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Abstract: Oral squamous cell carcinoma (OSCC), is a type of cancer that causes the loss of the structural formation of layers and
membranes in the oral cavity region. With the recent advent of Deep learning (DL) in biomedical image classification, the automated
early diagnosis of oral histopathological images can aid in effective treatment of oral cancer. This work attempts to perform an automated
classification of benign and malignant oral biopsy histopathological images by implementing a DL-based convolutional neural network
(CNN) model for the initial analysis of OSCC. For this research, four recently developed candidate pre-trained DL-CNN models namely
NASNetLarge, InceptionNet, Xception, and DenseNet201 are selected through the approach of transfer learning. These pre-trained models
are then modified with additional layers for effective OSCC detection. The efficacy of these modified models is examined on an oral
cancer histopathological image database. It is examined that the pre-trained DenseNet201 model with modified structure has surpassed
other models in terms of performance parameters by recording an accuracy of 91.25% and is considered as our proposed DL-CNN model.

Keywords: oral cancer detection, Oral squamous cell carcinoma (OSCC), Deep Learning (DL), Convolutional Neural Network

(CNN).

1. INTRODUCTION

The rate of oral cancer is known to be highest worldwide
and the incidence is lower in women compared to men and
nearly 660,000 new incidences of oral cancer are reported
each year and more than 340,000 deaths worldwide due
to lack of timely diagnosis. In oral cancer, the cancerous
tissues can be located in the lips, oral cavity, and pharynx
and causes the loss of the structural formation of layers and
membranes in the oral cavity region.

Oral cancers are classified into OSCC, salivary gland
carcinoma, verrucous carcinoma, and lymphoepithelial car-
cinoma. The majority of the carcinomas are due to OSCC

(11, [2].

Despite applying various treatment modalities, the total
mortality rate of OSCC is not declined significantly which is
only due to lack of efforts for early detection and diagnosis.
The physicians examine the presence of any suspicious le-
sion which can be cancerous and suggests for biopsy. Slides
with the biopsy sections are observed for any deformities
which are different from usual cell arrangements like size

and shape using microscope [3]. At the histopathological
level, malignant squamous cells are bigger compared to the
normal cells and are particularly different from each other
in shapes. A confirmatory diagnosis of oral cancer from
this report is needed to be done by a highly qualified and
experienced specialist which is very vital and needs to be
accurate [3]. However, the entire manual data interpretation
of the cancerous slide is too time-consuming and at the
same time is prone to human errors [4].

Because of the above-mentioned reasons, computer-
aided diagnostic (CAD) techniques may assist the physi-
cians in reducing both time and bias with improved effi-
ciency in the analysis of the features. The intention is to
discover cancer at an early stage which will lead to early
treatment, which lowers the risk of morbidity and mortality.
Moreover, the oral diagnosis CAD systems will reduce the
volume of load in the laboratories and most of the cases may
be benign, the pathologist may focus more on malignant
cases [J] .

In the development of CAD systems, biomedical imag-
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ing data is widely accepted in modern medicine due to
its benefit for disease diagnosis, treatment schedule, and
required treatment. It also aids in collecting noninvasive
potentially informative details in form of patient explicit
disease characteristics. Such imaging data is also rapidly
increasing due to the application of advanced hardware, low
cost, and increase in population.

2. RELATED WORK

Current developments in artificial intelligence (AI) have
started infusing into the healthcare sector. Among these DL
techniques (DLTs), the CNN rose to recognition due to
its high accuracy for image classification specifically the
texture classification tasks. Based on DL, various methods
have been proposed and developed on medical data such
as breast cancer [5] , lung cancer [6] , and even for covid-
19 detection [7]. The DLTs have been proved to offer im-
proved accuracy, specificity, and sensitivity [7]. Moreover,
the transfer learning approach is also widely accepted for
medical image classification which improves the results in
applied DLT [7]. Current research work has also proved the
effectiveness of DLTs in the classification of oral lesions
from medical images including histopathological or real-
time oral cavity images [8] .

Numerous researchers have focused their studies to
apply DLTs to detect oral cancer from the histopathological
images. This also motivates us to consider the potential
of DL to extract the classification features from oral cav-
ity suspicious lesions for early detection of OSCC from
histopathological images.

In recent studies, G. Forslid et al [8] proposed that DLT's
can be used for the early detection and diagnosis of oral and
cervical cancer detection. The experiments results are then
evaluated for VGG-16 [9] and ResNet-50 [10]. The authors
reported accuracy within a range of 78-82% dependent on
the dataset and the model applied. The results specify a
high potential for detecting aberrations in the oral cavity.

