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Abstract: Performance evaluation is a critical part of deep learning (DL) that requires careful conduct to enhance confidence and 
reliability. Several metrics exist to evaluate DL models, however, choosing one for a given model is not trivial, since it is not a one-

fit-all solution.  Practically, accuracy is the most popularly used evaluation metric for capsule networks (CapsNets). This is 
problematic for sensitive applications (such as those in health), since accuracy is overly optimistic in the presence of class imbalance 
(a common problem in health), and does not permit the exact reporting of a model’s risk of bias and potential usefulness. Besides, 
decisions in health are based on the estimated risks, bias, and the probability that a condition is present. It is, therefore, necessary to 
complement a model’s accuracy with a measure of its ability to: fail safely, determine regions of interest, measure the effectiveness 
of the DL algorithm, properly reconstruct the input images, and effectively extract features. The feasibility of this approach is 
experimentally shown in this paper with the implementation of two CapsNet models. The methods suggested in this paper do not 
only measure performance, but also contribute largely to model interpretability, understandability, and reliability. 
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1. INTRODUCTION 

Recently, the Capsule Network (CapsNet) [1] was 

introduced and shown to have equivalence compared to 

the invariance in Convolutional Neural Networks (CNNs). 

CapsNets can additionally encode the texture, 

deformation, hue, albedo, etc. of an object making it 

suitable for a wide range of applications including those in 

domains (such as health and agriculture) where the 

availability of large datasets is a problem. Consequently, 

some researchers have adopted this algorithm for the 
classification of images.  To evaluate its performance, 

most researchers adopt the confusion matrix-based 

measures (especially accuracy) [2] in the literature. 

However, accuracy is highly inappropriate as the only 

metric for evaluating a classifier; especially under class 

imbalance conditions [3]. Besides, performance 

evaluation is a very important task in deep learning (DL) 

that must be rigorously carried out to ensure reliability 

and confidence. Reliability and confidence are important 

desirable properties required to earn the trust of industry 

players to adopt DL (e.g. CapsNet) models for critical 

applications such as health and agriculture. 

Since CapsNets are implemented as classification 
models, they are generally subject to most of the 
performance evaluation metrics used to evaluate DL 
supervised models. However, many of these metrics are 
not adopted in evaluating CapsNets models in the 
literature. The consequence is that critical decisions are 
taken based on confusion matrix-based measures which 
can easily be biased. Again, the dynamic routing (DR) 
algorithm [1] is unique since coupling groups features 
similar to clustering [4]. As a result, there is the need to 
adopt additional evaluation methods aside from accuracy 
to measure the algorithmic level performance of DR in 
terms of cluster separability. This study implements two 
CapsNet models trained on COVID-19 [5] and Plant 
Village datasets [6] to demonstrate and reinforce the need 
to re-evaluate CapsNet image classification models whose 
decisions are based on only confusion matrix-related 
performance measures. The intention, however, is not to 
present all performance evaluation metrics for 
classification algorithms as being suitable for CapsNets, 
but to provide some form of a guide to researchers to 
choose existing metrics that will enhance reliability, 
explainability, and confidence in the models. The methods 
suggested in this work, are experimentally demonstrated 
to be effective in evaluating the performance of CapsNets 
as well as providing some form of explanation to the 

mailto:mighty.ayidzoe@uenr.edu.gh


 

 

2       Author Name:  Paper Title …   
 

 
http://journals.uob.edu.bh 

 

“black box”. It is believed that models that adopt the 
methods proposed in this study will have the rigor needed 
to achieve explainability, reliability, and the confidence 
required for practical adoption. 

The objectives of this paper are to (1) evaluate the 
performance of CapsNet on the two datasets, (2) examine 
the appropriateness of performance measures used in 
existing CapsNet image classification models in the 
literature and also establish the need for the use of more 
suitable performance metrics, (2) recommend evaluation 
methods suitable for CapsNets to ensure reliability, 
explainability, and understandability leading to improved 
confidence in model results, (3) experimentally 
demonstrate that the recommended methods are 
appropriate and accurate in reporting a model’s risk of 
bias and potential usefulness.  

The rest of the paper is organized as follows: Section 2 
presents related works in the literature. In section 3, 
experimental settings and the methods adopted to 
demonstrate the feasibility of the metrics are presented. 
Section 4 presents a discussion of the experimental results 
and demonstrates the suitability of the methods suggested 
in this study. The study is concluded in Section 5 and the 
scope for future studies is presented. 

