
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Oct-2022)

https://dx.doi.org/10.12785/ijcds/120176

Characterizing Reverse Engineering Practices on Decayed
Software Applications

Samir. Obaid1, Ibrar. Arshad2 and Muhammad Usman Abid3

1Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan
2Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan

3Department of Software Engineering, Ripha International University, Islamabad, Pakistan

Received 22 Jan. 2021, Revised 15 Jul. 2022, Accepted 23 Jul. 2022, Published 31 Oct. 2022

Abstract: Architecture reverse engineering is an approach to reproduce architectural contents once an application has deviated from its
planned architecture. Unassisted understandings of an application by an individual, interviewing a person knowing the subject system,
and computer-aided tools are few approaches that can produce architectural contents from a decayed software application. The former two
approaches are helpful when an individual in the organization can understand the software application. Worst comes when computer-aided
tools remain the only way to produce architectural contents from an application’s source code. This research aims to identify architectural
contents that industrial practitioners reproduce through reverse engineering, finding out the users of identified architectural contents and
how the existing tools help in meeting industrial practitioners’ needs. A qualitative study was performed to achieve the research objectives
by choosing a homogenous sampling approach from the organizations where software applications were under gradual development for
many years. Semi-structured interviews were conducted, and a coding approach was used to find out themes from transcribed data. We
identified different architectural contents that practitioners produce from source code. Our findings show that practitioners use reverse
engineering tools to produce architectural content from an application’s source code. However, there are some architectural contents that
practitioners need to reverse engineer, but no available tool produces those contents. The reverse engineering tools produce a wide range
of architectural contents from source code but, contents visualization as required by practitioners is a challenge that needs to be addressed.

Keywords: software architecture, reverse engineering, code decay, architecture recovery

1. Introduction and Overview
Reverse engineering is a practice of extracting design

from a finished product which can be software or a
machine. In software engineering, reverse engineering is
the process of obtaining design and other implementation-
related information from a developed software [1], [2].
The importance of software reverse engineering was first
realized when it became impossible to maintain or update
software that has evolved over the years. The maintenance
of legacy software is difficult because the documentation,
over the years, became inconsistent with the source code,
or it is difficult to understand the source code either
because the length of code is too much or it is written
in some old language. According to Ali [3], 50-90% of
the work effort is usually spent understanding the source
code whenever legacy software is to be updated. Through
reverse engineering practices and tools, the effort required
for this maintenance task can significantly be reduced.
Architecture reverse engineering is an approach for
analyzing a system to identify its components, their
interrelationship and create representations of the system
in another simplified form or a higher level of abstraction

[4], [5]. Architecture reverse engineering can also be
explained as identifying the architectural contents of a
system that are deviated from its planned architecture
[6], or its architecture is never documented at all. There
are several reasons for this deviation, for instance, the
system was easy to develop at the early stages; therefore,
no one was bothered to document architecture during
further development and maintenance, the architecture
documentation was considered a time-consuming activity,
there exists an architecture document, but it was not
updated with the upcoming changes of the system. Due to
these reasons, the system source code becomes the only
source to understand the system’s major components and
dependencies, design information, and quality aspects that
different stakeholders require. The term code decay [6],
[7], [8] is used if source code mismatches documented or
planned architecture. The term architecture degeneration
[9] is also used for systems where actual architecture
mismatches the planned architecture. Parnas [10] uses
the term software ageing for degraded system design and
increased complexity. Once the system goes through many
years of development activities, it tends to become complex,

E-mail address: samir.obaid@cust.edu.pk, ibrar.arshad@cust.edu.pk, obaid.musman@edu.pk http:// journals.uob.edu.bh

 https://dx.doi.org/10.12785/ijcds/120176
http://journals.uob.edu.bh

930 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

poorly structured and has little or no documentation. The
system becomes hard to understand; any new decision
becomes hard to undertake as it requires paying the
extra cost of development and testing to ensure that new
functionalities are added without placing any new problem.
Architecture reverse engineering is helpful in this regard, as
it recovers some valid architectural contents of the system.
There are some tools that can reproduce architecture
contents from source code information. However, it is
important to know that produced architectural contents
and their representations are acceptable for industrial
practitioners who use reverse engineering tools. To address
this challenge, the high-level goal of this research is to:

• Find out architectural contents that industrial practi-
tioners need to produce from source code.

To meet the high-level goal of the research, we have set the
following objectives:

• To find architectural contents that industrial practi-
tioners reproduce from source code

• To find users of reproduced architectural contents

• To know how existing tools help reproduce required
architectural contents?

To meet the first two research objectives, a qualitative
study was performed where practitioners were interviewed
to know about: how and what architecture contents they
produce from source code? Furthermore, what is their
aspiration for reverse engineering tools? In order to
meet our third research objective, existing vendor tools
were studied, and then their features were compared
with survey results. Our finding showed that existing
reverse engineering tools produce various architecture
contents from source code information; however, there
were architecture contents that need to be produced, yet
none of the existing tools produces these contents from
source code.
The remaining of this paper is organized as follows: Section
2 discusses existing tools. The research methodology is
described in section 3. Finally, section 4 and 5 contain our
findings from the qualitative study, and conclusion of work
done and future direction respectively.

2. Existing tools
There are many standalone tools and plug-ins for major

IDEs that recover architecture from application source code.
These tools help improve comprehension of source code,
check code quality against quality metrics, delta analysis to
show the difference between two versions of the code, and
code compliance to enforce architecture design decisions
on code. Among earlier reverse engineering tools, Wong
et al. [11] propose Rigi, a tool that produces flow graphs
from application source code. The flow graph presents

