
https://dx.doi.org/10.12785/ijcds/1101103

Compact and High Speed Point Multiplication Architecture for
Elliptic Curve Diffie-Hellman Algorithm on Reconfigurable

Computing
Abiy T. Abebe1, Yalem zewd N. Shiferaw2 and P.G.V. Suresh Kumar3

1School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
2School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia

3Ethiopian Technical University, Addis Ababa, Ethiopia

Received 18 Mar. 2021, Revised 22 Dec. 2021, Accepted 12 Jan. 2022, Published 31 Mar. 2022

Abstract: Elliptic curve cryptography is popular for its efficiency and strong security as it provides equivalent security strength using
smaller key sizes compared to other public key algorithms such as RSA that commonly use larger key sizes for the same level of
security. Point multiplication is the core of elliptic curve cryptography. The development of reconfigurable devices enables researchers
to exploit effective methods for implementation of efficient hardware based scalar multiplication. Modern FPGAs consist embedded
hard-cores useful for design flexibility in addition to traditional generic fabrics. For cryptosystems implementation, several researchers
used traditional logic elements, and only some have used embedded hard-cores including DSP slices and block RAMs. However
complex cryptographic algorithms require large amount of generic logic and that in turn effect performance. Utilizing hard-cores entirely
excludes flexibility of logic elements. Balanced utilization of these resources is considered in this research. Thus, for elliptic curve
scalar multiplication required for implementing Elliptic Curve Diffie-Hellman algorithm, the FPGAs’ hard-cores are used; while, simpler
arithmetic and logical operations are flexibly implemented utilizing the generic FPGA fabrics. With this approach, a new architecture is
proposed and implemented based on Montgomery algorithm with projective coordinates for point multiplication. Cascaded DSP48E1
slices are used with parallel-pipeline approach together with block RAMs for effective implementation. Compared to existing research
outcomes reported in the literature, for implementation of the proposed architecture on Kintex-7 platform, smaller hardware resources
(971 slices, 4BRAMs, and 32 DSP slices) are utilized with timing performance of 1.74 µs. Whereas, 1164 slices, 4 BRAMs, and 32
DSP slices are used with enhanced timing performance of 1.55 µs for implementation of the architecture on Virtex-7 platform.

Keywords: BRAMs, Cryptography, DSP slices, ECDH, embedded hard-cores, FPGA, Scalar Multiplication

1. Introduction
Key agreement protocols including Diffie-Hellman

(DH) [1] and elliptic curve Diffie-Hellman (ECDH) algo-
rithms enable senders and recipients of secret information
to securely exchange key materials that can be used for
secret key generations. The secret key can be generated
without transferring it over insecure channels. Then, the
independently computed and established key can be used for
secret information exchange between the communicating
parties.

ECDH algorithm is a public key method which is based
on a technique combined from both the standard DH key
agreement protocol and elliptic curve cryptography. The
DH technique is based on discrete logarithm problem;
whereas, elliptic curve cryptography (ECC) is constructed
based on algebraic method of elliptic curves using finite
fields. Therefore, ECDH gets its security strength from

the computational hardness of both of these combined
techniques. Scalar multiplication is considered as the core
of elliptic curve cryptography [2].

In this paper, efficient architecture for EC point multipli-
cation based on FPGA is proposed which is to be used for
ECDH. The proposed method uses Montgomery algorithm
to speed up the arithmetic processes for elliptic curve point
multiplication in projective coordinates based on binary
fields. Also, the modern FPGAs’ dedicated hard-cores such
as Digital Signal Processing (DSP) slices and block Random
Access Memories (BRAMs) are used together to balance the
speed of operation and the hardware resource utilization.

Most of existing FPGA based similar works focused
on the security issues of the traditional Internet based
information technology applications targeting mostly on
high speed optimization.

E-mail address: abiy.tadesse@aait.edu.et, yalemzewdn@aait.edu.et, pendemsuresh@gmail.com

http:// journals.uob.edu.bh

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Mar-2022)

https://dx.doi.org/10.12785/ijcds/1101103
http://journals.uob.edu.bh

1276 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

But, in the current IoT network paradigm, there are
different platforms involved including high performance
computing and constrained devices, each with different
performance, resource, and security requirements. Direct
mapping of existing cryptographic algorithms to secure the
current IoT network may lead to inefficient performance
and unacceptable security. Therefore, efficient hardware
based cryptographic architectures with small area and high
speed optimization targets tailored to constrained small
sized IoT devices and high speed applications, respectively,
are ongoing research since the size of constrained devices
is getting smaller and smaller; and also, the speed of high
performance platforms is increasing.

Thus, the compact and efficient architecture proposed in
this work is intended to address these issues. More precisely,
small footprint security is becoming increasing area of
interest for researchers in both academia and industry. Thus,
the small architecture proposed in this research enables to
address security issues in IoT devices. Furthermore, the
enhanced speed of performance of the proposed method is
intended to balance area and speed trade-offs so as to meet
the requirement of the IoT network security.

Existing methods for FPGA based ECC architectures
also used either the generic FPGA fabrics entirely, or ded-
icated hard-cores completely, focusing on high throughput
architectures or compact architectures. However, utilizing
balanced amounts of both of these resources for suitable
parts of the algorithm are important since complete use
of the generic FPGA fabrics for complex cryptographic
algorithms reduces performance, and requires large area.
Similarly, though using only dedicated hard-cores may be
helpful to achieve high throughput, but, the implementation
is not flexible; and, if pipelining and cascading of the DSP
slices are needed, it requires large amount of space.

Therefore, balancing utilization of both resources is
useful depending on the intensity of the arithmetic computa-
tions in such a way that performing simple arithmetic and
logical operations using the generic FPGA fabric; while,
using dedicated embedded hardware resources for intensive
arithmetic operations.

The contributions of this research work are described as
follows:
In this research, a compact and efficient architecture for
EC point multiplication is proposed that can be used for
ECDH key exchange algorithm tailored to the security is-
sues of constrained IoT devices. Parallel-pipelined approach
is followed using cascaded DSP48E1 with BRAMs; and,
Montgomery method is used to implement the architecture
on 7-series FPGA platforms for binary field NIST curves
based on projective coordinates system. Balanced utilization
of the embedded hard-cores including DSP48E1 slices and
BRAMs, and generic FPGA fabrics are used together to
implement the proposed architecture. This work exploited
the balanced use of these resources for reduced area and

balanced speed of performance. Thus, for complex arith-
metic operations, DSP slices are used; and, for simple
logical, arithmetic, and control operations, the traditional
FPGA fabrics are used. The proposed approach reduced
the performance bottlenecks of the EC scalar multiplication
that is used for ECDH algorithm based on FPGA. The
target of optimization is small resource utilization with
good performance considering the security of constrained
IoT devices in IoT network. Moreover, the high speed
performance is also useful for high performance platforms
in IoT network. The proposed architecture could address
both of these requirements. Therefore, smaller hardware
resources are used and good performance metrics have been
achieved. The main contributions of this research can be
summarized as:

• Effective, compact, and high speed architecture suit-
able for elliptic curve point multiplication that can be
used in ECDH algorithm is proposed based on FPGA
hard-cores (DSP48E1 slices and BRAMs) together
with balanced utilization of generic FPGA fabrics.
Simple arithmetic and logical operations as well as
control operations are done using generic FPGA
fabrics; while, dedicated embedded hardware is used
for intensive arithmetic operations.