2. RELATED WORK 

Good health is essential for the well-being and proper 
functioning of the individual and society. However, the 
rise in health records presents a challenge for humans to 
achieve proper health care [7]. This calls for the adoption 
of machine learning algorithms, which on the other hand, 
face challenges in terms of feature extraction since they 
are heavily dependent on manual feature engineering. 
Unlike machine learning algorithms, DL algorithms are 
capable of automatic extraction of features [8], but are 
also faced with the unavailability of large amounts of 
annotated data and class-imbalance [9]. The search for 
possible solutions to these problems has heightened the 
interest of researchers to apply DL algorithms such as 
CapsNets to health care images [10][11]. Studies such as 
the detection of protein biomarkers in saliva using multi-
lane CapsNets [12], identification of COVID-19 cases 
using CapsNets [13], drug discovery [14], and other 
interesting applications in the health domain can be found 
in the literature. Novel diseases such as COVID-19 are 
difficult to diagnose by practitioners due to its overlap 
with other lung diseases [13]. The ability of CapsNets to 
encode spatial information and also perform well on 
smaller datasets makes it a natural candidate in solving 
this problem. As a consequence, capsule networks have 
shown good classification performance on smaller chest 
X-ray images [13] of COVID-19 and normal patients. The 
ability to train on smaller datasets makes the model useful 
in helping to combat the sudden and rapid rise in COVID-
19 cases.  The rapid separation of infected and non-
infected images using CapsNet [15] is an important step 
to optimize resource allocation in healthcare and for the 

early prevention of infectious diseases. Operator 
unreliability and dependency in using ultrasound to 
diagnose rotator cuff lesions can be addressed through the 
use of CapsNet [16] models to improve the extraction of 
discriminative features. With the aid of VGG16, a 
CapsNet model can differentiate discriminative patches 
from whole slide pathological images [17] required to, for 
example, determine the duration for which a biological 
organism is expected to die. For early detection of retinal 
diseases, CapsNet segmentation can be employed to 
extract thin and overlapping vessels [18]. This operation is 
challenging to perform manually as it is prone to errors, 
and also time-consuming. Capsule networks have been 
used to classify medical images [19] and to determine 
human emotions [20] as they can affect people’s 
cognition, behavior, and decision-making. Other health 
conditions such as schizophrenia, cancer, and malaria can 
be identified by CapsNets [21] [22] in a bid to improve 
the quality of life. The aforementioned CapsNet 
applications are mostly evaluated using accuracy (see 
Table I), which does not present a fair assessment of 
model performance in the presence of class imbalance. It 
is clear that a doctor won’t implement a model’s 
recommendation that is solely based on high accuracy. It 
is not sufficient to earn the trust of practitioners as they 
may not understand mechanisms leading to this (high) 
accuracy. A clear understanding of the model’s ability to 
(1) fail safely (determined by ablation studies), (2) 
determine regions of interests (saliency maps) in the input 
images, (3) form separable clusters (measures the 
effectiveness of CapsNet algorithm), (4) properly 
reconstruct the input images, and (5) effectively extract 
the correct features (from feature map visualization) are 
paramount to the process of understanding a model’s 
performance and its suitability for a given health 
application. 

Another sensitive area that requires attention in the 
quest to improve human life is security. Just like health, 
CapsNets have found use in this field due to the easiness 
with which they automatically extract features, work with 
smaller imbalanced datasets, and their resilience to 
perturbation. CapsNet applications in this field also 
require rigorous evaluation to avoid using results of 
biased metrics as the basis for making critical decisions. A 
list of the evaluation methods adopted for these models is 
shown in Table I. 

Advances in media technology have made available 
state-of-the-art tools to forge images and video in real-
time [23]. Making the situation critical is the availability 
of social media networks where the raw and forged 
images can be obtained and posted without verification. 
Since social media contains thousands of images, it is near 
impossible for a human expert to identify forged images 
and videos. Also, artificial intelligence methods 
developed to combat this problem soon become obsolete 
as the attackers modify the mode of attacks. It is critical to 
find solutions to this problem since forged images and 



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        3 

 

 
http://journals.uob.edu.bh 

 

videos can be used to by-pass facial recognition-based 
authentication systems as well as being used to 
disseminate fake information. Consequently, Nguyen et 
al., [24] proposed the use of a capsule network to detect 
spoofs from printed images, videos, and replay attacks. 
The model was evaluated using the half total error rate 
(HTER) and accuracy, however, the effect of the 
combination of recognition and anti-spoofing on 
performance was not analyzed as suggested in [25]. In an 
earlier work [26], the same authors proposed a CapsNet 
model to detect different attacks using images and fake 
videos that can be used to carry out malicious actions 
including privacy breaches, and security violations. 