functions, functions calls, and data accesses. The produced
flow graph can be much more detailed, depending upon
several function calls in the application source code. To
minimize the flow graph’s noise or complexity, Rigi uses the
cluster and filtering [6] technique. Through this technique, a
user can group low-level entities (function calls) into high-
level entities to obtain an abstract model that meets the
user’s reverse engineering goal. Rigi is a freeware with
its source code, and pre-compiled downloads are available
on their official website .[12] Rigi comes with extensive
learning resources, user manuals, and sample programs of
increasing complexity, demonstrating how Rigi can reverse-
engineer software systems.
Systa et al. [13] propose Shimba, a prototype reverse
engineering tool that is designed to understand java source
code. Shimba analyzes java byte code and visualizes a sub-
ject system’s static and dynamic components by customiz-
ing Rigi. These components include classes, interfaces,
methods, constructors, variables, static initialization blocks,
return types, and visibility. It also extracts relationship
components from java byte code such as extension, im-
plementation, containments, method call, and assignment.
These extracted components can be visualized using Rigi
dependency graphs. Shimba creates a sequence and state-
chart diagrams from extracted components to visualize
dynamic aspects of the subject system. A sequence diagram
helps understand the relationships among different objects,
whereas a state-chart diagram helps to understand the
overall behavior of certain key objects. Shimba supports
the model slicing technique, through which a user can filter
out unnecessary details from the dynamic models to focus
on particular parts of the target system. Imagix4D [14] is
a reverse engineering tool that helps software developers to
understand, document, and improve complex, third-party,
and legacy source code. Imagix4D analyzes source code
and produces different abstract views of the system, such
as subsystem architecture (well-segmented subsystems with
cleanly specified interfaces), package diagram, class dia-
gram, functions, and variables dependencies control flow
graphs. The tool also assesses analyzed code over a hundred
different quality metrics to ensure that the software meets
planned development criteria and determines where to focus
testing efforts. Its delta analysis feature helps in visually re-
viewing the structural differences between different versions
of the code. Imagix4D is available with the latest stable
release since 2019, and it also has a rich user manual and
technical support document.
Sangal et al. [15] propose Lattix [16] , a static analysis tool
that reverse-engineers architecture from an application’s
source code. Architecture contents, reverse engineered by
the tool, can be viewed in the form of graphs (lines and
boxes) or dependency structure matrix (DSM). DSM is
a simple, compact, and visual representation of system
components (classes, packages) in the form of rows and
columns. Like Rigi, the DSM feature of Lattix helps filter
low-level architecture contents and create clusters to make
a more abstract view of the system architecture. In addition,
Lattix facilitates code compliance with existing architecture

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 931

by providing rules-based architecture enforcement features
that enable the architect to define design rules and restrict
the development team from violating those rules during the
development phase. NDepend [17] is a static analysis tool
that explores existing architecture from C# and Visual Basic
code. Like Lattix,NDepend presents architecture details in
the form of DSM that helps filter low-level components
to visualize the high-level architecture of the system. In
addition to DSM, the initially explored architecture can
also be filtered with the help of a query language called
CQLink. Through CQLink, a user can query for specific
elements from the model by hiding other elements of the
model, which helps a user to define their own way of
presenting a lightweight architecture of the system. Like
Lattix, NDepend provides rules-based architecture enforce-
ment features that help users define design rules and then
restrict developers from violation during release and even-
tually before committing to source control. NDepend comes
with a compare build feature that can graphically visualize
what has been changed between two code versions.BOUML
[18] recovers UML diagrams from Java, PHP, C++, and
Python source code. Along with generating UML models
from the source mentioned above code, it also generates
XML Metadata Interchange (XMI) that can be used by
any other model generator tool to extract a model from
XMI. This XMI file can also help generate diagrams other
than UML and thus make it convenient to develop their
own models for the representation of architectural contents.
There are many plug-ins for eclipse IDE that visualize
architectural details from Java source code. UML-Lab [19]
supports round trip engineering, i.e., reverse engineering
architecture from source code and generating code from
architectural diagrams. The tool presents architecture by
the UML class diagram, whereas it also facilitates creating
customized models with the help of UML profiling. Another
similar tool is ObjectAid [20] that creates a UML sequence
and class diagram from Java source code. The tool helps
automatic synchronization between code and diagrams. Any
changes in the code are automatically reflected in the dia-
gram without executing the model generation process again.
AgileJ [21] creates a class diagram reverse-engineered
from Java source code. Since generated diagrams can be
cluttered; therefore, the tool also provides filtering ability
to reduce the noise in the presented information. MaintainJ
[22] visualizes light weight models from java source code
with the help of a class and sequence diagram. In order
to visualize a dynamic view, the tool analyzes the program
call stack and presents stack traces by a UML sequence
diagram. The tool can also visualize a call stack between
two applications when running on two different Java virtual
machines. For example, when an application calls a service
(running on different JVM), the call flow across JVMs can
be shown by a single sequence diagram. ModelGoon [23]
visualizes component dependency by reverse engineering
Java source code into package and class diagrams. The
tool also produces a sequence and collaboration diagram
to present a dynamic behavior of a selected codebase.
Diver [24] [25] is a code analyzer that records traces of

running programs and visualizes a sequence diagram of
captured traces. It also helps the user to explore the code
from a sequence diagram to gain the same perspective
from the code that a user understands from a sequence
diagram. We found a large number of reverse engineering
tools that produce architectural content from an application
source code. In Table I, we did our best effort to identify
available reverse engineering tools and describe them. Tools
come with various static and dynamic models to facilitate
users of the tool with a wide range of information. In the
presence of diverse reverse engineering tools, it is important
to know about practitioners’ needs and challenges that they
face while reverse engineering architecture contents from
application source code.

3. Methods
We have chosen a qualitative research method and

conducted interviews to gather focused, in-depth, and qual-
itative textual data from respondents. As described in Fig.
1, the research process started by formulating research
objective. We have already mentioned our research objective
in section 1 of the paper. Following research objective, a
vendor study was performed to understand existing reverse
engineering tools and their features, as described in Section
2.We then selected the study sample, conducted interviews,
and executed a qualitative coding process described in
subsections A, B, and C.

Figure 1. Methodology

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

932 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

TABLE I. Reverse engineering tools

Tool Input/Languages
Support

Brief description and architectural contents produced
as output

Rigi [12] C, COBOL, C++ Rigi is a reverse engineering tool that generates flow
graphs from application source code. It helps in pro-
gram understanding by providing an interactive graphical
editor where a user can further abstractor granularize
generated model diagrams.

Shimba[13] Java Based on Rigi, Shimba helps in program comprehension
by visualizing static and dynamic models from program
source code. Classes, interfaces, methods, constructors,
variables, static initialization blocks, return types, and
visibility.

Imagix4D [14] C, C++ and Java It is a reverse engineering tool that helps to visualize
legacy code written in C or Java language. The high-
level visualized models include subsystem architecture
diagrams and UML class diagrams. More detailed models
include sequence diagram, definition use operation on
variables and data flow diagram.

Lattix [16] C,C++, Java,
Python,Fortran,
and ADA

The significant contribution of Lattix is a generation
of DSM from source code analysis. DSM is a simple,
compact, and visual representation of system components
(classes, packages) in the form of rows and columns.
Lattix helps to understand, refactor and control archi-
tecture erosion with the help of rule-based architecture
enforcement.

NDepend [17] .Net managed code
includes C# and vi-
sual basic

NDepend is a static analysis tool that can visualize C#
and visual basic source code. Like Lattix, it generates
DSM to visualize components and their dependencies.