• Parallel-pipelined method based on cascaded DSP
slices and pipeline-able registers is employed. With
this approach, the research exploited the modern
FPGA resources, and balanced area and speed trade-
offs for efficient performance, achieving lightweight
and high speed architecture.

• Montgomery method with left-to-right approach is
used for the parallel-pipelined based EC scalar multi-
plication architecture based on projective co-ordinates
system for NIST binary curves so as to speed up the
computations and reduce performance bottlenecks.

The organization of this paper is outlined as follows:
Section 2 introduces ECC, ECDH, and Montgomery al-
gorithms as background. In Section 3, related works are
discussed followed by the proposed architecture which is
presented in Section 4. Then, in Section 5, implementation
approaches and comparisons of the achieved results against
existing research outcomes found in the literature are fol-
lowed. The paper is concluded in Section 6.

2. Background
A. Elliptic Curve Cryptosystem

ECC is a public key algorithm designed using algebraic
constructs of elliptic curves based on finite fields [2].

Several researchers have stated and shown that Elliptic
Curve Cryptography with smaller key length can provide
equivalent security strength compared to RSA with longer
key size [2], [3], [4], [5], [6].

ECC is based on points on carefully selected elliptic

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1277

curves. The points can be denoted as x and y coordinates
and are obtained by using suitable arithmetic field opera-
tions. Then, they can be used to represent secret messages
for performing various cryptographic processes [2].

For cryptographic applications, elliptic curves have been
used based on prime GF(p) or binary GF(2m) field op-
erations [4], [5], [6]. In case of prime fields, the prime
number p > 3 is used, and computations are performed
over the set of 0, ..., p − 1 modulo p. But, for binary fields,
field operations are performed over GF(2m) and all the
computations are done in GF(2m). For hardware implemen-
tations of elliptic curve cryptosystem, elliptic curves based
on binary field representation are preferred since processing
of binary elements in hardware can efficiently and easily be
performed [7]. Elliptic Curves that are based on prime fields
comprised of points x and y are shown in Eq. 1 [2]:

y2 = x3 + ax + b mod p (1)

, where, x and y ∈ GF(p), and (a, b ∈ GF(p)) are
selected from the prime field GF(p) such that 4a3 +27b2 ,
0 mod p, p , 0 to satisfy non-singular elliptic curve
and avoid repeated factors. All points satisfying the elliptic
curve equation are considered as sets of solutions and points
on the curve. Point at infinity, defined by O is considered as
additive identity for additive group operation on the elliptic
curve. If an elliptic curve is defined over a prime field and
represented by E, then, E is an elliptic curve over G(p). So,
there can be finitely many points on E that can be computed
using different techniques. The number of points that can
be obtained in the curve E(G(p)), which can be denoted by
#E(G(p)) is known as the order of the elliptic curve E over
G(p) [2].

1) Elliptic curve point addition over GF(p)
If P(x1, y1) and Q(x2, y2) are points on the curve, then
another point denoted by R(x3, y3)) can be found on the
same curve by performing addition operation on P and
Q provided P , O and P , ±Q, as R(x3, y3) = P + Q by
processing the following steps [2]:

let ℓ = (y2−y1)
(x2−x1) mod p, then

x3 = ℓ
2 − x1 − x2) mod p

y3 = ((x1 − x3) · ℓ − y1 mod p)

2)Elliptic curve point doubling over GF(p)
Point doubling can also be expressed algebraically as
follows:

If y1 , 0, then
R = (x3, y3) = 2P
ℓ = (3 · x2

1 + a)/(2 · y1) mod p
x3 = (ℓ2 − 2x1) mod p
y3 = ((x1 − x3) · ℓ−y1) mod p

Elliptic curves defined over binary fields GF(2m) can
also be specified as shown in Eq. 2 [2]:

y2 + xy mod p = x3 + ax2 + b mod p (2)

, where a, b ∈ GF(2m) and b , 0. Points in binary
field which satisfy the elliptic curve equation (Eq. 2) can
be obtained with similar approaches used for point addition
and doubling processes of prime field GF(p). Point addition
over binary fields can be done as follows:

if R = (x3, y3) = P + Q, P , −Q, then
ℓ = (y2+y1)

(x2+x1)
x3 = ℓ

2 + ℓ + x1 + x2
y3 = y1 + x3 + ℓ(x1 + x3)

Similarly, point doubling can be performed as follows:
If x1 = 0 then P + P = 2P = O
If x1 , 0, then
Take
R = (x3, y3 = 2P), then
ℓ = x1+y1

x1

x3 = ℓ
2 + ℓ + a

y3 = x1 + (ℓ + 1) · x3

The process of computation of points on the curve
continues until the required number of points are obtained
by performing such procedures.

The security strength of ECC generally relies on the
computational hardness of Elliptic Curve Discrete
Logarithm Problem (ECDLP) [2]. If an elliptic curve is
defined over GF(p) or GF(2m), and P and Q are points
on the curve having order r, then, by selecting a scalar
k ∈ [1, r−1], computation of a scalar multiplication Q = kP
is the core of elliptic curve cryptography. It is a discrete
logarithm problem to be solved, but considered to be hard
mathematical problem [7].

By repeated point addition and doubling steps, the
elliptic curve scalar multiplication can be performed since
the equation Q = kP can be computed by adding the point
P k-times as:

k · P = P + P + · · · + P︸ ︷︷ ︸
k terms

And, this repeated addition of point P can be expressed
based on point additions and point doublings as kP = P +
. . . (2(2(. . . P+2(P+2(P+2P))). For example, if the selected
value of k = 31, then kP = 31P = P+2(P+2(P+2(P+2P)),
based on both point addition and doubling processes.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1278 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

B. Elliptic Curve Double and Add Algorithms
There are different algorithms that have been proposed

by various researchers for efficiently performing the elliptic
curve scalar multiplications [8], [9], [10], [11], [12]. Double
and Add algorithm is the commonly used algorithm for
point multiplication in elliptic curve cryptography [7]. There
are two forms of algorithms in this regard. The first one
is right-to-left approach and the other one is left-to-right
approach. The left-to-right approach [6] is presented in
Algorithm 1, and the right- to-left method is presented in
Algorithm 2.