Food is a basic requirement for the healthy growth of 
every human being. It is obtained from plants that are 
plagued with pests and diseases. The consequences of not 
identifying and controlling plant diseases on time are 
malnutrition, poverty, insecurity, among others. However, 
manual plant disease recognition is complex, costly, time-
consuming, and prone to errors. Researchers have, 
therefore, proposed the use of CapsNets to automatically 
recognize plant diseases to overcome these limitations.  

Kurup et al. [27] proposed a capsule model to identify 
plant diseases as well as plant species. For the plant 
disease diagnoses, a total of 54,306 images constituted the 
dataset obtained from 14 different plants. The dataset is 
made up of 38 classes; 26 sick and 12 healthy images. An 
inspection of the dataset [6] shows that it is highly 
imbalanced. The class with the minimum number of 
samples (“healthy Potato”) has 121 images while the 
class with the largest number of samples (“huanglongbing 
Orange”) has 4,405 images. A training-validation split of 
80%-20% was applied on an augmented dataset to train 
and validate the model. Confusion matrix-based 
performance measures (validation accuracy, precision, 
recall, F1 score, and Area Under the Curve (AUC)) were 
adopted to evaluate the performance of the model. The 
Area Under the Precision-Recall Curve (AU PRC) 
compared to accuracy is more appropriate for measuring 
the performance of the classifier [28] under class 
imbalance, but it was not indicated by Kurup et al. [27] 
whether the AUCs they obtained were for PR curves or 
the Receiver Operating Characteristic Curves (ROC).  

     Considering the nutritional and economic 
importance of potatoes, a CapsNet model was 
implemented to classify the diseases of the plant [29]. The 
model was trained and validated on the potato dataset in 
the Plant Village dataset. This dataset is small and 
imbalanced but was artificially balanced by ensuring that 
each of the three classes; “late blight”, “early blight”, 
and “healthy” each had 1000 images. Validation accuracy 
was the only metric used to measure the performance of 
the model even though an AUC of the ROC curve could 
have been appropriate as an additional performance 
measure. Again, inference was not carried out to 

determine whether the model can generalize well on 
unseen images.   

A capsule network was proposed [30] for the 
recognition of peanut leaf diseases. The dataset was a 
custom dataset constructed to obtain five classes 
(diseases). The dataset was imbalanced with the largest 
class (“Brow Spot”) containing 4,028 images and the 
smallest class (“Net Blotch”) with 1,578 images. Data 
augmentation was carried out to increase the training set 
to 11,132 images and 2,600 images for validation 
constituting 8:2 respectively. Only validation accuracy 
was used as the performance measure in the presence of 
class imbalance. 

Gabor capsules [31][32] have been proposed for plant 
disease detection. The tomato dataset, a subset of the Plant 
Village dataset, and the Citrus dataset [33] were used to 
train the models. These datasets are imbalanced as well as 
being small. Notwithstanding, the models were evaluated 
with validation accuracy, precision, sensitivity, and 
specificity. With the imbalanced nature of the datasets, the 
AUC of the PR curve is better suited to measure the 
performance of the models. However, other important 
performance indicators such as the number of parameters 
and reconstruction were reported. 

CapsNet models were proposed for the detection of 
banana leaf diseases [34] and also for the recognition of 
the diseases in the entire Plant Village dataset. The banana 
leaf disease model was trained with custom data made up 
of three classes each with 1,000 images. Validation and 
test accuracies were used to evaluate the performance of 
the model. In the other model, irrespective of the fact that 
the Plant Village dataset is highly imbalanced, the 
model’s performance was evaluated with only validation 
accuracy. 

Existing literature shows that CapsNet’s performance 
evaluation metrics that significantly contribute to model 
explainability are rare compared to simple validation 
accuracy. Unfortunately, a model is not useful if it attains 
high accuracy with no means to show that it is reliable, 
understandable, and trustworthy. This paper, therefore, 
recommends and demonstrates the adoption of evaluation 
measures that will enhance the reliability and 
explainability needed to gain the trust and confidence of 
industry players.  

3. METHODOLOGY 

     The experiments in this study were carried out using 
Keras (TensorFlow backend) on a 64-bit Windows PC 
with NVIDIA GeForce GTX 1060 Graphic Processing 
Unit (GPU) running on CUDA 10.1 and an 8GB 
dedicated memory. The models were each trained for 100 
epochs with a learning rate set to 0.001 and a learning rate 
decay to 0.9. The number of routing iterations was varied 
from 1 to 6 for each of the datasets and the margin loss 
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function [1] adopted to train the models. The margin loss 
is given by 

  
𝐿𝑘 = 𝑇𝑘  𝑚𝑎𝑥(0, 𝑚+ − ‖𝑣𝑘‖)2

+ 𝜆(1 − 𝑇𝑘) 𝑚𝑎𝑥(0, ‖𝑣𝑘‖ − 𝑚−)2 

where 𝑇𝑘 = {
1 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝜆 = 0.5 , 𝑚+ =

0.9, and 𝑚− = 0.1 

The early stopping hyperparameter; patience, is set to 10 
during training and only the best model is saved. This 
study builds upon the code at 
https://github.com/XifengGuo/CapsNet-Keras.  