JDepend [26] Java JDepend visualizes packages and dependencies from java
source code. It traverses java classes and packages to
generate quality metrics. Quality metrics include exten-
sibility, reusability, and maintainability to manage and
control package dependencies effectively.

BOUML [18] C++, Java, PHP BOUML can reverse engineer C++, java and PHP code
and visualize them by UML diagrams. It can also be
used to generate XMI from code reverse engineering.
The XMI is lightweight artifacts that software architects
can use to generate their own diagrams, which they better
understand.

FUJABA [27] Java An open-source model-based reverse engineering tool
that helps to generate high-level design artifacts from
program source code. High-level design artifacts include
the UML class diagram and activity diagram. The tool
also provides various plug-ins such as Archimetrix,
which helps to generate component-based software ar-
chitecture from application codebase.

CPPX [28] C, C++ A tool that extracts fact base from C++ source code.
The fact base is a graph whose vertex represents classes,
functions, expressions and variables. The edges represent
the relationship between identifiers (functions and vari-
ables) to their declaration, methods call their targets, and
objects to their types.

Continued on next page

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 933

TABLE I – Continued from previous page
tool Input/Languages

Support
Brief description and architectural contents produced
as output

QLDX [29] C++ QLDX is a reverse engineering tool for the visualization
of software architecture from application source code.
This tool produces facts based on application source
code and then uses LSEdit to visualize the application
architecture graphically.

IBM RSA [30] Java IBM RSA can be used for model-driven software en-
gineering and reverse engineering. In addition, it can
be used to generate UML structural and behavioural
diagrams from application source code. Its most popular
design artifacts are the UML class diagram and UML
sequence diagram.

Zynamics BinNavi[31] Binary code BinNavi is a reverse engineering tool that was built to
generate control flow-based analysis artifacts from binary
code. It can be helpful to assist vulnerability researchers
who look for vulnerabilities in disassembled code. The
tool provides a powerful debugger to locate relevant code
quickly. The tool also facilitates adding additional plug-
ins to meet the specific goals of the users.

UML Lab [19] Java UML Lab is a lightweight modelling tool that can be
used in forward engineering (from modelling to code),
reverse engineering (from code to model) and round-
trip engineering (synchronize code and model). The tool
generates a UML diagram from the application’s source
code. However, it also facilitates defining your own
template and reverse engineer code to those defined
templates.

Diver [24] Java Diver is an open-source tool and eclipse plug-in that
helps to analyze and visualize java source code. It can
generate a UML sequence diagram from java source code
and thus provide a dynamic behavioural view of the
underlying codebase.

Eclipse AgileJ [21] Java AgileJ is an eclipse plug-in that analyzes java source
code to identify classes and relations among classes.
The tool also helps to identify and visualize design
patterns from application source code. It also round-trip
engineering feature which can automatically synchronize
code changes into diagrams.

MaintainJ [22] Java Generates class and sequence diagram at runtime while
executing any scenario. It can also visualize call stacks
among applications deployed across multiple Java virtual
machines.

ModelGoon [23] Java The tool visualizes package dependencies from java
source code. It also produces high-level design artifacts
such as UML class and sequence diagrams.

Eclipse ObjectAid [20] Java ObjectAid is an eclipse plug-in and a reverse engineering
tool that can visualize java source code by UML class
diagram. The tool also provides features to cleanup
diagrams, such as hide variables and methods from the
generated model. In this way, it helps to focus on classes
and associations rather than diving into details.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

934 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

The coding process stopped when we reached to data
situration state and final themes emerged. A focused
group session was conducted to obtain experts review on
obtained themes. finally, we have discussed our findings
from analysed data in section 4 of the paper.

A. Sample study
In our study, a sample size of twelve participants was

chosen, which is the minimum recommended sample size
for data saturation [32]. In addition, we used a homo-
geneous sampling [33] approach, which can be described
as ”gathering people in a similar situation with a similar
background”. The rationale behind homogeneous sample
was to select only those organizations where software
product has undergone few years of development practices.
During this time, the application has reached a certain level
of complexity, and practitioners tried reverse engineering
during the development process. While searching for the
required sample, we found the following similar situations
with our respondents:

1) Product time in the market: The first common aspect
of all respondent companies was their long product
life in the market. As described in Fig. 2, the mini-
mum product life is seven years, whereas the max-
imum product life is seventeen years. Respondents
told us that a significant amount of code was written
years ago. Due to this, developers who have written
that code hardly memorizes it. New developers who
have joined the team find it difficult to understand the
code without their colleagues’ assistance. The worst
comes when old developers have left the company,
and new developers try to understand the code with
unaided browsing.

Figure 2. Products time in the market

2) Team size: The second common aspect among re-
spondent companies was their team size. Fig. 3
describes team size, which ranged from 65 members
to 180 members, and it included: developers, quality
assurance (QA) engineers, technical support team,
architects, team leads, technical report writers, and
company’s high-ups who may also be non-technical

personals. Respondents told us that there are varying
interests of team members which depend upon their
role. We have thoroughly discussed those interests
in our findings. For instance, if two development
groups worked concurrently on different tasks, they
must know about execution flow, input and output
of developed components, and code organization. It
was not feasible to assist other groups with devel-
oped code, especially when there were rapid release
cycles.

Figure 3. Team Size with respect to the number of people

3) Product size: The third common aspect among re-
spondent organizations was lines of code (LOC).
As described in Fig. 4, the code size ranged from
0.8 million LOC to 4.0 million LOC. As mentioned
by respondents, having a huge code has several
challenges: it is difficult to understand, communicate,
and properly document it.

B. Interview and data collection
The interviewer visited each respondent in person for

an interview session, and data were recorded in audio and
hand-written form. In addition, follow-up interviews were
conducted in order to confirm and clarify data where re-
quired. Our in-depth interview had many questions for each

Figure 4. Product size with respect to lines of code

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 935

respondent; however, we planned some starting questions
for each interview. For instance:

1) What are the architectural contents that you repro-
duce from the source code?

2) Who are users of reproduced architecture content?
3) How are existing tools helpful in reproducing re-

quired architectural contents?

Each interview lasted from 40 to 60 minutes, and data
were transcribed on paper or audio form after having the
respondent’s consent. We have also conducted four follow-
up interviews with four respondents after having confusion
in transcribed data. Data were transcribed and then analyzed
to find common patterns and to place forward general
observation.

C. Qualitative coding process
1) Content Analysis: We have selected conceptual anal-

ysis as a content analysis approach, i.e., the focus
was on the existence of concepts and frequency of
occurrence of those concepts. According to Carley
[34], several steps must be followed before conduct-
ing the content analysis. Table II briefly describes
those steps, along with the decision taken by the
author at each step. At the end of the analysis,
reverse engineering practices were categorized, and
they were used to find major architectural contents
produced by the practitioners from source code and
stakeholders of those architectural contents.