Algorithm 1: Point Addition and Point Doubling (Left-to-
right approach)

Input : k = (km−1, km−2, · · · , k1, k0)2, P ∈ E(GF(2m))
Ensure: Q = kP
1: Q = P;
2: for i = m − 2 downto 0 do
3: Q = 2Q
4: if ki = 1 then
5: Q = Q + P;
6: end if
7: end for
8: Return Q

Algorithm 2: Point Addition and Point Doubling (Right-
to-left approach)

Input: k = (km−1, km−2, · · · , k1, k0)2, P ∈ E(GF(2m))
Ensure: Q = kP
1: Q = 1; R = P
2: for i = 0 to m − 1 do
3: if ki = 1 then
4: Q = Q + R
5: end if
6: R = 2R;
7: end for
8: Return Q

The left-to-right approach allows scanning each ki bits
starting at the most significant bit (MSB) down to its list
significant bit (LSB). Then, it is used to perform point
doubling operation whenever the ki bit are zero (0). But,
when the ki bits are one (1), it performs point addition
operation as presented in Algorithm 1. Similarly, the right-
to-left method allows to scan each ki bits starting at the
LSB up to its MSB. Then, point addition could be done
whenever the ki bit are one (1). But, when the ki bits are

zero (0), it performs point doubling operation as shown in
Algorithm 2.

The representations of the double and add steps in
both Algorithm 1 and Algorithm 2 have followed the
affine x and y coordinates system of an elliptic curve.
Many inversion processes are needed to perform scalar
multiplication in affine coordinates [12]. The inversion -
operations in GF arithmetic, generally, are slow and expen-
sive processes which can lead to low performance of the
cryptosystem. Therefore, researchers proposed projective
coordinates system which can transform the affine system
to another co-ordinate system that can avoid the inversion
operations while providing better performance [2], [7], [13].
The standard way of transforming affine coordinates to
projective is done by representing the elliptic curve point P
by three notations: X,Y , and Z, and then expressing x and y
affine co-ordinates as x = X

Z and y = Y
Z , where Z , 0. Thus,

the elliptic curve binary field equation will be changed as
in Eq. 3 [2], [7], [10], [13]:

Y2Z + XYZ = X3 + aX2Z + bZ3. (3)

After completing the scalar multiplication (point addi-
tion and point doubling) operations in projective system,
then point P must be re-converted back into affine co-
ordinates system [7], [13].

C. Specification of Elliptic Curve Diffie-Hellman Algorithm

ECDH key exchange algorithm [2], [14] differs from
the DH key exchange protocol [1] in that the former is
based on scalar multiplication of elliptic curve points for
generation of secret keys using discrete logarithm problem;
whereas, the latter uses exponentiation based on number
in prime field. When two communicating parties (a sender
and recipient) use ECDH for key exchange, they first agree
on the elliptic curve and related parameters including the
base point [2], [14]. Then, the two communicating parties
perform the following activities to calculate the shared
secret:

1) The sender selects a random number ks and the recipient
also selects a random number kr.

2) The sender performs computation: Qs = ks • P,
and, the recipient also computes Qr = kr • P.

3) The sender and the recipient exchange their computed
public keys (Qs and Qr).

4) After receiving the public key of the other end,
then, the sender and the recipient compute the shared
secret independently. The sender computes the shared secret
as: (S S s) = Qr • ks = (kr • P · ks). Similarly, the recipient
computes the same value as: (S S r) = Qs • kr = (ks •P · kr).
Since S S s and S S r are equal, they can use it as a key
material.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1279

D. The Montgomery Technique for Efficient Scalar Multi-
plication
If there are two points on an elliptic curve denoted by

P and Q such that: P(x1, y1) and Q(x2, y2), then the third
and fourth points on the same curve can be obtained based
on the curve equation shown in Eq. 3 as (x3, y3) = P + Q
and (x4, y4) = P − Q on the same curve [2], [7], [10], [13].
Therefore, x3 can be computed by Eq. 4:

x3 = x4 +
x1

x1 + x2
+

(
x1

x1 + x2

)2

(4)

As it is observed in Eq. 4, only x-coordinate of the points
P, and Q, and also the point P − Q are used to find the x-
coordinate of P + Q. If the x-coordinate representation of
point P in the projective coordinates system is expressed as
x = X

Z , then points X2 and Z2 in the projective coordinates
system (if (X2,−,Z2)) will be given by Eq. 5 [2], [7], [10],
[13].

X2 = X4 + bZ4; Z2 = X2.Z2 (5)

Similarly, point addition can be done as: Z3 = [(X1 •

Z2 + X2 • Z1)]2; X3 = x • Z3 + (X1 • Z2) • (X2 • Z1).

To implement scalar multiplication, one of the efficient
methods for point addition and doubling operations based
on projective co-ordinate system is the Montgomery algo-
rithm [2], [7], [15]. The Montgomery algorithm [15] for
point additions and point doublings [2], [4] are presented
in Algorithms 3 (Mdouble()), and Algorithm 4 (Madd()),
respectively.

Algorithm 3: Montgomery Point Doubling method
Mdouble(X1,Z1)

Input: P = (X1,−,Z1) ∈ E(GF(2m)), c such that c2 = b
Ensure: P = 2P
1: T = X2

1
2: M = c · Z2

1
3: Z2 = T · Z2

1
4: M = M2

5: T = T 2

6: X2 = T + M
7: Return (X2,Z2)

Similarly, point addition can be expressed as:
Z3 = (X1 · Z2 + X2 · Z1)2

X3 = x · Z3 + (X1 · Z2) · (X2 · Z1)

Algorithm 4: Montgomery Method for Point Addition
Madd(X1,Z1, X2,Z2)

Input: P = (X1,−,Z1),Q = (X2,−,Z2) ∈ E(GF(2m)

Ensure: P = P + Q
1: M = (X1 · Z2) + (Z1 · X2)
2: Z3 = M2

3: N = (X1 · Z2) · (Z1 · X2)
4: M = x · Z3
5: X3 = M + N
6: Return (X3,Z3)

Based on Algorithms 3 and 4, Montgomery point mul-
tiplication algorithm has been constructed as presented by
Algorithm 5. This algorithm composes both Mdouble()
(Algorithm 3) and Madd() (Algorithm 4) methods and, it
can be used to compute them concurrently [2], [4].

