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Abstract: Stress is a significant issue in everyday life that affects both physical and mental health. There are different approaches to
stress classification. This research examines the implementation of the fractal dimension (FD) method as one of the features for stress
state classification using brain signals. Consequently, the comparison between FD and wavelet transform has been conducted using
electroencephalogram (EEG) signals recorded during the Stroop Colour Word Test (SCWT). The comparison results show that the FD
is better in the classification of the stress state. The highest F1 score has been obtained using FD with quadratic support vector machine
(SVM) in average 83.03% for the comparison between baseline session and different stress states. Besides, FD with medium Gaussian
SVM has the highest F1 score, on average 83.36%, for comparison between various stress states.
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1. Introduction
Most people experience stress in their daily life. Al-

though there is a strong relationship between stress and
mental health, psychological stress and related emotions,
such as frustration, anxiety, and depression, may also have
adverse effects on physical health. An electroencephalogram
(EEG) is an electrophysiological monitoring system for
recording electrical activity in the cortex. The EEG was
initially designed to test human brain cortical function.
Since Hans discovered the alpha rhythm, the essence of
the background activity in human brains and how it reflects
action and cognitive processes have been of primary interest
to scientists [1], [2].

Numerous studies have shown the association between
the EEG pattern and stress level [3], [4], [5], [6], [7]. In [8],
a combination of time-domain and frequency-domain anal-
ysis using wrapper-based algorithms as features and Boruta
as feature selector was proposed to identify stress levels us-
ing EEG signals. These features are then classified using k-
nearest neighbor (KNN) with an accuracy of 73.38%. Other
studies show that 82% accuracy achievement using higher-
order spectra (HOS) as stress recognition with genetic
algorithm for optimal selection of features and classification
of support vector machine (SVM) [9]. For two stages of

stress recognition, the authors in [10] chose to combine
fractal dimensions and statistical features. The accuracy
recorded was 85.71% using SVM as a classifier. Meanwhile,
[11] proposed root means square voltage computed as a
feature in the beta, alpha, and theta band. These features
were then used as inputs for logistic regression and the
KNN classifier, yielding a mean accuracy of 73.47%. The
authors of [12] found that discrete cosine transform (DCT)
was used along with KNN. The average classification rate
indicated was 72% for cognitive stress recognition. The
author suggested a fixed windowing approach of time-
domain and frequency-domain features in [13], with the
SVM classifier achieving an accuracy of 80.32%. Recently,
[14] suggested that alpha asymmetry as a feature using
SVM as classifier with accuracy up to 85.20%. All previous
findings mentioned above are listed in Table I.

This paper compares two feature extractions (fractal
dimension and wavelet transform) and evaluates the stress
classification states from the EEG signals.

2. Materials AndMethods
Figure 1 indicates the overall process classification of

stress state using EEG signals that have been developed in
this research. Details of the process are explained in the
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Figure 1. Overall illustration of stress state classification process
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TABLE I. Summary of previous researches on stress state classifi-
cation

Ref. Features Classifier Accuracy

[8] Time-domain KNN 73.38
2019 (statistical

parametric)
& frequency-domain
(wavelet-based)
using wrapper-based

[9] Higher-order SVM 82.00
2010 spectra (HOS)

[10] Fractal dimension SVM 85.71
2016 & statistical

[11] Root means Logistic 73.46
2013 square voltage regression

of beta, alpha, & KNN
and theta band

[12] Discrete cosine KNN 72.00
2015 transforms

[13] Time-domain & Gaussian 80.32
2018 frequency-domain SVM

[14] Alpha asymmetry SVM, 85.20
2020 Naı̈ve Bayes,

KNN, logistic
regression, &

multilayer
perception

(MLP)

following sub-topics.

A. Participants
The study included twelve healthy volunteers between

the ages of 20 and 21. All the participants are free of
any personal history of neurological or mental illness, pre-
existing medical condition, chronic medical use, or any
other non-medical substances that could impair cognitive
function before the screening. Participants with a previous
history of working with the Stroop Colour Word Test
(SCWT) will be acknowledged. The nature and design of
the study were clarified to all participants.