Fu et al. [11] applied the cascaded DL to classify SCC
from 44,409 total biopsy-proven SCC photographic images
and normal clinical images. The applied DLT achieved a
specificity of 88.70%. and sensitivity of 94.90%.

Das et al. [12] applied the DL to classify OSCC into its
four classes first through the transfer learning approach and
utilized pre-trained models such as VGG-16 [9] , VGG-19
[9], and Resnet-50 [10] and obtained highest classification
accuracy of 92.15% with ResNet-50. Later the proposed
CNN model based on VGG-19 architecture is applied to
achieve a higher classification accuracy of 97.50%.

Tanriver et al. [13] explored the possible application
of DLT for detecting oral malignant disorders (OMD) by
proposing a two-stage model to detect oral lesions and
classify them into three classes benign, OMD, and car-
cinoma. The photographic oral dataset with lesions was
collected from the department of Tumor Pathology de-

partment, Oncology Institute at Istanbul University. The
authors reported that the EfficientNet-B7 model achieved
the maximum accuracy of 92.90% considering semantic
segmentation.

Welikala et al. [14] applied the model ResNet-101 and
Fast R-CNN for the classification of OSCC from bound-
ing box annotated images of the oral cavity. The authors
testified F1 score of 87.07% for OSCC identification. The
authors demonstrated the potential of the DLT for the early
detection of oral cancer.

The authors demonstrated the efficacy of DLT and
utilized six models using the transfer learning approach to
classify pre-cancerous oral lesions from annotated images
and detected the initial stage of oral cancer [15]. The authors
then reported classification accuracy of 98.00% with VGG-
19 and 97.00% with ResNet50 in distinguishing five forms
of oral lesions mainly the toung lesions. The results were
demonstrated to achieve near-human-level performance for
the detection of early-stage oral cancer.

The authors in [16] proposed a new structure of
regression-based segregation with DLT on hyperspectral
cancerous images and exhibited comparison with other
techniques in terms of accuracy, specificity, sensitivity, and
reported an accuracy of 91.40% to classify malignancies.

Figueroa et al. [17] adopted the Grad-CAM method
of [18] to insert interpretability and applied the GAIN
[19] architecture rather than using the simple DL-CNN
for classification. The authors optimally linked the GAIN
classification and attention map in an endwise mode. The
authors used the VGG-19 as the base CNN for training
whose output was further passed through the GAIN and an
accuracy of 86.38% was estimated.

Xu et al. [20] constructed a 3-D CNN to profile initial
stage oral tumors as benign and malignant. A comparison
is carried out with conventional 2-D DL-CNN-based tech-
niques and reported better performance. This technique may
assist in the designing of CT- based diagnosis systems using
3-D DL-CNN models in the future.

Gupta et al. [21] exploited a dataset of biopsy slides
of epithelial squamous tissues. A total of 2688 images
were generated with augmentation and pre-processing and
supplied to DL-CNN. A training accuracy of 91.65% and
testing accuracy of 89.30% have been noticed for the
projected system.

Song et al. [22] developed a portable smartphone-based
oral inspecting device and demonstrated the effectiveness
of of DLTs for dual-modal image classification. An image
classification algorithm was presented which uses a fusion
of white light and fluorescence images which is fed to DL-
CNN. The authors reported a validation accuracy of 86.90%
with the VGG-CNN-M network.

http://journals.uob.edu.bh


http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 889-899 (Apr-23)

¥

SRS
%)
Gle fiiay

w891

2,

10 Allgy

Alabi et al. [23] presented a review of DL-CNN applied
for the prognosis of OSCC. The DLTs were applied for
various medical data such as histopathological, clinic patho-
logical, Raman spectroscopy data, gene expression, and CT
images. The review explained that new imaging modalities
such as CT or enhanced CT and spectra data could also
exhibit significant outcomes.

Santisudha Panigrahi and Tripti Swarnkar [24] reviewed
various DLTs for the oral dataset of histopathological
images and provided a comparison of various strategies
adopted while implementing DL-CNN models for the prog-
nosis of early-stage oral cancer.

Shaban et al. [25] proposed a different technique for
the objective calculation of tumor-infiltrating lymphocytes
(TILs) profusely present in OSCC images. The TIL value
is computed by first partitioning the full OSCC image into
primary tissue types such as a tumor, lymphocytes, etc.,
and later quantifying the location of tumor and lymphocytes
regions. The proposed DL technique achieved high accuracy
of 96.31%.