Algorithm 5: Montgomery Point Multiplication based on
both Point Additions and Point Doublings

Require: k = (kn−1, kn−2, · · · , k1, k0)2 with
kn−1 = 1, P ∈ E(GF(2m)
Ensure: Q = kP
1: X1 = x,Z1 = 1
2: X2 = x4 + b,Z2 = x2

3: for i = n − 2 downto 0 do
4: if ki = 1 then
5: Madd(X1,Z1, X2,Z2)
6: Mdouble(X2,Z2)
7: else
8: Madd(X2,Z2, X1,Z1)
9: Mdouble(X1,Z1)
10: end if
11: end for
12: x3 =

X1
Z1

13: y3 = (x + X1
Z1

)[(X1 + xZ1)(X2 + xZ2) + (x2 +

y)(Z1Z2)](xZ1Z2)−1 + y
14: Return (x3, y3)

In this algorithm, Mdouble() and Madd() are the oper-
ations presented in Algorithm 4.4 and Algorithm 4.5 that
are executed at every iteration of the execution of the
algorithm. Thus, when ki is one (1), then the multiplication
for Madd(X1,Z1, X2,Z2) and Mdouble(X2,Z2) can be done.
Otherwise, (when the bits are zero (0), multiplications for
Madd(X2,Z2, X1,Z1) and Mdouble(X1,Z1) will be done.

Now, conversion from standard projective coordinates
back to affine coordinates is required. Therefore, for
the x- coordinate, the conversion is done as x3 =

X1
Z1

as shown in Algorithm 5 (number 12). Similarly, the
conversion to the affine y-coordinate can be done as y3 =
(x+ X1

Z1
)[(X1 + xZ1)(X2 + xZ2)+ (x2 + y)(Z1Z2)](xZ1Z2)−1 + y,

which is shown in Algorithm 5 (number 13). In this case,
conversions to affine coordinates in both x3 and y3 have
one step of inversion computation, though they are at the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1280 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

final stage of the algorithm.

To further minimize number of inversion steps, sequen-
tial reduction steps are provided in Algorithm 6 [2], [4]
which contains only one inversion step.

Algorithm 6: Standard Projective to Affine Coordinates

Input: P = (X1,Z1),Q = (X2,Z2), P(x, y) ∈ E(GF(2m))
Ensure: (x3, y3)
1: ℓ1 = Z1 × Z2
2: ℓ2 = Z1 × x
3: ℓ3 = ℓ2 + X1
4: ℓ4 = Z2 × x
5: ℓ5 = ℓ4 + X1
6: ℓ6 = ℓ4 + ℓ2
7: ℓ7 = ℓ3 × ℓ6
8: ℓ8 = x2 + y
9: ℓ9 = ℓ1 × ℓ8
10: ℓ10 = ℓ7 + ℓ9
11: ℓ11 = x × ℓ1
12: ℓ12 = inverse(ℓ11)
13: ℓ13 = ℓ12 × ℓ10
14: x3 = ℓ14 = ℓ5 × ℓ12
15: ℓ15 = ℓ14 + x
16: ℓ16 = ℓ15 × ℓ13
17: y3 = ℓ16 + y
18: Return (x3, y3)

The single inversion step can be performed using in-
version algorithms such as Fermat’s Little Theorem [2], or
Extended Euclidean Algorithm [12], or by method of pre-
computation. Based on the sequence of conversion steps in
Algorithm 6, only one inversion operation is needed.

Parallel operations are possible on the steps of Mont-
gomery algorithms. For example, Montgomery point dou-
bling operation, 2(X1 : − : Z1) = (X2 : − : Z2) can be
executed in a single clock cycle (CC) as follows:
CC1 = T = X2

1 ; M = c.Z2
1 ; Z2 = T.Z2

1 ; CC′1 = X2 = T 2 + M2

Similarly, Montgomery point addition operation (X1 : − :
Z1) = (X1 : − : Z1) + (X2 : − : Z2) can be executed just in
two clock cycles: CC1 : t1 = (X1.Z2); t2 = (Z1.X2);
CC′1 : M = t1 + t2; Z1 = M2

CC2 : N = t1.t2; M = x.Z1
CC′2 = X1 = M + N

Thus, the computations of clock cycles CC′1 and CC′2
can be performed when CC1 and CC2 are executed respec-
tively, due to their easiness. In this work, implementation
of the binary field sizes recommended by NIST including
163, 233, and 283 have been considered.

3. RelatedWorks
Most of the proposed works for ECC point multipli-

cation have considered high speed processing [16], [17],
[18], [19]. Only few existing works have considered small
area architectures and architectures for balancing speed and
area [13], [20], [21]. Moreover, the majority of existing
methods used the common FPGA resources such as tra-
ditional logic elements for point multiplication [13], [21],
[22], [23].

Basically, bit-parallel and digit-serial architectures have
commonly been implemented as multipliers for high per-
formance [24], [25], [26].

Thus, Karatsuba multiplier has been used as multiplier
for bit-parallel architectures since it enabled to reduce re-
source utilization [27], [28]. However, since area reduction
impacts performance speed, several pipelining stages were
needed to increase performance at cost of latency.

For the trade-offs of higher performance speed with
large area, digit-serial architectures were used based on full-
precision multipliers. However, even though the Karatsuba
multiplier has better complexity of multiplication than full-
precision based digit serial approach, the latter has reduced
number of critical logic levels [8], [29].

Very few research works demonstrated the use of DSP
blocks for implementation of elliptic curve point multipli-
cation [30], [31].
Summary of selected related works are presented in Table I.

The method proposed in the current work differs from
the approaches followed in [30] and [31] that used DSPs
and RAMs in many aspects. This work is not serial-to-
parallel architecture for standard double and add algorithm
implementation as the approach presented in [30], or it
is not a sequential approach as used in [31]. The former
used Montgomery method for standard double and add
algorithm for serial-to-parallel architecture, and the latter
used the Montgomery ladder with sequential approach
using micro-code. They also used distributed RAMs for
storage. Both [30] and [31] also used prime fields for their
implementations.

In this work, implementation of the binary field sizes
recommended by NIST including 163, 233, and 283 have
been considered. The GF(2m) elements are structured in
polynomial representation and the reduction polynomials
used are:

f (x) = x163 + x7 + x6 + x3 + 1; f (x) = x233 + x74 + 1;
f (x) = x283 + x12 + x7 + x5 + 1; for 163, 233, and 283 field
sizes, respectively.