B. EEG Data Acquisition
The EEG signals were acquired using ENOBIO 8

channels with resolution 24 bits – 0.05 µV. All these
dry electrodes are placed on the scalp (Figure 2) using
a neoprene cap based on the International 10-20 system
channel location [15], [16], [17]. The ground electrode is
placed at the mastoid using sticktrode. The sampling rate
was fixed at 500 samples per second for all channels.

C. Tasks
The task for this study was created using MATLAB

based on [18], [19], [20]. Figure 3 depicts the flow of the
SCWT test, which is designed to generate four different
levels of stress: baseline state (BS), low stress (L1), mild
stress (L2), and higher stress (L3) state. SCWT was used as
a stressor as a commonly used method to induce stress [21].
The followings are the details of the stress-based evaluation
session:

• Introductory Session (IS): This condition allows the
participants to become familiarized with the test
background. The task method was explained, and
guidelines for administering the SCWT task were
provided.

• Baseline Session (BS): This is referred to as the
baseline session. Participants were instructed to relax
and remain their eyes open for three minutes during
this section. The aim was for the participants to be
in the most relaxed state possible. Throughout this
time, they relaxed and listened to Bach’s Harpsichord
Concerto No. 5 in F Minor BWV 1056.

• Session 1 (L1): In this segment, a low level of stress
is induced. Participants were given a simple and non-
time-limited task. Twenty printed words describing
four types of colors: red, green, blue, and magenta,
are displayed to the participant. The printed words
in the congruent (CS) and incongruent (ICS) sections
have identical and dissimilar ink colors. Instead of ac-
knowledging written words, participants were asked
to recognize the ink colors.

• Session 2 (L2): With a three-minute response time,
this segment was designed to induce mild stress.
The standard step was the same as L1, except that
participants had to respond within the time limit (3
minutes). It was predicted that the participants would
be more stressed than L1.

• Session 3 (L3): This part resulted in a higher stress
state than L2. The standard step was similar to L1
and L2 but with a shorter time limit (1.5 minutes).

D. EEG Signals Pre-Processing
EEG signals recorded at different locations on the

scalp are generally contaminated with noise and artifacts
(e.g., ocular (EOG), muscular (EMG), drifting in elec-
trode impedance, vascular (ECG), gloss kinetic artifacts,
sweating, line noise, and channel noise). The complete
elimination of artifacts would also extract some valuable
details from EEG signals. Therefore, artifact removal should
be canceling or fixing artifacts without altering the signal
interest. This pre-processing part is achieved mainly in
two different methods: filtering and regression or separat-
ing/decomposing EEG data into other domains [22].

In this work, the filtering method is used for removing
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Figure 2. ENOBIO 8 channel location for Fp1, Fp2, F7, F8, F3, F4,
Fz, and Pz.

Figure 3. The process of the SCWT experiment

the noise and artifacts. A bandpass filter with a cutoff
frequency between 0.5 Hz and 43 Hz is used to eliminate
most present extrinsic artifacts such as slow changes in the
signal, possible large-amplitude, drift, muscle activity, rapid
changes in noise, and power line interference signal at 50
Hz.

E. Signals Segmentation
Segmentation data into various windows establishes a

single continuous section covering all-action sequence data
(i.e., sliding window approach) and improved classification
accuracy [13], [23]. Then, features were extracted from
these windowed sections and used in a machine-learning
algorithm to categorize a testing section.

The EEG signals in this work are segmented into
50 percent overlapping 3-second windows size based on
previous researcher findings [23]. The sliding window size
was 1500 data points as the EEG signals sampling rate was
500 Hz.

F. Feature Extraction
The next process is to identify useful features that can

be applied to detect stress. The methods used in this study
are the fractal dimension, and wavelet transforms.