2) Identifying Codes: Coding as a method of organizing
transcribed data is widely used in qualitative re-
search [34], [35]. We have chosen a top-down coding
approach (aka theoretical coding approach) through
which we just coded those concepts that were rele-
vant to our concerns as expressed in research ques-
tions. The coding task was executed by two re-
searchers where one researcher identified codes from
transcribed data and the other reviewed the codes to
omit chances of errors. While highlighting codes, we
have adopted the Boyatzis [36] approach in which
a researcher briefly describes coded concepts and
how a researcher highlights codes from transcribed
data and the corresponding excerpt of transcribed
data. The coding process was stopped after few
iterations, and identified concepts were: sequencing
GUI snippets, configuration details, roles, and access
control, static and dynamic execution flow, APIs with
required and provided services, code annotation,
modules re-organization, visualization of ERD, data
tables, and data rows presentation. Once codes were
identified, then they were organized into themes as
described in Fig. 5.

3) Themes: Themes are outlines (also known as pat-
terns) that group together common codes to address
research questions [35], [?]. Once gone through
codes, we observed some obvious themes that
emerged, and codes fit into them. For example, some

frequent codes such as user stories, code snippets,
and GUI snippets are grouped to set up a Scenarios
theme. We identified a total of five themes at the end
of this process and described them in Fig. 5. Themes
are user stories, program execution flow, service
APIs, code organization, and database view. Each
theme further contained a sub-theme as described by
rounded corner boxes in Fig. 5. For example, static
and dynamic execution flow practices are categorized
into a theme which is named program execution flow.
Service APIs consolidate all practices where practi-
tioners try to produce service details from the code-
base. The database view contains practices: ERD
generation from database schema, table’s view and
associations, and finding redundant tables and fields.
User Stories consolidates sequencing GUI snippets,
configuration details, and access control policies.
Finally, codebase organization practice consolidates
code annotation and modules re-organization.

D. Focused group validation
Focused group validation is conducted in order to obtain

feedback from community members on the accuracy, the
validity and the appropriateness of the research findings
[37]. We have chosen a small group of seven participants
who contributed to open discussion on our proposed the-
matic map. Four participants had a doctoral degree in the
computing field. Three of them are currently working as
permanent faculty members in computer science, and one,
working as an application architect in an IT organization.
Three participants had master degrees in computing and are
working as senior software engineers in IT organizations.
One of the participants has played the role of a moderator
who helped in the smooth execution of the session and
ensured discussion on each question. The session lasted for
two hours, and participants highly endorsed the proposed.

E. Findings
To answer our first research question, Table III describes

architectural contents, challenges faced by practitioners to
produce those contents, and strategies adopted by indus-
trial practitioners to generate these contents. The following
section describes what respondents demanded under each
architectural content.

1) Program execution flow describes exaction sequence,
either control flow or data flow, once the system
receives input. We observed that all respondents
were reproducing program execution flow details
from the application source code. For instance, one
of our respondents mentioned that ’We document
screenshot of GUI and back-end code because our
fellow developers need them to understand program
execution flow by GUI snippets with code behind’.
After asking about this activity’s practice, the respon-
dent mentioned recording input events and execution
flow (both code and GUI screens) against that input
event. Team members used this execution sequence

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

936 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

TABLE II. Steps for conducting content analysis [34]

Tool Output artifacts

Decide the level of
analysis

We have decided to code for both single and set of words that appear in the text (transcribed
data from respondents)

How many concepts to
code for

We have decided to code for relevant concepts as they appear in the text)

Code for existence or
frequency of concepts

Since we are not sure about the significance of frequency in this research topic, therefore, we
have decided to code for the existence of the concept even if it appears multiple times.

Distinguish between
concepts

We have decided to highlight the concepts exactly as they appear in the text. If two concepts
with different phrases appeared, then there is a chance to distinguish them based on their
relation to reverse engineering practices

Rules for coding the
text

One researcher has highlighted the concepts and revised them by another researcher,

Code the text We have chosen the manual coding technique by using paper and a highlighter. Computer-
aided tools are not used due to lack of practice.

Analysis of result We have analyzed the data to determine respondents’ expectations from reverse engineering
tools and architecture contents that they reproduce from source code. We also compared their
expectations with available reverse engineering tools.

Figure 5. Thematic Map to Present Architectural Contents that
Practitioners Produce from Source Code

to understand the execution sequence with no or min-
imum assistance from other fellows. Respondent also
mentioned that sometimes they had to demonstrate
an application to the company’s high-ups (not from
the IT domain). With the help of this document,
the high-ups understood how their aspirations are
realized in a developed system. Another respon-
dent mentioned that; ’program execution flows are
maintained with the help of boxes and arrows to
assist team members and ’execution flows in the
business layer are important for us, and we document

it from code’. This respondent showed the same
intent as the previous one, i.e., helping developers
understand program execution flow against the input
event without any assistance and communicating
work done with high-ups. From the content analysis,
we observed that screenshots of GUI and code
and lines and boxes diagrams were two common
approaches by respondents to capture execution flow
details. Since respondents were capturing system-
wide execution sequence instead of a particular input
event, therefore, we attributed this activity as static
execution flow details of the program. Respondents
also showed their interest in extracting dynamic
execution flow information from program source
code. For instance, a respondent mentioned that ’We
maintain a log of program execution traces to find the
exact point where fault exists’. Another respondent
mentioned that ’We record input data and execution
sequence to observe where does fault exist’. When
we asked about the purpose, respondents mentioned
that they mostly failed to reproduce the client’s
reported bugs. Therefore, they have developed a
tool that logs client-side configurations, input events,
and failure occurrences. Once received a log, then
another version of the tool is used on the developer
end, which sets the same configuration, provides
input data, and records code execution sequence to
reach fault position. Another respondent followed
the same practice by mentioning that we have an
in-house developed tool that records input events
and program execution trace against event’. It helps
them to figure out specific input events that caused
failure and program execution trace until failure
occurs. Since respondents were recording execution
sequences for a particular input(s), therefore, we
attributed this activity as dynamic execution flow

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 937

TABLE III. Architectural contents reverse engineered by practitioners

Architectural
content

Characteristics of Ar-
chitectural Contents

Challenges Faced by
Practitioners

Strategies Adopted by Industrial Practitioners
to Generate these Contents

Program Exe-
cution Flow

Capturing input event
to program, identifica-
tion of program execu-
tion path from source
code, finding depen-
dencies among modules
and business flow

’Execution flows in
the business layer
are important for us,
and we document it
from code . . . ’ ’New
developer uses to
record input event and
execution sequence on
a paper . . . ’

tatic Execution Flow ’program execution
flows are maintained with the help of boxes
and arrows to assist team members”We keep
execution sequence along with code screen-
shots . . . ’Dynamic Execution Flow ’We
maintain a log of program execution traces
to find the exact point where fault exists.”We
maintain a log for execution traces of pro-
gram to investigate the exact point where the
system gets crashed.”We observe input data,
methods sequence, and the point where appli-
cation crash.”We have an in-house developed
tool that records input events and program
execution trace against an event.’