4. The Proposed Architecture
To implement ECDH algorithm on FPGA, the core of

elliptic curve cryptosystem that is, the scalar multiplication,
as presented in the hierarchical structure shown in Fig. 1,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1281

TABLE I. Summary of Related Works

Reference Architecture Method Implementation Field Optimization Other
/Multiplier Platform target (Features)

[32] Compact Carry-Chain logic FPGA Prime Small area Countermeasure
for SPA attack

-used generic logic
[33] Pipelining -Karatsuba multiplier FPGA Binary High speed

(Two stage pipelining) -used generic logic
[34] -High performance Quadratic full-precision FPGA Binary High speed

(Two stage pipelining) -used generic logic
-a single multiplier

-Low-latency Quadratic full-precision Low-latency
Three multipliers But, consumed

large resources
[31] Compact Montgomery Ladder FPGA Prime Small area

Algorithm Counter measures
-Sequential with for Side channel and

micro-coding Low-latency fault injection
DSP slices were used But, consumed attack

for Arithmetic unit large resources
-Used distributed RAMs

for local storages
[30] Serial to parallel Montgomery method FPGA Prime High speed

for standard Double
and Add algorithm
-Used DSP48 and
dual-port BRAMs

is considered. The Montgomery method that is based on
projective co-ordinates system for scalar multiplication is
used. Thus, Algorithm 5 which composes Algorithm 3 and
Algorithm 4 is implemented. These algorithms are imple-
mented in parallel for efficiency, while using le f t−to−right
approach for point addition and point doubling in order
to balance the resource consumption. For conversion from
projective back to affine coordinates system, Algorithm 6,
which is the standard method is used. But, the inversion step
is performed using pre-computation. Furthermore, pipelin-
ing method is employed in this work based on pipelining
registers and the control logic. DSP slices are cascaded
for the process of parallelization and to speed up the
computation. In this work, binary field is considered instead
of prime field.

Moreover, in the proposed method, inverses are pre-
computed and stored in BRAMs. Since the approach used
in [30] is intended for high speed processing, and the main
purpose of the work in [31] is to produce compact architec-
ture, the proposed architecture in the current work is used
to balance speed and area trade-offs for reasonable resource
utilization and good performance by using dedicated DSP
slices and BRAMs for the complex computation part, and
the traditional FPGA logic elements for flexible controlling
and simpler logical and arithmetic operations.

DSP48E1 slices found in Xilinx Seven Series FPGA
platforms [35] are used to implement the Montgomery

Figure 1. Hierarchy of Finite Field Point Multiplication

method for performing scalar multiplication based on both
point doubling and point addition operations. The struc-
ture of the Montgomery method for point doubling with
projective co-ordinates based on DSP48E1 construction is
represented as shown in Fig. 2. In this case, to generate the
X2 and Z2 outputs, only two DSP48E1 slices are required
which can be processed in parallel. To produce Z2, a DSP
slice with only one multiplier component is used. Whereas,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1282 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

to obtain the X2 output, one DSP slice which consists of
one multiplier and one adder is used.

But, based on the same approach, six DSP slices are
needed to perform one point addition operation as shown
in Fig. 3. Four of them require only a multiplier, and
only two DSP slices use a multiplier together with an
adder component. All these six DSP slices can be executed
in parallel. The hardware required for implementation of
the squaring operations shown in both Fig. 2 and Fig. 3
are not significant and can be negligible as the squaring
operation over GF(2m) is in binary. The inverse steps found
in the projective coordinate system are implemented by pre-
computing and storing them in BRAMs.

A control block is used as shown in both Fig. 2 and
Fig. 3. The control logic is used to effectively manage
the activities of the major components of the implemented
architecture including DSP slices, BRAMs, and registers;
and, to synchronize the parallel operations of the replicated
DSP slices as well as the pipeline registers. Operations
including read and write activities and processes of registers
and block RAMs are also synchronized based on the control
logic. The control logic consists of signals that are used to
manage the synchronization by activating and de-activating
them for the working of the BRAMs, DSP slices, and the
pipeline-able registers. It is implemented based on simple
finite state machine (FSM) using the FPGA logic elements.

To implement these architectures for large number of
point additions and doublings, the DSP slices are cascaded
and then executed in parallel as shown in Fig. 4 and Fig. 5
for point doublings and point additions, respectively. The
replicated structures shown in Fig. 4 and Fig. 5 that are
constructed from the basic point addition and point doubling
structures shown in Fig. 2 and Fig. 3, respectively, are useful
for pipelining processes so as to increase the throughput.
However, this works with area cost.

The clock cycles (CCs) required to perform Mont-
gomery point addition are two CCs. Whereas for Mont-
gomery point doubling, one CC is needed. To compute
the total time consumed, the execution time required for
point doubling and point addition processes and the number
of bits of the corresponding binary curve are used. If the
number of bits used for a selected curve is represented by m
(where m can be 163, 233, or 283), and the total execution
time achieved for implementation of both point doubling
and point addition operations on the specific platform is
represented by t, then: m · t is used to obtain the total
consumed time, excluding the time required for inversion
operation since inversion is pre-computed in this work. For
example, if m=163, and the total execution time for both
point additions and point doublings are t=100 ns, then,
the total consumed time for the specified total clock cycles
becomes 16300µs. In case of Kintex-7, for m=163, the total
execution time is 10.75 ns, for m=233, the total execution
time is 11.68 ns and, for m=283, the total execution time is

12.46 ns. In case of Virtex-7, for m=163, the total execution
time is 9.5 ns.

5. Implementation Approaches and Result Comparisons
The compact and efficient architecture proposed in this

research work is a new approach as it uses a parallel-
pipelined method based on cascaded DSP48E1 slices with
BRAMs in combination with traditional FPGA logic ele-
ments for scalar multiplication in binary field in projective
coordinates system using Montgomery method so as to
implement ECDH algorithm and speed up the process.

Existing similar works used either traditional FPGA
generic logic only, or the FPGA hard-cores exclusively
to implement their respective architectures for either com-
pact or high speed architectures, respectively. This work
exploits the balanced use of both of these resource types
for reduced area and balanced speed of performance. For
complex arithmetic operations DSP slices are used, and
for simple logical and arithmetic operations and control
operations, the traditional FPGA fabrics are used. The
optimization target is small resource utilization with good
performance considering the security of constrained IoT
devices. Moreover, the high speed performance is also
useful for high performance platforms in IoT network. The
proposed architecture achieved both requirements.

The proposed architecture has been implemented on the
modern Xilinx 7-series FPGA platforms including Kintex-
7, and Virtex-7 devices. These modern platforms consist
DSP48E1 hardcore which can flexibly perform complex
arithmetic computations and logical processes. They are
useful to construct pipelining architectures, and cascading
of several DSP slices for parallel operation.

The Xilinx 7-series platforms support DSP blocks with
25 × 18 multiplier, and 48 bit for addition. However, since
cascaded DSP slices have been used in this work so as to
provide wider word widths, 16 bits for multiplication and 32
bits for addition have been used. Then, cascading has been
applied from the same DSP column blocks for efficiency.