1) Fractal Dimension: In this works, the fractal di-
mension based on Higuchi’s algorithm is used as it
showed promising results [24]. Higuchi’s algorithm
[25] is based on calculating the mean length of the
curve /(k) by using a segment of k samples as a
unit of measure. From the time series X(1), X(2),
..., X(N), the algorithm constructs a new time series.
Each of them, Xk

m is described as a new time series
in Equation 1:

Xk
m : X(m), X(m + k), X(m + 2 ∗ k), ..., (1)

X
(
m + int

(
(N − m)

k

)
∗ k

)
,m = 1, 2, 3, ..., k

where m and k are the integers of initial time and
interval time, respectively. For example, if k=5 and
N=500, five-time series are produced as Equation 2:

X5
1 : X(1), X(6), X(11), ..., X(491), X(496) (2)

X5
2 : X(2), X(7), X(12), ..., X(492), X(497)

X5
3 : X(3), X(8), X(13), ..., X(493), X(498)

X5
4 : X(4), X(9), X(14), ..., X(494), X(499)

X5
5 : X(5), X(10), X(15), ..., X(495), X(500)

Then the length, Lm(k), of each curve Xk
m is defined

as Equation 3:
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Lm(k) = (3)
(

int((N−m)/k)∑
i=1

∣∣∣∣X(m + i ∗ k) − X(i − 1) ∗ k
∣∣∣∣(n − 1)

)
int

(
(N−m)

k

)
∗ k


where N is the total number of data sequence X
and int ((N − m)/k) ∗ k is a normalization factor. The
k mean length is determined as the average length
of k length Lm(k) for m=1,2,3,...,k. This process is
repeated for each k ranging from 1 to kmax with an
average duration of each k. In the curve of ln(L(k))
versus ln(1/k), the gradient of the least-square linear
best fit is the best approximation of the fractal
dimension.

2) Wavelet Transformation: Wavelet transform (WT)
extract a signal into a set of details along with ap-
proximations of signals that cannot be accomplished
either by Fast Fourier Transform (FFT) or by Short
Time Fourier Transform (STFT). These are obtained
by dilation and contraction and shifts from a single
prototype wavelet called a mother wavelet.
The function of the mother wavelet ψa,b(t) at time a
and scale b is defined as Equation 4:

ψa,b(t) =
1
√

a
ψ

(
t − b

a

)
(4)

where a, bϵR, a > b, and R is the wavelet space.
1/
√

a is used to normalize the energy so that it
remains constant for various a and b values. As a
result, ‘a’ represents the scaling factor that captures
the local frequency information, and ‘b’ represents
the translation factor that localizes the wavelet basis
function at time t=b and its surroundings.
If x(t) is a time-based input signal, then continuous
WT (CWT) can write as Equation 5:

CWT (a, b) =
∫

x(t)ψ∗a,b(t)dt (5)

where * represent the complex conjugate.
Time-frequency representation is conducted to split
the frequency domain in the middle by repetitively
filtering the signal with a pair of wavelet filters.
Precisely, a WT decomposes the signals into approx-
imation coefficients (CA) and detailed coefficients
(CD). The CA is then split up into a new CA and
CD. This process is accomplished to generate a set
of CA and CD iteratively.
Considering the Daubechies order 4 (dB4) function
is used for decomposing the EEG signals in this
work, resulting in the discrete wavelet transform
decomposition, as shown in Table II. This function
has been chosen because it has time-frequency local-
ization properties near to optimal [26], [27]. Usually,

TABLE II. EEG signals decomposition of different levels frequency
band for Daubechies order 4 with a sampling frequency of 500 Hz

Decomposed Frequency Frequency
Levels Range (Hz) Band

D1 89.2875 – 178.5750 Noise
D2 44.6430 – 89.2875 Noise
D3 22.3219 – 44.6438 Gamma(Noise)
D4 11.1609 – 22.3219 Beta
D5 5.5805 – 11.1609 Alpha
D6 2.7902 - 5.5805 Theta
A5 0 – 2.7902 Delta

the EEG signals are divided into five frequency
bands (δ, θ, α, and γ) [26] (Table II).

G. Stress State Classification
EEG signals classification shall consist of the following

steps:

• Pre-processing of signals: This involves determining
fractal dimension and wavelet coefficients in the
present work, using the sub-band coding scheme
mentioned above. These outputs will be used to define
the signal as ‘features’.

• Thus, features extracted from the pre-processing op-
eration are entered into 25 different machine learning
(ML) (Table III, which performs classification over
a set of extracted parameters, in this case, a set of
fractal dimensions or wavelet coefficients.