Service APIs Contents related to
documenting purpose,
input, and output
of reusable program
libraries and web
services

’development team fre-
quently modify already
developed APIs to gen-
erate a new type of
record . . . ’

API Details with Input and
Output’Frequently document the purpose of
an API, with input and output.”We have to
frequently re-document the purpose of APIs
because there are frequent changes by the
development team . . . ’

Database
View

The understanding
database schema,
identification of
redundancy (both
tables and fields)

database schema
evolves with time, and
it became hard to work
on report generation,
adding new records and
understand the entire
schema, especially by
new team members. . . ’

Visualizing ERD ’inspect schema to generate
ERD from it.”We revise our databases to find
out common fields across tables’Table’s View
’We have developed an in-house tool named
that takes a table name as input and displays
all associated table’

User Stories Contents related to doc-
umenting and maintain-
ing user stories from
the source code infor-
mation

’QA team cannot man-
age their work due
to a lack of knowl-
edge about interfaces
and APIs. We, there-
fore, work with the
development team to
reproduce user stories
. . . ”Sometimes we need
to create models to
share our user stories
with HR and technical
support team to let them
use it . . . ’

Capturing and Sequencing of GUI Snip-
pets’for each use case, we document a se-
quence of GUI snippets along with back-
end code. It helps both non-technical
and technical personals to understand the
use case.’Documenting Configuration De-
tails’Keep configuration details required to
run an application.’Documenting Role and
Access Control ’We maintain role table to
keep access and authorization on user stories’

Code Organi-
zation

Re-modularization
of existing code,
the Understanding
purpose of code,
and identification of
reusable code from the
codebase

’after gradual
development, some
code segments become
complex and contain
reusable chunks. . . ”It
mostly happens that
the developer didn’t
bother to annotate
comments on code or
comments are vague,
such situation becomes
very problematic to
other developers’

Code Annotation’we often write the com-
ments on the top of the store procedures
and in the code so that we may get instant
knowledge about it.”write details about com-
plex code alongside to guide other devel-
opers when they modify code.’Modules Re-
organization ’inspect our code to segregate
code chunks into modules”we are manually
inspecting our code to find reusable code
chunks and then reorganize the code.’

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

938 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

details of the program.
2) Service APIs: Services APIs refer to services that

an application provides in the form of web services.
Analysis of respondent’s data showed that respon-
dents were documenting API details which purpose
was manifold. For example, one of our respondents
stated that ’we maintain List of API, with their
purpose, input and output’. After asking about this
activity’s practice, the respondent mentioned that
they were maintaining API details in a spreadsheet to
let new developers understand the purpose of an API
and input data that APIs take and output data that
it produces. Another respondent mentioned that they
’frequently document the purpose of an API, with
input and output’. While asking about the purpose,
the respondent mentioned that their testing team
required APIs details to implement or modify unit
tests to validate those APIs. Since the development
team frequently changed those services, they were
required to re-document the purpose of APIs, inputs
are taken, and output. Some other respondents were
annotating APIs details in a codebase, and they were
using integrated utilities with IDE to produce API
details.

3) Database View: Database view refers to entity types,
entity fields, and relation and type of relationships
among entities.
We found many respondents were reproducing high-
level models from the developed database schema.
As described in Table III, one of our respondents
mentioned that ’database schema evolves with time.
It became hard to work on report generation, adding
new records, and understanding the entire schema,
especially by new team members. One of our re-
spondents mentioned that ’We have developed an
in-house tool named *** that takes a table name as
input and displays all associated tables’. After asking
for purpose, the respondent said they had planned to
write a short and optimal query for report generation.
For a particular table, the tool helped them list
down table fields, a relation of a selected table
with other tables based on its primary key, relation
with other tables on a foreign key that it possessed.
Another respondent mentioned that ’we revise our
databases to find out common fields across tables’.
The respondent told us that their database schema
grew with time and, even after careful development,
some data fields become redundant across multiple
tables. Thus, they had to revise the entire schema
to find redundant fields in the database schema. We
also found many other respondents showing their
aspiration to reproduce entity-relationship Diagram
(ERD) from a database schema. For instance, a
respondent mentioned that: ’our team like to have
a tool that could be connected to the database, and
it produces ERD’, ’I would like to have a diagram
which would help me in explaining the DB to my
fellows’ and ’ERD generator from schema would

be helpful tool’. Instead of spending time on ERD
design, practitioners spent time developing database
schema and report generations. The schema started
growing with gradual development activities, and
then, a lightweight representation like ERD was
required to understand and discuss the database with
fellows.

4) User Stories: We found eight out of twelve respon-
dents tried to produce user stories from application
source code.
One of our respondents expressed the challenge
as the ’QA team is unable to manage their work
due to a lack of knowledge about interfaces and
APIs. We, therefore, work with the development
team to reproduce user stories. Respondents were
using different tactics to reproduce user stories. For
instance, a respondent mentioned that: ’for each use
case, we document sequence of GUI snippets and
back-end code’. Another respondent mentioned that
’we communicate with the client on email and give
them demos based on the system’s GUI screenshots.
Sequencing GUI snippets of an application was
more convenient than any other way to communicate
and document user stories. In addition to the GUI
sequence, some respondents were found to docu-
ment the configuration details (environment setup)
required before starting the user story. Examples of
configuration details, as mentioned by respondents,
were: configuring endpoints in distributed systems,
loading data to memory, services availability, etc.
The third important aspect that respondents were
documenting was roles and access control policies
that helped them to reserve information about differ-
ent users’ roles and authorizations with each role.