The BRAMs used are dual-port, and made to store pre-
computed inverse values and input data for DSP slices.
Since the 7-series FPGAs are used, Vivado HLS is used for
verification and synthesis. This state-of-the-art tool provides
different optimization directives to flexibly implement the
required resources. The C-based pragmas enabled to im-
plement the preferred resources as required. The default
synthesis and implementation processes and technology
mapping used by the synthesis tool (by default), are man-
aged and changed based on the optimization targets using
the HLS optimization directives available in Vivado HLS
tool and the coding styles followed by using the HLS
pragmas. Therefore, using this approach, specific hard-cores
could be utilized such as DSPs and BRAMs, and it also
enables to use even other different available resources as
needed.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1283

Figure 2. Single Cycle Point doubling using DSP slices based on Montgomery Method

Figure 3. Single Cycle Point addition using DSP48E1 based on Montgomery Technique

The architectures proposed for elliptic curve point mul-
tiplications in binary field use NIST recommended curves
including 163, 233, and 283 sizes for implementation. Only
x-coordinate values are enough to be computed.

The functional verification of the elliptic curve point
multiplication algorithm is first performed using Vivado
high-level synthesis (HLS) 2018.3 tool. The generated x-

coordinate value and the computed shared secret value by
ECDH algorithm are shown in Fig. 6 and 7, respectively.
Table II shows the performance comparisons of the pro-
posed work against existing research outcome found in the
open literature.

Then, the algorithm has been synthesized and imple-
mented on the aforementioned FPGA devices, and the

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1284 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

Figure 4. Point doubling using cascaded DSP48E1 slices based on Montgomery Method

Figure 5. Point addition using cascaded DSP48E1 slices based on Montgomery Technique

Figure 6. The generated x-coordinate value

Figure 7. The computed shared secret value

generated VHDL codes were synthesized and implemented
using Vivado 2018.3 IDE.

The inversion arithmetic required to convert from
projective coordinates back to affine coordinates is pre-
computed using Extended Euclidean algorithm. The NIST
recommended elliptic curves over binary fields including

163, 233, and 283 bits are considered so that they could be
used for ECDH key exchange based on users’ preferences.
Fair result comparisons could be done when the implemen-
tation platforms are similar and the used fields are the same.
Thus, prime field implementations are not included in result
comparisons. Moreover, existing implementation outcomes

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1285

that have used devices older than 7-series platforms are not
included in result comparison for fair comparisons, since
our architecture utilized DSP48E1 hard-cores which exist
in such platforms. In addition, existing architectures which
have used only pure hardware resources such as the generic
FPGAs’ logic elements and embedded hard-cores such as
DSP slices and BRAMs are used for fair comparisons
excluding design approaches such as hardware/software co-
designs as well as software implementations.

Therefore, the 7-series FPGAs’ dedicated DSP48E1
slices and BRAM blocks together with generic FPGA fab-
rics are utilized for the proposed architecture that consists
Montgomery algorithm based on projective coordinates to
speed up the performance of point multiplication. The
approach enabled to achieve better performance of the scalar
multiplication for ECDH in terms of performance time
and resource utilization. Instead of using only the FPGA
traditional logic elements that are required in large amount
to implement such complex arithmetic operations, the ded-
icated blocks are used in addition, to efficiently implement
the proposed architecture for the purpose of enhancing
speed of performance and optimized resource utilization.
The proposed architecture balanced the utilization of the
traditional FPGA logic elements and that of the dedicated
hard-cores as shown in Table II; and, the proposed method
utilized fewer numbers of the generic elements compared
to existing results, while outperforming in terms of the
total time required for scalar multiplication for all the
used field sizes. Thus, for implementations performed on
Kintex-7 platform, existing similar works produced timing
performance in ms which is very slower compared to the
achieved results in µs of the proposed work.

Moreover, the results shown by existing works for
hardware resources in terms of slices and look up tables
(LUTs) is larger than the proposed work. Table II shows
that existing works have not used dedicated hard-cores, but,
the proposed work used DSP slices and BRAM blocks for
implementation of the proposed architecture. For example,
as shown in Table II, for the different field sizes on Kintex-
7 platform, the proposed work utilized from 971 to 1214
FPGA slices, 4 to 6 BRAMs, and 32 to 64 DSP slices, as
well as 1.75µs to 3.53 µs timing performance. Whereas,
for the same platform, existing research outcomes showed
from 3016 [7] to 6620 slices [36], 1.06 ms [36] to 2.66
ms [7] timing performance with no DSP slices and BRAMs.
Similarly, on Virtex-7 platform, the present work utilized
1161 slices, 4 BRAMs and 32 DSP slices, while achieving
1.55µs timing performance for the field size of 163 bits.
Whereas, the outcomes of the existing works range from
1476 [37] to 8736 [38] slices and 1.70µs [26] to 10.80µs [4]
timing performance, with no dedicated hard-cores utiliza-
tion. As sown in Table II, the performance of the proposed
work balances the resource utilization of both the generic
FPGA fabrics and the hard-cores while providing efficient
performance.

The performance comparisons are also analyzed graph-
ically as shown in Figs. 8 and 9. Fig. 8 shows comparisons
based on consumed hardware resources on Kintex-7 and
Virtex-7 platforms. Compared to the outcomes presented
by existing works, smaller amounts of slices are utilized by
the proposed work on both platforms.

Fig. 9 shows the comparison of timing performance of
existing research results with the current work on Kintex-
7 and Virtex-7 platforms. The performance comparisons in
Fig. 9 show that the proposed work has better timing per-
formance than existing similar works found in the literature
for both Kintex-7 and Virtex-7 platforms.