TABLE I.  SAMPLE APPLICATIONS OF CAPSNETS AND THEIR 

PERFORMANCE EVALUATION METHODS. THE CONFUSION MATRIX-
BASED METHODS ARE PREDOMINANT WHILE RECONSTRUCTION AND 

FEATURE VISUALIZATION ARE RARELY USED. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The models were trained with the tomato dataset of 
the Plant Village dataset consisting of 18,159, 256x256x3 
images, and the COVID-19 dataset. The tomato dataset is 
grouped into nine classes of infected leaves plus one class 
of healthy leaves. The dataset is highly imbalanced with 
the maximum per-class image size of 5,357 and 372 being 

the number of images in the smallest class. The COVID-
19_Radiography_Dataset [5] comprises of 16,933 (i.e. 
80%) Chest X-ray images in the training set and 4,232 
(i.e. 20%) images in the test set. Each set is made up of 
four classes, namely; COVID, Lung_Opacity, Normal, 
and Viral Pneumonia. The dataset is highly imbalanced 
with 269 images in the test set of Viral Pneumonia and 
2,038 images in that of the Normal class. No 
preprocessing aside from resizing of the images to 28x28 
is applied to both datasets during training. During 
inference, the Augmentor [35] augmentation library is 
used to introduce variability in the images belonging to 
the test sets of each dataset. 

A. CapsNet Architecture 

Two architectures are implemented in this work. The 
first model uses the architecture of the original CapsNet 
(referred to as dynamic routing - DR) while the second 
model is made up of a custom architecture (referred to as 
dual-input – DI). Details of DR’s architecture can be 
found in [1] with Figure 1 depicting the architecture of the 
DI model.  

 

Figure 1.  The architecture of the dual-input (DI) model 

 

     The input images are resized to 28x28x3 and supplied 
to the DI model whose architecture comprises 2 Conv 
layers used as feature extractors each having 125, 7x7 
kernels and ReLU activation at a stride of 1.  Each of 
these layers produces 125, 22x22 feature maps 
concatenated to produce 125, 44x22 feature maps. These 
are used as input to Conv3 which consists of 96, 7x7 
kernels, also with ReLU activation at a stride of 1 to 
produce 96, 38x16 feature maps. The primary capsule 
(PC) layer is composed of 5x5 kernels at stride 2. It has 
16, 8-dimensional component capsules, each of size 6x17 
making up a total of 16 ∗ 17 ∗ 6 =  1632 capsules in the 
PC layer. The Recognition Caps form the secondary 
capsule with ten capsules (classes). Each PC capsule will 
couple (form a cluster) with a secondary capsule based on 
the agreement 𝑎𝑖𝑗  (similarity) between them. The decoder 

network has three fully connected (FC) layers with 512, 
1024, and 28 ∗ 28 ∗ 3 =  2352 nodes respectively in the 
first, second, and third layers. The last layer of the 
decoder is used to reconstruct the input images. 
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Evaluation  

Method used 

Ref 
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COVID-19 

diagnosis 

3D Chest X-ray 

images 

CapsNet 

[1] 

Accuracy, 

Specificity, 

Sensitivity, 

AUC 

[13] 

COVID-19 

diagnosis 

COVID-CT-

MD 

UNET, 

CapsNet 

Accuracy, 

Specificity, 

Sensitivity, 

AUC 

[15] 

Classification 

of rotator cuff 

lesions 

MRI shoulder 

images 

CapsNet Accuracy, 

Precision, 

Recall, F1-Score 

[16] 

 GBM and 

LUSC 

prediction 

Whole slide 

pathological 

images 

VGG16, 

CapsNet 

Accuracy [17] 

Medical image 

classififcation 

PatchCamelyon 

(PCam) dataset 

CapsNet Accuracy, AUC [19] 

EEG-based 

emotion 

recognition 

DEAP and 

DREAMER 

datasets 

CapsNet Accuracy [20] 

Schizophrenia 

identification 

MRI and fMRI 

scans 

 

CapsNet Accuracy, 

Specificity, 

Sensitivity 

[21] 