5) Code Organization: Code organization refers to re-
modularizing code, annotating existing code, and
identifying reusable components from the codebase.
Once code undergoes a few years of development,
it becomes complex and hinders new developers’
ability to understand it easily. For instance, a re-
spondent mentioned that ’after gradual development,
some code segments become complex and contain
reusable chunks. . . ’. Therefore, they were inspecting
existing code to find out redundant components
and code complexity that raised due to continuous
development. Another respondent mentioned that ’It
mostly happens that the developer didn’t bother
to annotate comments on code or comments are
vague, such situation becomes very problematic to
other developers’. While explaining the statement,
the respondent mentioned that sometimes it becomes
difficult to understand and modify the code script
written years ago. Therefore, they execute an activity
to annotate, explain code scripts, and map code
with specification documents. Doing so helps new
developers to understand the code and further work
on it. Another respondent mentioned that ’we were
having a tangled code of different features. So, we

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 939

identified tangled code, modularized the codebase,
and defined a kind of sub-MVC project within a large
project’. The respondent mentioned that they had
violated design rules during gradual development for
few years. Thus, code becomes complex, and re-
modularization was the only solution. Now, any new
development requires peer review by experienced
developers to avoid design violations. The same
situation was faced by another respondent who men-
tioned that ’we were reviewing 5 years old testing
application because test cases about different features
of an application were tangled among different test
suites. Therefore, their team revised an application
to segregate tangled test cases into their appropriate
test suites.

F. Who are users of reproduced architectural contents?
Since users of architectural contents are actual stake-

holders and therefore, it is important to know about users
of reproduced architectural contents. From the content
analysis, we observed that major users of architectural
contents are the development and testing team. In addition
to that, organization high-ups (who also have non-technical
personals) and end-users also have an interest in produced
architecture content. Table IV describes architectural con-
tents reproduced from source code, users of reproduced
architectural contents, and purpose/goal that the user wants
to achieve after having required architectural contents.

G. How are Existing Tools Helpful in Reproducing Re-
quired Architectural Contents?
Although existing tools reproduce various architectural

contents from source code, however, there are practitioners’
needs to be addressed or gaps to be fulfilled by existing
tools. In the following section, we describe features of tools
conformance to practitioners’ requirements, future work or
opportunities for vendors of reverse engineering tools, and
limitations in the selection, adoption, and use of existing
reverse engineering tools.

1) Existing Reverse Engineering Tools That Meet
Needs of Industrial Practitioners: We observed that
most reverse engineering tools focus on producing
execution flow from the source code of an applica-
tion. Function dependencies [8], activity flow, depen-
dency graphs [10], [11], [13], [14], [20], sequence
diagram [10], [11], [15], [16], and flow graph [8],
[13] are kind of execution flow details which are
reproduced by existing reverse engineering tools. We
found that our respondents were also reproducing
execution flow details from source code, and thus
this feature of existing tools has a high tendency
toward respondents’ aspirations.
One of the respondent’s aspirations from reverse en-
gineering tools was to produce ERD from a database
schema. There are database reverse engineering tools
such as SchemaCrawler [28] , MySQL Workbench
[29] , and SQLDatabaseStudio [30] are a few to

name. SchemaCrawler is an open-source database
schema discovery and comprehension tool that al-
lows generating diagrams from SQL code. MySQL
Workbench generates ERD from a physical schema
that a user can use to understand, update and push
back changes to the schema through forwarding
engineering. Our respondents also expressed their
need for producing services APIs details from the
source code of an application. There are integrated
development environments (IDE) that provide a view
of services by displaying service title, purpose, and
contract (input data and output). Two important
respondents’ aspirations, i.e., tools to work as a plug-
in with IDE and produce architectural contents in
their desired format, can make these tools useful for
industrial practitioners.

2) Future Work for Reverse Engineering Tools to Ad-
dress Needs of Industrial Practitioners: Our respon-
dents talked about some architectural contents and
were also reproducing them from source code, yet
current reverse engineering tools do not reproduce
these contents. In the context of database view, our
respondents were interested in viewing individual
table details: table fields, meta-data, relation to and
from one table to another based on the primary and
foreign key. Similarly, respondents were interested
in examining database schema to highlight redundant
table fields which were added due to gradual schema
development by different developers. Although there
are different database reverse engineering tools, none
of them addressed these specific concerns. Devel-
oping a reverse engineering tool that could address
these concerns can be possible future work for tool
developers.
Some of our respondents have developed tools to
capture input system events with input data (if avail-
able) and runtime execution flow against the event.
Respondents were also capturing GUI and code snip-
pets to document execution flows. However, tools are
still required to address this challenge. Respondents
have also expressed their aspiration that such tools
need to work as a plug-in with IDE rather than to
migrate the entire code to some new environment.
Respondents were producing system usage scenarios
from source code information. They were capturing
screenshots along with back-end code snippets. The
purpose of these scenarios was to maintain the tech-
nical documentation for their clients, helping their
developers understand system usage by observing
the GUI sequence and back-end code against each
GUI frame. Practitioners were also reproducing user
stories in the form of sketches and natural language
expressions to let non-technical people in the or-
ganization understand the purpose of the system.
Unfortunately, we didn’t find any reverse engineering
tool that produces user story details from source
code information. We believe that developing such a
scenario generator tool could have potential use for

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

940 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

TABLE IV. Users of produced architecture contents

Architectural Contents Users Aspiration

User stories

Testers To understand system features in order to develop test cases.
Developers To help the developer understand user stories and the source code

behind each user story.
Organizational
High-ups To know about development progress and how the system meets

users’ needs.
End users To understand how to meet their goals by understanding the flow

of the system’s feature.

Database view Developers Understand tables, the relationship among tables, and write down
an optimal query to fetch reports from the database.

Execution Flow
Developers To find out input event, then control flow and data flow against

input event that could better help them to understand fault in the
code

Program APIs
Developers To understand system features in order to develop test cases.
Testers To know about development progress and how the system meets

users’ needs.

Code Organization Developers To understand code complexity and then refactor (for example,
modularize) the code.

practitioners.
Our respondents inspected the existing codebase to
highlight complex code segments due to gradual
development activities and code evolution. Tools are
required to reorganize complex code by identifying
reusable code segments. Our respondents mentioned
that they comment on top of code segments, i.e.,
application code and stored procedures. The objec-
tive was to let other people in the team understand
the purpose of the code easily. Although it was
recommended for each developer to keep working on
this activity while developing code, they still have to
repeat these tasks months after development. Reverse
engineering tools that could help practitioners in
producing such documents could have potential use
for practitioners.
Similarly, respondents were found inspecting exist-
ing code to identify tangled code, complex code
bocks, and non-reachable code. Such complexities
appeared due to gradual development and code evo-
lution by multiple developers and a developer’s pre-
mature decision at the early stages of development.
Due to these and many other reasons, the code
becomes messy and complex and hence, needs to
be further modularized. Tools can be developed that
could help the development team to highlight code
complexities during or after development.