6. Conclusions
In this research work, smaller and efficient EC point

multiplication architecture for binary field NIST curves is
proposed and implemented on FPGA based on Montgomery
algorithm with projective coordinates system, and used for
implementation of ECDH algorithm. This compact and
efficient architecture is aimed to address the IoT net-
work security that involves constrained devices that require
lightweight and efficient security mechanisms. Exploiting
the advantages of modern FPGA resources is helpful to
produce effective architecture for complex cryptographic al-
gorithms, in order to efficiently implement them. Utilization
of generic FPGA fabrics for implementation of complex
algorithms consumes large amounts of such resources and
leads to slow performance. On the other hand, utilization
of the FPGAs’ hard-cores for simple logical and arith-
metic operations is not cost effective in terms of hardware
resource utilization and is limited in terms of flexibility.
Thus, the proposed work balanced the uses of these FPGA
resources and utilized the traditional FPGA resources for
simple arithmetic and logical processes while utilizing the
embedded hard-cores for complex arithmetic and logical
operations. As a result it balanced the utilization of both
resource types and reduced the performance bottlenecks of
elliptic curve scalar multiplication that is used for ECDH
algorithm on FPGA. Using this approach, smaller hardware
resources (971 slices, 4 BRAMS, and 32 DSP slices) and
balanced timing performances (1.74µs) are achieved on
Kintex-7 platform for the proposed architecture compared
to existing research outcomes found in the literature. On
Virtex-7, enhanced timing performance (1.55µs) is achieved
and balanced resource (1164 slices, 4 BRAMs, and 32
DSP slices) are utilized. In the future, elliptic curve digital
signature will be included to enable the hardware based
cryptosystem can provide multiple cryptographic security
services.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1286 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

TABLE II. Performance Comparisons for Implementations on Xilinx 7-series FPGA Platforms

Work Field Device Slice LUT BRAM DSP Freq. Clock Time
size (MHz) cycle

[7] 233 Kintex-7 -3016 9151 - - 255.66 679776 2.66 ms
283 4625 14440 - - 251.98 1395312 5.54 ms

[36] 163 Kintex-7 6620 7963 - - 306.48 325564 1.06 ms
This 163 Kintex-7 971 2877 4 32 324.52 1031 1.74 µs
work 233 1053 3168 6 64 345.324 1098 2.72 µs

283 1214 3225 6 64 375.745 1194 3.53 µs
[34] 163 Virtex-7 4150 14202 - - 352 1119 3.18 µs

163 Virtex-7 11657 41090 - - 159 450 2.83 µs
[37] 163 Virtex-7 1476 4721 - - 397 4168 10.51 µs
[38] 163 Virtex-7 8736 27105 - - 223 780 3.50 µs
[26] 163 Virtex-7 na 28911 - - 320.5 547 1.70 µs
[4] 163 Virtex-7 3657 10128 - - 135 3426 10.80 µs
This 163 Virtex-7 1161 - 4 32 381 1214 1.55 µs
work

Figure 8. Comparison of resource utilization

Figure 9. Result comparisons based on timing performance

References
[1] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,

1976.

[2] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 1275-1288 (Mar-2022) 1287

Curve Cryptography. New York: Springer, 2004.

[3] K. Maletsky, “rsa vs ecc comparison for embedded systems,” Atmel,
White Paper, 2015.

[4] M. Imran, I. Shafi, A. R. Jafri, and M. Rashid, “Hardware design
and implementation of ecc based crypto processor for low-area-
applications on fpga,” in 2017 International Conference on Open
Source and Technologies (ICOSST). Lahore, Pakistan: IEEE, 2017,
pp. 54–59.

[5] H. Asshidiq, A. Sasongko, and Y. Kurniawan, “Implementation of
ecc on reconfigurable fpga using hard processor system,” in In
2018 International Symposium on Electronics and Smart Devices
(ISESD). Bandung, Indonesia: IEEE, 2018, pp. 1–6.

[6] M. M. Islam, M. S. Hossain, M. K. Hasan, M. Shahjalal, and
Y. M. Jang, “Fpga implementation of high-speed area-efficient
processor for elliptic curve point multiplication over prime field,”
IEEE Access, vol. 7, p. 178811–178826, 2019.

[7] M. S. Hossain, E. Saeedi, and Y. Kong, “High-speed, area-efficient,
fpga-based elliptic curve cryptographic processor over nist binary
fields,” in In 2015 IEEE International Conference on Data Science
and Data Intensive Systems. Sydney, NSW, Australia: IEEE, 2015,
pp. 175–181.

[8] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, “Efficient elliptic
curve point multiplication using digit-serial binary field operations,”
IEEE Transactions on Industrial Electronics, vol. 60, no. 1, p.
217–225, 2013.

[9] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography. Secaucus, NJ, USA: Springer-Verlag New
York, 2003.

[10] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic
curve processor for gf (2m),” in In International Workshop on Cryp-
tographic Hardware and Embedded Systems. Berlin, Heidelberg:
Springer, 2000, pp. 41–56.

[11] J. Wolkerstorfer, “Dual-field arithmetic unit for gf(p) and gf(2m),” in
In CHES, Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2002, pp. 500–514.

[12] J. H. Guo and C. L. Wang, “Systolic array implementation of
euclid’s algorithm for inversion and division in gf(2m),” IEEE Trans-
actions on Industrial Electronics, vol. 47, no. 10, p. 1161–1167,
1998.

[13] X. Hu, X. Zheng, S. Zhang, S. Cai, and X. Xiong, “A low hardware
consumption elliptic curve cryptographic architecture over gf(p) in
embedded application,” Electronics, vol. 7, no. 7, p. P. 104, 2018.

[14] D. Boneh and I. E. Shparlinski, “On the unpredictability of
bits of the elliptic curve diffie–hellman scheme,” in Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, ser. Lecture Notes in Computer Science, vol. 2139.
Springer, 2001, pp. 201–212.

[15] P. L. Montgomery, “Speeding the pollard and elliptic curve methods
of factorization,” Mathematics of computation, vol. 48, no. 177, pp.
243–264, 1987.

[16] Y. A. Shah, K. Javeed, S. Azmat, and X. Wang, “Redundant signed
digit based high-speed elliptic curve cryptographic processor,” Jour-

nal of Circuits, Systems and Computers, vol. 28, no. 5, p. p.1950081,
2019.

[17] K. Javeed and X. Wang, “Fpga based high-speed spa-resistant
elliptic curve scalar multiplier architecture,” Int. J. Reconfigurable
Comput., vol. 2016, no. 5, pp. 1–10, 2016.

[18] K. Javeed and X. Wang, “Low latency flexible fpga implementation
of point multiplication on elliptic curves over gf(p),” International
Journal of Circuit Theory and Applications, vol. 45, no. 2, pp. 214–
228, 2017.

[19] M. S. Hossain, Y. Kong, E. Saeedi, and N. C. Vayalil, “High-
performance elliptic curve cryptography processor over nist prime
fields,” IET Computers and Digital Techniques, vol. 11, no. 1, pp.
33–42, 2017.

[20] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “An fpga
implementation of a gf(p) alu for encryption processors,” Elsevier -
Microprocessors and Microsystems, vol. 28, no. 5-6, pp. 253–260,
2004.

[21] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera,
A. Touhafi, and I. Verbauwhede, “A compact fpga-based architecture
for elliptic curve cryptography over prime fields,” in In Proc. IEEE
Int. Conf. Appl.-Specific Syst. Archit. Process. Rennes, France:
IEEE, 2010, pp. 313–316.