The classification was done using two stress levels de-
pendent on the SCWT session (normal-mild, mild-stressful,
normal-stressful). The feature vector for the training ma-
chine learning model is specified as Equation 6 and Equa-
tion 7 for FD features, while Equation 8 and Equation 9
refer to the CD of wavelet transform feature extraction
vector features. 10-fold cross-validation includes breaking
the data to 10-fold, then training to 9-folds, and checking
to the remaining 1-fold as validation. The average accuracy
and F1 scores of these 10 iterations were calculated for
each feature. Here, we only consider CD for an alpha band
(D5) as increasing the alpha band’s power would represent
calming and aware conditions. Meanwhile, decreasing the
alpha band’s power and increasing the power of the beta
band would mean that people are doing intense tasks such
as doing mental arithmetic, answering examinations, and so
on [28], [29], [30].

RS S 11−7 =


FDRS (1) FDRS (2) ... FDRS (7)

...
...

...
...

FDCS
S 1(1) FDCS

S 1(2) ... FDCS
S 1(7)

...
...

...
...

 (6)
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TABLE III. Machine learning used for stress classification and
description

No. Machine Learning Description

1 Fine tree (FT) Supervised-Regression
2 Medium tree (MT) Supervised-Regression
3 Coarse tree (CT) Supervised-Regression
4 Linear discriminant (LD) Supervised–Classification
5 Quadratic discriminant Supervised–Classification

(QD)
6 Logistic regression (LR) Supervised-Regression
7 Naı̈ve Bayes Supervised–Classification

Gaussian (NBG)
8 Naı̈ve Bayes Kernel Supervised–Classification

(NBK)
9 Linear support vector Supervised–Classification

machine (LSVM)
10 Quadratic SVM (QSVM) Supervised–Classification
11 Cubic SVM (CSVM) Supervised–Classification
12 Fine Gaussian Supervised–Clustering

SVM (FGSVM)
13 Medium Gaussian Supervised–Clustering

SVM (MGSVM)
14 Coarse Gaussian Supervised–Clustering

SVM (CGSVM)
15 Fine K-Nearest Supervised–Classification

Neighbor (FKNN)
16 Medium KNN (MKNN) Supervised–Classification
17 Coarse KNN (CKNN) Supervised–Classification
18 Cosine KNN (CsKNN) Supervised–Classification
19 Cubic KNN (CbKNN) Supervised–Classification
20 Weighted KNN (WKNN) Supervised–Classification
21 Boosted trees (BT) Supervised-Regression
22 Bagged trees (BgT) Supervised-Regression
23 Subspace discriminant Supervised–Classification

(SD)
24 Subspace KNN (SKNN) Supervised–Classification
25 RUSBoosted trees Supervised-Regression

(RUSBT)

XY1−7 =


FDa

X(1) FDa
X(2) ... FDa

X(7)
...

...
...

...
FDb

Y(1) FDb
Y(2) ... FDb

Y(7)
...

...
...

...

 (7)

a or b representing CS or ICS symbolizes a congruent
segment and an incongruent segment, X or Y symbolizes
SCWT session: RS, S1, S2, and S3, and 1 to 7 represents
EEG channels Fp1, Fp2, F7, F8, F3, F4, and Fz. Each vector
represents the features of each window in the series.

RS S 1 =


CDRS CDRS
...

...
CDCS

S 1 CDCS
S 1

...
...

 (8)

XY =


CDa

X CDa
X

...
...

CDb
Y CDb

Y
...

...

 (9)

where a or b represents CS or ICS for congruent section
and incongruent section, X or Y symbolizes the RS, S1, S2,
and S3 session in the SCWT session. Each vector represents
the features of each window in a series.

3. Results And Discussion
In this research, the length of the SCWT session varies

from one subject to another. It is a subject-dependent
task. Figure 4 and Figure 5 present the cross-validation
results obtained after performing training and testing using
machine learning methods previously stated for stress states
classification with FD and WT features between baseline
sessions (BS) and different stress state (L1, L2, and L3). The
results show that the highest F1 score and accuracy were
obtained using FD features with quadratic SVM classifier
(F1 scores:80.21% for BS-L1 session, 83.44% for BS-L2
session; Accuracy: 79.77% for BS-L1, 84.28% for BS-L2)
and quadratic discriminant (F1 scores: 86.89%, accuracy:
86.27% for BS-L3 session). From these results, it is clear
that the stress level increases with an increase in FD
accuracy and F1 scores while WT shows an increasing
trend between L1 to L2 but decreases when going to
decrease in WT accuracy. Different stress states significantly
influence average accuracy and F1 scores due to decreased
alpha power and increases in theta power. This result is in
agreement with a similar finding reported by [30].