3) Limitations in the Selection, Adoption, and Use of
Existing Reverse Engineering Tools: Apart from the
architectural contents that current reverse engineer-
ing tools reproduce, some other factors influence
selection, adoption, and use of reverse engineering
tools. We observed that development teams were
reluctant to use any off-the-shelf reverse engineering

tool unless there is no other way to reproduce
architecture contents from source code. The devel-
opment teams were willing to put effort into unaided
browsing or to contact knowledgeable persons rather
than exporting code to any reverse engineering tool
to produce architecture contents. We suggest that
future reverse engineering tools be pluggable with
the integrated development environment (IDE) to
let practitioners produce architecture content without
exporting their code.
Existing reverse engineering tools provide an ab-
stract and lightweight representation of the system
either by using UML (accepted as de-facto standard)
or tools’ own modelling notations. Such models
would have good empirical results on the system’s
understandability in a closed environment; however,
after analyzing respondents’ data, we found that
respondents are reluctant to use any modelling nota-
tions or language that requires expertise to use. As
one of our respondents mentioned that ”architectural
contents are reverse engineered from code, but we
do not draw UML diagrams”. Similarly, another
respondent mentioned that ”we sketch lines and
boxes to document execution flow”. Respondents
drew sketches (having their own notations) on board
or paper, and then they were made part of the
document. We suggest that tools enable users to
define their modeling notations, maybe because users
already use these notations in their organizations.
We observed that existing reverse engineering tools
produce abstract and lightweight system models such
as data flow diagrams, package diagrams, class di-
agrams, etc. These models would be having a high
impact on understandability and communication at

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 941

the early stages of development when code is not de-
veloped. However, once an application is developed,
these models may not be sufficient for developers
to understand the developed system. Once code is
available, then the most desirable model for under-
standing the system is code itself. As our respondents
mentioned that, ’execution flows are maintained with
the help of code, and GUI snippets,’ and ’code
is reorganized by inspection of code itself’ etc.
therefore, we suggest that any reverse engineering
tool to be developed in the future should provide
close resemblance with code for the ease of users.

H. Validity Threats
This research aimed to identify architectural contents

that industrial practitioners use to produce from source
code and their expectations from automated tools to
produce these contents from source code. To identify
the automated tools and the architectural contents, we
performed a literature review. Digital libraries like google
scholar, IEEE, ACM, Spring link, etc., as well as some
grey literature, were searched for our research purpose.
However, there is a chance that we missed some tools
due to their unavailability in these libraries. Also, as we
included the tools and architectural contents in the English
language, therefore, we might have missed some literature
that might be available in some languages other than
English.
We have chosen the sample size of twelve participants in
our study. However, the number was not fixed in advance.
Rather, we have stopped the data collection process when
it is observed that there are repeating codes and categories
in transcribed data.
We selected 12 interviewees from different organizations
with different expertise, experience, and job responsibilities
for our study. Since all these individuals have international
projects, thus all of them have experience with a
multicultural environment. Therefore, our interview
supports the generalization of the result.
Another validity threat to the study was the language
barrier as all interviewees have different first languages.
This issue was addressed by conducting the English
language interview since all interviewees were proficient
in the English language. However, there may still be a
chance of misinterpretation of some sentences.
Before the start of the interview, all the interviewees
were briefed about the interview process and their
responsibilities, along with the general terminologies. Thus,
before starting the actual interview, all the interviewees
and interviewers were on the same page in all these aspects.

I. Conclusions
In this research, our efforts were to identify architectural

contents that industrial practitioners use to produce from
source code, and they also expect automated tools to pro-
duce these contents from source code. To meet this goal, we
have set our objective as: identify architecture contents that

practitioners reproduce from source code, identify users of
produced architectural contents, and find out how existing
tools help meet the needs of industrial practitioners. To
meet our first two research objectives, a qualitative study
is performed to select respondents from a homogeneous
group. Respondents had experienced producing architecture
contents from source code when code had become complex
due to continuous development from the last few years.
From our analysis, we found that major contents that prac-
titioners produce are: user stories, database views, execution
flow, Program APIs, and code organization. We found that
major stakeholders of produced architectural content are
the development team, testing team, organizational high-
ups, and end-users. To address our third research objective,
we have studied existing tools and presented their purpose,
input artifacts that tools take, and output models that they
produce. Then, we compared the tools feature set with our
analysis results. We also found architectural contents that
existing reverse engineering tools produce, and they are also
expected by industrial practitioners, such as program exe-
cution flow, ERD from the database schema, etc. However,
practitioners require various other architectural contents,
but existing tools do not support them. We also observed
that existing reverse engineering tools provide architectural
contents in modeling notations that are either UML or
vendor’s defined notations. However, a tool must be flexible
in letting its users define their own notations convenient
for them to understand easily. It must also be considered
that merely providing modelling notations to present high-
level design or architecture may not be sufficient for users
to understand the system. Once there is code in hand,
then the high-level design may also include (or at least
provide a mapping to) the code because the codebase is
much familiar stuff for practitioners once an application is
developed. Any reverse engineering tool to be developed
in the future may also focus on practitioners’ ease in the
development environment. As we stated in the previous
section, practitioners are reluctant to export their code to any
off-the-shelf tool to reverse engineer architectural content.
A tool that could be integrated with IDE could be having
various advantages to practitioners, such as the ease with
respect to use and efforts.

References
[1] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,

and K. Wong, “Reverse engineering: A roadmap,” in Proceedings
of the Conference on the Future of Software Engineering, 2000, pp.
47–60.

[2] G. Canfora and M. Di Penta, “New frontiers of reverse engineering,”
in Future of Software Engineering (FOSE’07). IEEE, 2007, pp.
326–341.

[3] M. R. Ali, “Why teach reverse engineering?” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 4, pp. 1–4, 2005.

[4] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: A taxonomy,” IEEE software, vol. 7, no. 1, pp. 13–17,
1990.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

942 Samir Obaid, et al.: Characterizing Reverse Engineering Practices on Decayed Software Applications

[5] D. R. Harris, H. B. Reubenstein, and A. S. Yeh, “Reverse engineer-
ing to the architectural level,” in 1995 17th International Conference
on Software Engineering. IEEE, 1995, pp. 186–186.

[6] L. Hochstein and M. Lindvall, “Combating architectural degener-
ation: a survey,” Information and Software Technology, vol. 47,
no. 10, pp. 643–656, 2005.

[7] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change management
data,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 1–12, 2001.

[8] C. Stringfellow, C. Amory, D. Potnuri, A. Andrews, and M. Georg,
“Comparison of software architecture reverse engineering methods,”
Information and Software Technology, vol. 48, no. 7, pp. 484–497,
2006.

