in Data Sciences,
ICDS 2020. Institute of Electrical and Electronics Engineers
(IEEE), nov 2020, pp. 1-8.

M. Boukabous and M. Azizi, “A comparative study of deep learning
based language representation learning models,” Indonesian Journal
of Electrical Engineering and Computer Science, vol. 22, no. 2, pp.
1032-1040, 2021.

M. Berrahal and M. Azizi, “Augmented Binary Multi-Labeled CNN
for Practical Facial Attribute Classification,” Indonesian Journal of
Electrical Engineering and Computer Science, vol. 23, no. 2, pp.
973-979, aug 2021.

M. Erza Aminanto and K. Kim, “Deep Learning in Intrusion
Detection System: An Overview,” Tech. Rep., 2016.

M. Berrahal and M. Azizi, “Optimal text-to-image synthesis model
for generating portrait images using generative adversarial network
techniques,” Indonesian Journal of Electrical Engineering and Com-
puter Science, vol. 25, no. 2, feb 2022.

I. Idrissi, M. Azizi, and O. Moussaoui, “Accelerating the update of
a DL-based IDS for IoT using deep transfer learning,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 23,
no. 2, pp. 1059-1067, aug 2021.

R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A
taxonomy, survey and future directions,” in Internet of Things.

Springer International Publishing, 2018, vol. 0, pp. 103-130.

“Fog Computing and the Internet of Things: Extend the Cloud to

http://journals.uob.edu.bh

https://iot-analytics.com/10-internet-of-things-applications/
https://iot-analytics.com/10-internet-of-things-applications/
https://www.verifiedmarketresearch.com/product/global-internet-of-things-iot-market-size-and-forecast-to-2026/
https://www.verifiedmarketresearch.com/product/global-internet-of-things-iot-market-size-and-forecast-to-2026/
https://iot-analytics.com/product/iot-security-market-report-2020-2025/
https://iot-analytics.com/product/iot-security-market-report-2020-2025/
http://journals.uob.edu.bh

216

SO
ER)
Nk

e

>

@30 Aligy

Deployed on the Edge for IoT

Idriss Idrissi, et al.: A Lightweight Optimized Deep Learning-based Host-Intrusion Detection System

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

Where the Things Are What You Will Learn,” Tech. Rep., 2015.

W. Shi and S. Dustdar, “The Promise of Edge Computing,” Com-
puter, vol. 49, no. 5, pp. 78-81, may 2016.

H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,
“Mqtt-iot-ids2020: Mqtt internet of things intrusion detection
dataset,” 2020.

H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and
X. Bellekens, “Machine learning based iot intrusion detection sys-
tem: an mgqtt case study (mqtt-iot-ids2020 dataset),” in International
Networking Conference. Springer, 2020, pp. 73-84.

“TensorFlow Lite — ML for Mobile and Edge Devices.” [Online].
Available: https://www.tensorflow.org/lite

Intel, “Intel® Neural Compute Stick 2 — Product Sheet,” Tech.
Rep., 2019. [Online]. Available: www.intel.com/bench-

“Coral.” [Online]. Available: https://coral.ai/

“NVIDIA Jetson Nano Developer Kit — NVIDIA
Developer.” [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit

N. Rachburee and W. Punlumjeak, “A comparison of feature selec-
tion approach between greedy, 1G-ratio, Chi-square, and mRMR
in educational mining,” in Proceedings - 2015 7th International
Conference on Information Technology and Electrical Engineering:
Envisioning the Trend of Computer, Information and Engineering,
ICITEE 2015. Institute of Electrical and Electronics Engineers Inc.,
2015, pp. 420-424.

“TensorFlow Lite converter.” [Online]. Available: https://www.
tensorflow.org/lite/convert/index

“TensorFlow model optimization — TensorFlow Model
Optimization.” [Online]. Available: https://www.tensorflow.org/
model _optimization/guide

R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
1. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow Lite Micro: Embedded Machine Learning on TinyML
Systems,” oct 2020.

“Raspberry Pi 4 Model B specifications — Raspberry
Pi” [Online]. Available: https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/specifications/

“Espressif Systems,” Tech. Rep., 2021. [Online]. Available:
https://www.espressif.com/en/support/download/documents.