Malaria paracite 

detection 

Microscopic red 

blood cell 

images 

ConvNe

t, 

CapsNet 

Confusion 

Matrix, 

Accuracy, 

Precision, 

Recall, F1-Score 

[22] 

S
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u
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Detection of 

forged images 

and videos 

Deepfake 

dataset 

 

VGG-

19, 

CapsNet 

Half total error 

rate, Accuracy 

[24] 

Image & Video 

Attack 

detection 

Deepfake, 

Face2Face, 

FaceForensics+

+, and 

FaceSwap 

CapsNet Activation 

maps, Equal 

error rate, Half 

total error rate, 

Accuracy 

[26] 

Banana leaf 

disease 

detection 

Custom dataset CapsNet Accuracy [34] 

Plant disease 

detection 

Plant Village CapsNet Accuracy, 

Sensitivity, 

Specificity. 

[49] 
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4. RESULTS AND DISCUSSION 

A. Confusion Matrix  

The multi-class confusion matrices depicted in Figure 
2 summarizes the performance of the DI model on the 
plant disease dataset. It is observed that the model 
correctly identified the true classes indicated by the high 
TP values. Few images were misclassified. From this 
matrix, other performance measures such as Precision, 
Sensitivity, Specificity, and per-class accuracy can be 
derived. True positive (TP), true negative (TN), false 
positive (FP), and false-negative (FN) are also obtainable 
from the confusion matrix and are crucial for making 
decisions, even though the interpretation can be confusing 
and situation-dependent in some cases. For example, a 
classifier should obtain as many false positives (FP) as 
possible for the existence of a disease, since it is not fatal 
(in most cases) to classify a healthy person as sick. On the 
other hand, many FN predictions under these 
circumstances indicate a poor outcome by the model since 
it is disastrous to classify a sick person as healthy. Such 
situation-dependent interpretations are not common in 
CapsNet implementations that adopt these performance 
metrics in the literature. The average accuracy for a model 
is given in (1). The other metrics are obtained using (2) – 
(5). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡𝑠𝑒𝑡
  (1) 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Architecture Confusion matrices for the DI model trained 

with the plant disease dataset. A host of other performance evaluation 

methods can be derived from the confusion matrix. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                           (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                        (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
                                      (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                   (5) 

 Aside from accuracy, these are powerful per-class 
metrics that are rarely used to evaluate capsule network 
models in practice. This paper, however, focuses on the 
metrics that can be used to further enhance the reliability 
and trust of the models. 

B. Training and Validation Accuracy 

Health and plant disease datasets are mostly small and 
highly imbalanced. Accuracy being the most predominant 
evaluation metric [36] for classification algorithms 
(despite its drawbacks) is very poor at differentiating one 
class from another under class imbalance [37]. It is, 
therefore, not sufficient to measure performance [38] due 
to a problem called “accuracy paradox” [39] which causes 
the results of the larger classes to overshadow those of the 
smaller classes. The result is an overall accuracy that is 
biased towards the accuracy of the larger class. Besides, it 
does not take into consideration asymmetric 
misclassification costs and ignores the probability 
estimates of the classification that shows the confidence 
with which the predictions are made. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.  Training and validation results for the two models on the 

plant disease dataset. (a) training and validation accuracies, and (b) 

training and validation losses. 

TABLE II.  MODEL ACCURACIES. THE FIRST TWO WERE TRAINED 

ON THE PLANT DISEASE DATASET, WHILE THE LAST WAS TRAINED ON 

THE COVID-19 DATASET 

Model Accuracy 

Dual Input (DI) 93.03% 

Original CapsNet (DR) 90.55% 

DI_COVID-19 89.17% 

 

The difference in performance between the two 
models in terms of accuracy can be observed in Figure 3 
and Table II. However, it does not indicate the extent to 

 

 
   (a) 
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which a majority class influenced the total accuracy. It is 
therefore imperative to perform additional performance 
measurements to confirm which model is superior (DI vs 
DR for plant disease). In this light, this paper proposes 
that accuracy be calculated under different circumstances 
such as during training and validation (Figure 3), ablation 
studies (Table III), prediction or inference (Figure 6), and 
during scaling (Figure 4) as the number of routing 
iterations are varied to increase or reduce model capacity. 
Classification loss can be analyzed similarly since it is the 
price paid for inaccurate classification. 