[9] M. Lindvall, R. Tesoriero, and P. Costa, “Avoiding architectural
degeneration: An evaluation process for software architecture,” in
Proceedings Eighth IEEE Symposium on Software Metrics. IEEE,
2002, pp. 77–86.

[10] D. L. Parnas, “Software aging,” in Proceedings of 16th International
Conference on Software Engineering. IEEE, 1994, pp. 279–287.

[11] K. Wong, S. R. Tilley, H. A. Muller, and M.-A. Storey, “Structural
redocumentation: A case study,” IEEE Software, vol. 12, no. 1, pp.
46–54, 1995.

[12] Rigi, “A visual tool to understand legacy system.” [Online].
Available: http://www.rigi.cs.uvic.ca/

[13] T. Systä, K. Koskimies, and H. Müller, “Shimba—an environment
for reverse engineering java software systems,” Software: Practice
and Experience, vol. 31, no. 4, pp. 371–394, 2001.

[14] Imagix4D, “Reverse engineering tools.” [Online]. Available:
https://www.imagix.com/

[15] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, 2005, pp. 167–
176.

[16] L. Inc, “Ldm tool.” [Online]. Available: https://www.lattix.com/

[17] P.Smacchia, “code quality with ndepend.” [Online]. Available:
https://www.ndepend.com/

[18] B. Pages, “Bouml a free uml tool box.” [Online]. Available:
https://www.bouml.fr/

[19] Y. Gmb, “Uml lab.” [Online]. Available: https://www.uml-lab.com/
en/uml-lab/

[20] U.ObjectAid, “Objectaid uml explorer.” [Online]. Available:
https://marketplace.eclipse.org/content/objectaid-uml-explorer

[21] “Agilej structureviews.” [Online]. Available: https://marketplace.
eclipse.org/content/agilej-structureviews

[22] C. Kothaplli, “Reverse engineer java.” [Online]. Available:
http://www.maintainj.com/

[23] “Modelgoon uml4java.” [Online]. Available: https://marketplace.
eclipse.org/content/modelgoon-uml4java

[24] H. Cai and R. Santelices, “Diver: Precise dynamic impact analysis
using dependence-based trace pruning,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engi-
neering, 2014, pp. 343–348.

[25] “Diver.” [Online]. Available: https://marketplace.eclipse.org/content/
diver-dynamic-interactive-views-reverse-engineering

[26] “jdepend.” [Online]. Available: https://github.com/clarkware/
jdepend

[27] U. Nickel, J. Niere, and A. Zündorf, “The fujaba environment,”
in Proceedings of the 22nd international conference on Software
engineering, 2000, pp. 742–745.

[28] “Cppx.” [Online]. Available: https://www.swag.uwaterloo.ca/cppx/

[29] “Software architechture group.” [Online]. Available: https://www.
swag.uwaterloo.ca/qldx/index.html

[30] “Ibmrational software architect.” [Online]. Available: https://www.
ibm.com/products/rational-software-architect-designer

[31] “zynamics.com - binnavi.” [Online]. Available: https://www.
zynamics.com/binnavi.html

[32] V. Braun and V. Clarke, “(mis) conceptualising themes, thematic
analysis, and other problems with fugard and potts’(2015) sample-
size tool for thematic analysis,” International Journal of social
research methodology, vol. 19, no. 6, pp. 739–743, 2016.

[33] D. Silverman, Doing qualitative research: A practical handbook.
Sage, 2013.

[34] K. Carley, “Coding choices for textual analysis: A comparison of
content analysis and map analysis,” Sociological methodology, pp.
75–126, 1993.

[35] J. Saldaña, The coding manual for qualitative researchers. sage,
2021.

[36] R. E. Boyatzis, Transforming qualitative information: Thematic
analysis and code development. sage, 1998.

[37] N. Gibson and H. O’Connor, “A step-by-step guide to qualitative
data analysis,” A journal of aboriginal and indigenous community
health, vol. 1, no. 1.

Samir Obaid Samir Obaid is lecturer in
computer science department at Capital Uni-
versity of Science and Technology, Islam-
abad. Previously, he was working as soft-
ware engineer at software development or-
ganization and his responsibilities were: test
planning, test design and automation. He did
MS in computer science from ARID univer-
sity Rawalpindi, Pakistan. His research in-
terests are model driven engineering, model-

based testing, and software reengineering.

http:// journals.uob.edu.bh

http://www.rigi.cs.uvic.ca/
https://www.imagix.com/
https://www.lattix.com/
https://www.ndepend.com/
https://www.bouml.fr/
https://www.uml-lab.com/en/uml-lab/
https://www.uml-lab.com/en/uml-lab/
https://marketplace.eclipse.org/content/objectaid-uml-explorer
https://marketplace.eclipse.org/content/agilej-structureviews
https://marketplace.eclipse.org/content/agilej-structureviews
http://www.maintainj.com/
https://marketplace.eclipse.org/content/modelgoon-uml4java
https://marketplace.eclipse.org/content/modelgoon-uml4java
https://marketplace.eclipse.org/content/diver-dynamic-interactive-views-reverse-engineering
https://marketplace.eclipse.org/content/diver-dynamic-interactive-views-reverse-engineering
https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend
https://www.swag.uwaterloo.ca/cppx/
https://www.swag.uwaterloo.ca/qldx/index.html
https://www.swag.uwaterloo.ca/qldx/index.html
https://www.ibm.com/products/rational-software-architect-designer
https://www.ibm.com/products/rational-software-architect-designer
https://www.zynamics.com/binnavi.html
https://www.zynamics.com/binnavi.html
http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 929-943 (Oct-2022) 943

Ibrar Arshad Ibrar Arshad is currently as-
sociated with the Department of Computer
Science at Capital University of Science
and Technology, Pakistan. He received his
Master’s degree in 2012 from Blekinge In-
stitute of Technology, Sweden. His area of
research is software requirements, software
engineering practices in small and medium-
scale organizations.

Muhammad Usman Abid Muhammad Us-
man Abid did MS in software engineering
from Riphah International University Islam-
abad,Pakistan. Currently, he is working as a
lead software engineer at reputed software
development organization in Pakistan. His
research interests are information systems
development, empirical software engineer-
ing and software reengineering.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction and Overview
	Existing tools
	Methods
	Sample study
	Interview and data collection
	Qualitative coding process
	Focused group validation
	Findings
	Who are users of reproduced architectural contents?
	How are Existing Tools Helpful in Reproducing Required Architectural Contents?
	Validity Threats
	Conclusions

	References
	Biographies
	Samir Obaid
	Ibrar Arshad
	Muhammad Usman Abid