[22] G. Orlando and C. Paar, “A scalable gf(p) elliptic curve processor
architecture for programmable hardware,” in In International Work-
shop on Cryptographic Hardware and Embedded Systems. Berlin,
Heidelberg: Springer, 2010, pp. 348–363.

[23] A. Satoh and K. Takano, “A scalable dual-field elliptic curve
cryptographic processor,” IEEE Transactions Computers, vol. 52,
no. 4, pp. 449–460, 2003.

[24] M. Imran and M. Rashid, “Architectural review of polynomial
bases finite field multipliers over g f (2m),” in 2017 International
Conference on Communication, Computing and Digital Systems (C-
CODE). Islamabad, Pakistan: IEEE, 2017, pp. 331–336.

[25] S. Khan, K. Javeed, and Y. A. Shah, “High-speed fpga implemen-
tation of full-word montgomery multiplier for ecc applications,”
Microprocessors Microsyst., vol. 62, pp. 91–101, 2018.

[26] J. Li, Z. Li, S. Cao, J. Zhang, W. Wang et al., “Speed-oriented
architecture for binary field point multiplication on elliptic curves,”
IEEE Access, vol. 7, pp. 32 048 – 32 060, 2019.

[27] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical mod-
eling of elliptic curve scalar multiplier on lut-based fpgas for area
and speed,” IEEE, vol. 21, no. 5, p. 901–909, 2013.

[28] S. Liu, L. Ju, X. Cai, Z. Jia, and Z. Zhang, “High performance fpga
implementation of elliptic curve cryptography over binary fields,”
in 2014 IEEE 13th International Conference on Trust, Security and
Privacy in Computing and Communications. Beijing, China: IEEE,
2014, pp. 148–155.

[29] H. Mahdizadeh and M. Masoumi, “Novel architecture for efficient
fpga implementation of elliptic curve cryptographic processor over
gf(2163),” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 21,
no. 12, p. 2330–2333, 2013.

[30] T. Güneysu and C. Paar, “Ultra high performance ecc over nist
primes on commercial fpgas,” in In International Workshop on Cryp-

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1288 Abiy Tadesse, et al.: Compact and High Speed Point Multiplication Architecture for Elliptic Curve...

tographic Hardware and Embedded Systems. Berlin, Heidelberg:
Springer, 2008, pp. 62–78.

[31] F. Turan and I. Verbauwhede, “Compact and flexible fpga implemen-
tation of ed25519 and x25519,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 3, pp. 1–21, 2019.

[32] C. McIvor, M. McLoone, and J. McCanny, “An fpga elliptic curve
cryptographic accelerator over gf(p),” in In Irish Signals and Sys-
tems Conference (ISSC). Belfast, Ireland: IET, 2004, p. 589–594.

[33] L. Li and S. Li, “High-performance pipelined architecture of elliptic
curve scalar multiplication over gf((2m)),” IEEE Trans. Very Large
Scale Integr. Syst., vol. 24, no. 4, p. 1223–1232, 2016.

[34] Z. U. Khan and M. Benaissa, “High-speed and low-latency ecc
processor implementation over gf(2m) on fpga,” IEEE Trans. Very
Large Scale Integr. Syst, vol. 25, no. 1, p. 165–176, 2016.

[35] “Xilinx, 7 series dsp48e1 slice. user guide ug479,” http://www. xilinx.
com.

[36] M. S. Hossain, E. Saeedi, and Y. Kong, “High-performance fpga
implementation of elliptic curve cryptography processor over binary
field g f (2163),” in In Proceedings of the 2nd International Confer-
ence on Information Systems Security and Privacy (ICISSP 2016).
Rom, Italy: Springer, 2016, pp. 415–422.

[37] Z. U. Khan and M. Benaissa, “Throughput/area-efficient ecc pro-
cessor using montgomery point multiplication on fpga,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 62,
no. 11, pp. 1078–1082, 2015.

[38] Z. U. Khan and M. Benaissa, “High speed ecc implementation on
fpga over gf(2m),” in In Proc.25th Int. Conf. on Field-programmable
Logic and Applications (FPL). London, UK: IEEE, 2015, pp. 1–6.

P.G.V. Suresh Kumar Dr. P.G.V. Suresh
Kumar born in India. He received his PhD
in Computer Networks in 2007. Currently
working as a Professor of Information Com-
munication Technology at Ethiopian Tech-
nical University, Addis Ababa. His re-
search interests include Computer Network-
ing, Wireless networks, Network Security,
Cryptography and A.I.

Yalemzewd Negash Shiferaw Yalemzewd
Negash Shiferaw is Assistant Professor at
Addis Ababa Institute of Technology (AAiT)
in Addis Ababa University (AAU), Addis
Ababa, Ethiopia. Currently, Dr. Yalemzewd
is the dean of the School of Electrical and
Computing Engineering (SECE). He earned
his B.Sc. Degree in Electrical Engineering,
his MSc and PhD degrees in Communication
Engineering from Faculty of Technology and

now AAiT, AAU. He has served the school for more than 12
years as Lecturer and Assistant Professor. He has taught a number
of courses in electrical engineering, communication engineering
and railway engineering. His research interests focus on wireless
and optical communication, modeling traffic patterns, information
theory and railway signals. He is actively involved in supervising
M.Sc. Students and co-supervising PhD students. His articles are
published in Value tools, IEEE sponsored conference proceedings
and on the Journal of Ethiopian Engineers and Architects. He is
also engaged in the industry sector as a General Manager of a
private company.

Abiy Tadesse Abebe Abiy Tadesse Abebe
is currently a PhD candidate at Addis Ababa
University, Addis Ababa Institute of Tech-
nology, School of Electrical and Computer
Engineering, Addis Ababa, Ethiopia. He ob-
tained his MSc degree in Electrical and
Computer Engineering from AAU in 2009.
Abiy has published several research papers
in the area of reconfigurable computing
based cryptosystem implementations for ap-

plications such as IoT security, Fog-Cloud security, healthcare
IoT, etc., giving main emphasis on optimization and performance
enhancement of existing algorithms. His areas of interest include:
IoT security, healthcare IoT, Cloud security, hybrid cryptosys-
tems, reconfigurable computing based implementations, wireless
network security, high level synthesis, Machine Learning, AI, etc.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Background
	Elliptic Curve Cryptosystem
	Elliptic Curve Double and Add Algorithms
	Specification of Elliptic Curve Diffie-Hellman Algorithm
	The Montgomery Technique for Efficient Scalar Multiplication

	Related Works
	The Proposed Architecture
	Implementation Approaches and Result Comparisons
	Conclusions
	References
	Biographies
	P.G.V. Suresh Kumar
	Yalemzewd Negash Shiferaw
	Abiy Tadesse Abebe