C. Measuring Model’s Ability to Scale 

The performance of the dynamic routing algorithm is 

largely dependent on the number of routing iterations [1] 

as the algorithm scales up or down. CapsNet models 

should, therefore, be evaluated by varying the number of 

routing iterations to evaluate the ability of the network to 

scale up or down without overfitting. Even though this 

method is very relevant, it has been rarely adopted to 

evaluate existing capsule models. As shown in Figure 4, 

the network capacity increases from 1 to 9 as the models 

are evaluated on the dataset. The accuracy for both DR 

and DI peaks at 3 routing iterations and begins to drop. 
The implication is that, as the network capacity increases 

beyond 3 routing iterations, the model begins to overfit 

the training set. Further experiments conducted 

concerning this phenomenon show some consistency 

with the original CapsNet [1] which established that the 

optimal number of iterations on MNIST is 3.  However, 

this number may vary for a given implementation [4], 

hence the need to search for the optimal number for 

which the model does not overfit the dataset. From 

Figure 4, it is observed that the method is capable of 

distinguishing (confirming) the superior model (DI) from 
the inferior one (DR). It goes further to show details of 

the exact iteration number at which the performance is 

optimal. 

 

 

 

 

 

 

 

 

 
 
Figure 4.  Accuracy against the number of routing iterations. 

 

D. Measuring Model’s ability to Fail-safe 

      This paper uses an ablation study [40] as a means to 

measure the performance of a CapsNet model when 
certain components are missing or malfunctioning. It is 

also suggested as a means by which a model’s ability to 

degrade gracefully is measured. Graceful degradation is a 

property required by CapsNets applied in critical 

applications to avoid failed or degraded components from 

grinding the network to a halt. Again, ablation serves as a 

basic step for explainability since it can identify the 

contributions and importance of each component in the 

network to the entire system performance. It also 

provides an opportunity to test the robustness of the 

model to architectural changes; the results of which may 

enhance confidence in the model. Furthermore, analyses 
of ablation results can uncover network components that 

can stand-in for damaged parts and contribute to the 

recovery of the network.  
     Table II shows the results of the ablation study carried 
on the DI model. It is seen that the Conv3 layer has a 
major impact on the performance of the model; probable 
because it samples features from the two lower-level 
layers enabling it to form a higher-level representation of 
the input images (see DI’s Conv3 feature maps in Figure 
9). Conv1 also showed a slight impact on network 
performance. The presence of these two Conv layers (see 
Table III, row 1) has a positive impact on performance. 
From rows 1, 4, and 5 in Table III, the failure of Conv2 
may not be catastrophic to the performance of the model. 
All the ablation results were obtained using 3 routing 
iterations.   

TABLE III.  RESULTS OF ABLATION STUDY OF DI MODEL 

No. Conv1 Conv2 Conv3 Accuracy 

1 yes no yes 92.23% 

2 yes yes no 90.18% 

3 no yes yes 91.06% 

4 no no yes 90.45% 

5 yes no no 90.02% 

6 no yes no 89.87% 

7 yes yes yes 93.03% 

E. Evaluating model’s performance on smaller and 

imbalanced datasets 

The area under the curve (AUC) is preferred to 
accuracy as it is invariant to apriori probability 
distributions of the classes as well as being independent of 
the decision threshold [2]. The degrees of consistency and 
discriminancy have been used [2] to show that AUC is a 
superior metric to accuracy. A classifier with a large AUC 
is preferred to that with a smaller AUC. AUC can be 
computed for both the Receiver Operating Characteristic 
Curve (ROC) and the Precision-Recall Curve (PR). It is 
recommended that the ROC curve be used to evaluate 
balanced datasets as it tends to be overly optimistic in 
cases where there is a large skew in the dataset class 
distribution [41]. The PR curve is suitable for imbalanced 
datasets [42]. The ROC curve should not be used when it 
is not feasible to generate sufficient data for the model 
[43]. From Figure 5, it is observed that the ROC and PR 
curves for the DI models have large areas under the 
curves compared to the DR model. The objective of a 
class in ROC and PR spaces is to be in the upper left and 

 



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        7 

 

 
http://journals.uob.edu.bh 

 

upper right corners respectively. The classes in the DI 
model achieve this goal better than those in the DR and 
DI COVID-19 models as depicted in Figure 5. This 
translates into AUCs of 0.96 and 0.99 for DI’s ROC and 
PR curves respectively, while those of DR are 0.91, 0.95 
respectively for the ROC and PR curves. Inspection of the 
ROC curves confirms the assertion that they are not 
suitable for imbalanced datasets. For example, a 
comparison of the ROC curve area values for individual 
classes in Figures 5 (a) and (b) creates the impression that 
the performance of the two models is almost the same. 
However, a comparison of the corresponding values of the 
PR curves clearly shows that some classes underperform 
in the DR model causing it to lag behind the DI model in 
terms of performance. Again, the ROC curve of the DI 
COVID-19 model (Figure 5 (e)) and its accuracy in Table 
II suggest that the model’s overall performance is good. 
However, a critical look at the PR curve (Figure 5 (f)) 
shows that the model performed woefully on the 
imbalanced classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.  Comparison of the multiclass ROC and PR curves for the 

two models. (a) ROC curve for DI, (b) PR curve for DI, (c) ROC curve 

for DR, (d) PR curve for DR, (e) ROC curve for DI COVID-19, (f) PR 

curve for DI COVID-19.  Also shown on the PR curves are the iso-F1-

curves. 