“NodeMcu — An open-source firmware based on ESP8266 wifi-soc.”
[Online]. Available: https://www.nodemcu.com/index _en.html

“ESP8266 Wi-Fi MCU 1 Espressif Systems.” [Online]. Available:
https://www.espressif.com/en/products/socs/esp8266

“Arduino Uno Rev3 — Arduino Official Store.” [Online]. Available:
https://store.arduino.cc/arduino-uno-rev3

[37] “Arduino Pro.” [Online]. Available: https://www.arduino.cc/pro/

hardware/product/portenta-h7

Idriss Idrissi is a Ph.D. candidate in Com-
puter Engineering at Mohammed First Uni-
versity in Oujda, Morocco, where he is re-
searching internet of things security using
Deep Learning. He has an M.Sc. degree
in internet of things from Sidi Mohamed
Ben Abdellah University in Fez, Morocco
(2019), a B.Sc. degree in Computer Engi-
neering from Mohammed First University
(2016). Additionally, he holds several cer-
tifications in networking, artificial intelligence, cybersecurity, and
programming. Also, he was a reviewer for various international
conferences and journals. And is currently employed as an ad-
ministrative at Mohammed First University.

|

Mostafa Azizi received a State Engineer
degree in Automation and Industrial Com-
puting from the Engineering School EMI
of Rabat, Morocco in 1993, then a Master
degree in Automation and Industrial Com-
T8 puting from the Faculty of Sciences of Ou-
jda, Morocco in 1995, and a Ph.D. degree
in Computer Science from the University of
Montreal, Canada in 2001. He earned also
tens of online certifications in Programming,
Networking, Al, Computer Security ... He is currently a Professor
at the ESTO, University Mohammed First of Oujda. His research
interests include Security and Networking, Al, Software Engineer-
ing, IoT, and Embedded Systems. His research findings with his
team are published in over 100 peer-reviewed communications
and papers. He also served as PC member and reviewer in several
international conferences and journals.

Omar Moussaoui is an Associate Professor
at the Higher School of Technology (ESTO)
of Mohammed First University, Oujda — Mo-
rocco. He has been a member of the Com-
puter Science Department of ESTO since
2013. He is currently director of the MATSI
research laboratory. Omar completed his Ph.
D. in computer science at the University of
Cergy-Pontoise France in 2006. His research
interests lie in the fields of IoT, wireless net-
works and security. He has actively collaborated with researchers
in several other computer science disciplines. He participated
in several scientific & organizing committees of national and
international conferences. He served as reviewer for numerous
international journals. He has more than 20 publications in inter-
national journals and conferences and he has co-authored 2 book
chapters. Omar is an instructor for CISCO Networking Academy
on CCNA Routing & Switching and CCNA Security.

http://journals.uob.edu.bh

https://www.tensorflow.org/lite
www.intel.com/bench-
https://coral.ai/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.tensorflow.org/lite/convert/index
https://www.tensorflow.org/lite/convert/index
https://www.tensorflow.org/model_optimization/guide
https://www.tensorflow.org/model_optimization/guide
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.espressif.com/en/support/download/documents.
https://www.nodemcu.com/index_en.html
https://www.espressif.com/en/products/socs/esp8266
https://store.arduino.cc/arduino-uno-rev3
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://www.arduino.cc/pro/hardware/product/portenta-h7
http://journals.uob.edu.bh

	Introduction
	Background
	Intrusion Detection System (IDS)
	Deep Learning (DL)
	Convolutional Neural Networks (CNN or ConvNets)
	Fog computing
	Edge computing
	Dataset
	TensorFlow Lite

	Proposed Method
	First step (Pre-processing)
	Second step (Model training)
	Third step (Model conversion)
	Fourth step (Model Optimization)
	Weights Pruning
	Post-training Quantization
	Weight clustering

	Fifth step. (Model Deployment)

	Results and Discussion
	Hardware characteristics
	Evaluating the results

	Conclusions
	References
	Biographies
	Idriss Idrissi
	Mostafa Azizi
	Omar Moussaoui