Fujima [26] proposed to use the F-fluorodeoxyglucose
PET images to predict the infection-free sustenance with
OSCC. The ResNet-101 network is applied to FDG-
PET images to diagnose parameters such as as h-index,
metabolic tumor volume, and overall lesion glycolysis. The
highest accuracy of 80% was attained by applying the DL
classification.

Das DK et al. [27] proposed to determine the existence
of variation in epithelial layers and the keratin pearls from
histopathological images. The authors applied a 12-layered
(7 x 7x3 channel patches) DL-CNN for segmentation of
oral integral layers to detect the keratin pearls from the
tissue regions. The proposed method achieved an accuracy
of 96.88% for keratin pearls detection.

Chan et al. [28] proposed an innovative DL-CNN
method using a texture map of OSCC detection. The
network comprises two collective layers, a lower layer to
perform segmentation and ROI marking and an upper layer
to perform oral cancer detection. ROI marking makes the
OSCC regions clearer. The texture maps are computed from
the standard deviation of sliding windows. This texture map
data is fed as input to the DL-CNN and specificity of
71.29% and sensitivity of 96.87% are reported.

Nandita et al. [29] developed an ensemble DL-CNN
model by combining the advantages of Resnet-50 and
VGG-16. This ensemble model is trained with a dataset
of augmented oral lesion images and 96.20% accuracy
was estimated which outperformed other eminent DL-CNN
models in OSCC classification.

The authors developed a lightweight DL-CNN via the
transfer learning approach [30] aand used EfficientNet-BO
to perform binary classification of 716 real-time clinical

images into potentially malignant or benign images. The
proposed DL-CNN model attained 85.0% accuracy.

Thus, concerning the above-related work, at histopatho-
logical levels, malignant OSC cells are bigger compared to
normal cells and varies from one another in their shapes.
Confirmatory identification of oral cancer is done by a
much skilled and qualified individual. Thus, automating this
process can significantly ease the burden of specialists. Few
studies have been reported for OSCC prognosis by using
DLT at the histopathological levels.

Towards this goal, we proposed to investigate the ad-
vantage of DLTs for the early detection of OSCC. For
this work, we considered four candidate pre-trained DL-
CNN architectures in the framework of transfer learning and
modified them with additional layers to effectively identify
specific visual patterns of the oral cavity at histopathological
levels affected by cellular changes due to cancer. The four
pre-trained DL-CNN models such as InceptionV3 [31],
NASNetLarge [32] , Xception [33], and DensNet201 [34]
are applied to the histopathological dataset and analyzed
their performance

In particular, we classified histopathological images into
benign and malignant classes using a DL-CNN-based clas-
sification. We also studied the analysis of the model perfor-
mance in detail using various metrics by applying transfer
learning and data pre-processing to find the best performing
DL-CNN model from the four candidate models. Later, the
selected best model is considered as the proposed model
for further analysis and comparison.

The additional part of the paper is arranged as follows.
Section 3 explores the details of the database utilized, model
formulation, and the OSCC detection process. Section 4 ex-
plains the experimental work conducted on four candidates’
modified DL-CNN models and proposes the best suitable
DL-CNN model for the OSCC detection task. Finally, in
section 5, the paper is concluded.

3. MATERIALS anxo METHODS

The next section outlines the dataset selection, briefs the
theory of transfer learning, and also provides the details of
model formulation and the proposed model modification for
the four candidate pre-trained DL-CNN models.

A. Dataset

Computational approaches including the DLTs are ap-
plied effectively to obtain the solution for OSCC detection.
The effectiveness of the detection is dependent on the
dataset applied. There are few publicly available datasets
as such were published by Tabassum et al. [35]. The
dataset contains 1224 oral histopathological images out
of which 934 are cancerous and 290 are non-cancerous.
The histopathological images of the dataset used are taken
from biopsy slides and examined using various cytological
measures under a microscope. Thus, the dataset used is clin-
ically proven and can be used for working with various DL
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Figure 1. Sample Histopathological Images with Benign Tissue
(Left), Malignant Tissue (Right)

models. To demonstrate the efficacy of the proposed work
on a larger dataset, we considered images from different
sources and combined the images from the dataset [35]
with images from [36]. This in turn creates a large dataset
of 2000 images in total for benign and malignant lesion
images. We randomly split this data into a ratio of 80:20 of
validation and testing datasets with each comprising similar
class distribution of benign and malignant images.

Moreover, DL-CNN models are computationally expen-
sive and requires all the input images to be of identical size.
To bring uniformity in the size and shape of images, we
resized the images to the same dimension of 224x224x3.
The images are further normalized with the range between 0
and 1 to avoid the difference in magnitude of various pixels
which will aid the deep learning. To also avoid the data im-
balance which affects the generalization ability of the model
we have also applied the data augmentation technique such
as vertical-flip and horizontal-flip. The difference between
a sample histopathological image of benign and malignant
tissue infected with oral cancer is depicted in Figure 1.