F. F-Scores 

F-Score is defined as the harmonic mean of precision 
and recall [43]. It is computed via (6). When 𝛼 is 1 (𝛼 can 
be 0.5, 1, or 2), the metric called F1-Score is obtained (see 
(7)). 

𝐹𝛼 − 𝑆𝑐𝑜𝑟𝑒 =
(1 + 𝛼2)𝑃𝑅 ∗ 𝑅𝐶

𝛼2 ∗ 𝑃𝑅 + 𝑅𝐶
                          (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑅 ∗ 𝑅𝐶)

𝑃𝑅 + 𝑅𝐶
                                   (7) 

By default, 𝐹𝛼 applies additional weights and values to 
recall than precision (i.e. biased towards recall (RC) when 
𝛼 < 1) or vice versa (i.e. biased towards precision (PR) 
when 𝛼 > 1) [43]. Consequently, this paper proposes the 
use of F1-Score to evaluate the performance of CapsNets 
since it is balanced when 𝛼 = 1. From Figure 5, the iso-
F1-curves are plotted on the PR curves containing points 
in the precision/recall space with equal F1-Scores. It is 
observed that the minimum and maximum F1-Scores for 
both models are respectively 0.2 and 0.8. However, most 
of the classes in the DR and DI COVID-19 models have 
F1-scores below 0.8 indicating inferior performance. In 
other words, most of the classes in the DI’s PR curve 
(except one class) achieves the goal of falling around the 
upper-right corner of the PR curve where the F1-Score is 
0.8 and above indicating superior performance. 

G. Error rate 

The error rate is a function of the confusion matrix 
that finds the ratio of the sum of wrong predictions to the 
total number of samples. It is computed via (8) or (9). 
During inference, the (test) error rate quantifies the 
proportion of instances in which the prediction is wrong. 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
          (8) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 − 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
   (9) 

This metric is subject to the flaws of accuracy and can 
be highly optimistic under class imbalance [44]. The 
choice of accuracy or error rate is dependent on the 
personal preference of the researcher.  

H. Measuring the generalization ability of the model and 

its ability to reconstruct input images 

A CapsNet model must be able to indicate the level of 
certainty to which an unseen image belongs to a class 
during inference. This quantifies the confidence of the 
model in its output and is very crucial for taking critical 
decisions in health. In other words, the need to rank the 
images based on likelihood serves as a means by which 
the model demonstrates trust in its predictions. The 
probabilities eliminate ambiguity by providing additional 
details about which class it strongly predicts as the target 
class for the image. In this light, CapsNet models that 
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generalize on unseen data must also provide this 
capability to eliminate ambiguity.  

Figure 6 (a) and (b) show samples of predicted images 
from all the models. It can be observed that the DI model 
for plant disease and COVID-19 imposes huge confidence 
in predicting the correct classes via large probability 
values (mostly greater than 0.8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  Prediction and reconstruction of the (a) DI model on plant 

disease, (b) DR model on plant disease, and (c) DI model for COVID-

19. The DI model predicted the target classes with high probabilities 

compared to the DR model. DI also has clearer reconstructed images 

relative to DR. The first columns are the original images while the rest 

are reconstructed images each with the probability of prediction. 

Comparatively, the DR model underperforms in this wise 
as well as, producing 2 wrong predictions. These results 
are obtained by performing a comparison with the ground 
truth (GT) images. They also show the models’ robustness 
in their ability to generalize well on unseen data since the 
test images are preprocessed with the Augmentor image 
augmentation library to generate different artificial forms 
of the image for prediction.      Reconstruction, on the 
other hand, allows visual verification of the performance 
of the model with the ability to boost the confidence of the 
modeler in the model’s output. It is also used by the 
network as a regularizer in the avoidance of overfitting. 
The clarity of reconstructed images has a linear 
relationship with a model’s performance. For instance, the 
reconstructed images in Figure 6(a) are relatively clearer 
and consistent with the superior performance of the DI 
model. For capsules, the quality of the reconstruction is a 
measure of how effectively the network layers use the 
instantiation parameters (of the ground truth). 