The comparison between different stress levels (L1,
L2, and L3) can be seen in Figure 6 and Figure 7. In
general, the classification trend between stress levels is
similar compared to the trends observed previously in the
comparison between the baseline session and stress level.
FD features using medium Gaussian SVM were the highest
F1 score for classification between different stress levels
(79.92% for classification between L1 and L2, 86.76% for
L1 and L3, and 83.40% for L2 and L3). Similar results
have been observed in average accuracy with FD features
using medium Gaussian SVM is highest compared to WT
accuracy results (79.79% for classification between L1 and
L2, 84.01% for L1 and L3, and 79.13% for L2 and L3).
The results obtained agreed well with the previous works
[10], [31].

The results obtained from the fractal dimension classi-
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(a)

(b)

(c)

Figure 4. (a)-(c): Average F1 scores (%) of stress state classification for fractal dimension and wavelet transform features between baseline session
and different stress states.
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(a)

(b)

(c)

Figure 5. (a)-(c): Average accuracy (%) of stress state classification for fractal dimension and wavelet transform features between baseline session
and different stress states.
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(a)

(b)

(c)

Figure 6. (a)-(c): Average F1 scores (%) of stress state classification for fractal dimension and wavelet transform feature for different stress state
comparisons.
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(a)

(b)

(c)

Figure 7. (a)-(c): Average accuracy (%) of stress state classification for fractal dimension and wavelet transform feature for different stress state
comparisons.
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fication as a feature using a medium Gaussian SVM ML
model derived from the EEG signals suggested that stress
state could be classified using this method. Therefore, as
future research ideas, we intend to develop a system that
automatically determines the stress levels from EEG signals
based on the same feature and classification algorithms.

4. Conclusion
This research was devoted to access the capability of the

FD and WT method as features for stress state classification
using EEG signals. It was found that FD features using
ML quadratic SVM have the highest F1 score with 80.%
(BS-L1), 83.44% (BS-L2), and 85.44% (BS-L3) in the
comparison between baseline session and different stress
states. For comparison between different stress states, FD
with medium Gaussian SVM as classifier has the highest
F1 score with 79.92% (L1-L2), 86.76% (L1-L3), and 83.4%
(L2-L3). Future advances in this research would concentrate
on the number of subjects and exploring other aspects of the
feature extraction methods for the stress states classification.
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Limoges (UNILIM), France, in 2005. He is
currently the Director of International Re-
lations, Universiti Teknologi PETRONAS.
His research interests include neuro signal

processing, and medical imaging and communication.

Norshakila Haris Norshakila Haris is cur-
rently a Senior Lecturer and a Head of
the Quality Assurance (QA) Section. She
received the B.Eng. (Hons) degree in Elec-
tronics Engineering from Cardiff Univer-
sity of Wales, U.K and the M.Eng. degree
in Electrical-Electronics & Telecommunica-
tions from Universiti Teknologi Malaysia
(UTM), Malaysia in 2006 and 2008, respec-
tively. In 2017, she received her Ph.D. de-

gree in Electrical and Electronics Engineering from The University
of Manchester, UK. She has been working with Universiti Kuala
Lumpur Malaysian Institute of Marine Engineering Technology
(UniKL MIMET) since July 2008. Dr. Norshakila is a Senior
Member of IEEE. She was a Secretary of IEEE Student Branch
of The University of Manchester, UK from July 2013 until
August 2015. Then, she became the first female Chair of the
IEEE Student Branch of The University of Manchester from
September 2015 until May 2017. Her research interests include
three-dimensional multilayer integration and characterisation of
CPW MMIC components for future wireless communications.
She was among the three recipients who received the GaAs
Association Student Fellowship at the 11th European Microwave
Integrated Circuits (EuMIC) Conference in London, UK, in 2016.
The award was given to recognize and provide financial assistance
to international PhD students who show promise and interest in
pursuing a graduate degree in microwave electronics.

http:// journals.uob.edu.bh