I. Measuring the model’s complexity 

Smaller capsule network models just like other deep 
learning models are beneficial [45] and more efficient for 
implementation on FPGA and other embedded devices 
with limited memory. Additionally, they are suitable for 
distributed online training and introduces smaller 
overhead during online file transfers. This relatively 
smaller number of parameters makes the model less 
computationally complex, reduces the resources needed 
for inference, and ensures that the model is not exposed to 
overfitting. Overfitting can be monitored theoretically by 
ensuring that a 𝑘-layer deep learning model has 𝑘𝑛 + 𝑑 
parameters required to perfectly fit a 𝑑 -dimensional 
dataset with 𝑛  samples [46]. Overfitting has a negative 
consequence on performance making it a necessary 
parameter to monitor in CapsNet models. 

TABLE IV.  COMPARISON OF MODEL PARAMETERS 

Model Trainable Non-

trainable 

Total 

Original CapsNet (DR) 9,864,240 0 9,864,240 

Dual Input CapsNet (DI) 6.040,844 458 6,041,302 

COVID-Caps 4,366,312 400 4,366,712 

Difference   3,822,938 

   

Research [47][4] shows that CapsNet models with 
smaller parameters can also represent complex functions 
and outperform deeper models with several millions of 
parameters. The results in Table IV, confirm this assertion 
as it can be observed that the high-performing DI model 
has approximately 4 Million fewer parameters than the 
DR model on the same dataset.   

J. Evaluating the performance of coupling 

To understand the level to which a CapsNet model can 
distinguish between the class types, the instantiation 
parameters (also called the network learned features at the 
class capsule layer) can be visualized with the t-
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distributed stochastic neighbor embedding (TSNE) [48]. 
The features can be modeled as clusters arising from the 
coupling between the primary capsules and class capsules 
depending on whether the agreement 𝑎𝑖𝑗  between them is 

high. Qualitatively, the separability of the feature space 
into distinct clusters; each corresponding to one class, can 
be used to measure the performance of the coupling. 
Figure 7 shows a visualization of the feature space 
beginning with the raw test set shown in Figure 7(a). It 
can be observed that the raw test set, before routing, has 
no visible clusters. Figure 7(b) depicts the clusters of 
features formed by the DI model after routing. The 
effectiveness of DI’s routing algorithm (on the plant 
disease dataset) can be seen in how separable the clusters 
are, relative to those formed by the DR and COVID-19 
models (Figure 7(c)).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Visualization of the (a) raw plant disease test set, and the 

cluster of features formed by the (b) DI model on plant disease, (c) DR 

model on plant disease, (d) DI model on COVID-19 datasets. 

K. Measuring the model’s feature extraction capabilities 

Understanding the decisions made by a CapsNet 
model requires further investigations to uncover network 
layers that get more activated by specific regions of the 
input image. This tends to show the effectiveness of the 
layers in extracting edge, texture, and shape features. The 
method is useful in identifying layers with redundant 
features that give the network some form of robustness 
when some parts degrade, taking into cognizance the 
importance of failure avoidance as a major contributor to 
performance [43]. On the other hand, this method can 
help determine whether redundant layers have to be 
removed to reduce the number of parameters and hence 
reduce model complexity, size, and overfitting.    

The necessity to determine the parts of the network 
that are lacking in feature extraction is paramount since 

such situations may introduce excessive oscillations and 
prolong convergence time during training [4]. Figure 8 
identifies the Conv3 layer of the DI model (plant disease) 
as an efficient extractor compared to the rest of the layers. 
It is a higher-level layer, giving it the ability to sample 
features from the lower-level layers (Conv1 and Conv2) 
to represent advanced parts of the input image. As a 
consequence, the DI’s PC layer receives enough important 
features required for the classification. Worth mentioning 
also is the usefulness of this method to explainability and 
understandability necessary to achieve the confidence 
required for practical adoption of CapsNets in critical 
applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 8.  Feature maps for the models. The first three rows are from 

the plant disease dataset while the last row is from the COVID-19 

dataset. 

5.   CONCLUSION AND FUTURE WORK 

This paper examines existing CapsNet recognition 
models in health, security, and plant disease recognition 
and proposes a set of methods to improve performance 
evaluation to enhance model reliability and confidence. 
The paper demonstrates the feasibility of the proposed 
methods by implementing three CapsNet models that are 
validated experimentally on the plant disease, and 
COVID-19 datasets. The metrics consistently agree on 
one (the DI) model as the superior model without any 
contradiction. The use of appropriate performance metrics 
has the potential to increase the practical adoption of 
capsule networks in solving critical problems such as 
early plant disease detection and early cancer diagnoses.  
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In the future, the explainability of capsule networks 
will be explored to further enhance their acceptance for 
practical adoption. 
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