B. Transfer Learning using Pre-trained DL-CNN Models

Transfer learning applies knowledge gained by a model
from one task to another relevant task. Thus, instead of
training a model from scratch, the information gained by the
model previously is adjusted to the new problem. Transfer
learning reduces the training time of the model and also
enables it to work with small data. Models are usually
trained on freely available datasets like ImageNet, CIFAR
etc.

DL-CNN models have considerably enhanced the con-
temporary techniques applied in many image-based issues
such as object detection and recognition. CNN is a type
of DL network comprising of architecture where one layer
is connected to the subsequent layer [37]. The layers are
constructed by neurons and the spatial architecture of a
layer creates a volume of these neurons with a width,
height, and depth. The width and height determine the
size of the neuron and the depth determines the number
of neurons. The depth of the network can be understood
in terms of the number of stacked layers in the whole

. Convolution  Pooling
Convolution Pooling Layer Layer
Layer Layer

Output
Prediction

*d 3 Fully
connected
layer

Input

image .

Figure 2. Generalized Structure of DL-CNN

network. The architecture of a CNN varies depending on
the usage the architect chooses on endless combinations
of layers and constructs each layer in endless ways. The
most significant layers are convolution, pooling, and fully
connected. Other layers such as ReLLU, batch normalization,
and dropout layers are also making the DL-CNN model
complete alongside input and output layers as depicted in
Figure 2.

These layers facilitates effectual learning of features
from the input images. When the input image is fed to
a typical CNN, the convolution layers which are made up
of various filters with a width, height, and depth extract
different kinds of features. The width and height determine
the size of the filter kernel and the depth is the number of
kernels. Each kernel is built up by learnable parameters
which are convolved over the input Image and perform
a dot product to extract features. The convolutional layer
also has parameters such as size, stride, and padding. The
stride determines how many steps the kernel takes before
performing a convolution operation. The padding controls
the size of output from the layer and boundary pixels.
The extracted features are further provided as input to the
pooling layers for further efficient processing. The feature
map produced from the convolution layer is still large and
needs to be reduced. The pooling layers perform operations
similar to the convolution layer but it serves to reduce
the feature map. Average pooling layers and max-pooling
layers are most frequently applied. Thus, by reducing the
feature map size the CNN becomes less computationally
challenging. Later, the Batch normalization layer along
with ReLU normalizes the shifts in the middle layers thus
allowing better network convergence. Dropout layers helps
in avoiding overfitting of the model. Finally, the reduced
feature map is forwarded towards the fully connected layer
with the SoftMax function to perform classification into
corresponding classes.

There are few famous pre-trained DL-CNN models
available for image classification. They are VGG-16 [9],
ResNet50 [10], Inception-V3 [31], NASNetLarge [32] ,
Xception [33], and DensNet201 [34]. With the help of
transfer learning, the modified DL-CNN models are also
able to demonstrate a strong ability to generalize the
images external to the ImageNet dataset. Among these,
we considered Inception-V3, NASNetLarge, Xception, and

http://journals.uob.edu.bh
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DensNet201 as four candidates pre-trained models and
modified them with additional layers for effective OSCC
detection. Table 1 depicts the various CNN models and their
parameter specifications.

1) InceptionV3

InceptionV3 is an improvement to the previous Incep-
tion CNNs. It concentrates on being more computationally
efficient by incorporating smaller and factorized convolution
filters termed inception modules. These modules are built to
handle the issues due to computational cost, and overfitting.
Similarly, the filter banks are broadened to deal with the
representational block. To do this, inception model applies
filters of different sizes and later combines all the outputs
at the end.

2) NASNetLarge

Neural Search Architecture network NASNet [32] was
created using a neural architectural search procedure that
uses reinforcement learning and a control neural net to find
the best CNN model. The parent procedure improves the
efficiency of the model by making modifications based on
the number of layers, weights, regularization methods, etc.
The NASNet architecture is trained with two different size
input images of 331x331 and 224x224 and two new archi-
tectures NASNetLarge and NASNetMobile were created.
The resulting architectures achieved excellent performance
particularly in ImageNet datasets, as several computer
vision applications derive features from its classification
models.

3) Xception

This network is an alteration of the InceptionNet DL-
CNN where the inception modules are replaced with sep-
arable convolutions arranged in a depth-wise manner. In
this model, output of specific layers is added to the output
from the preceding layers. Its parameter size is similar
but performs slightly better than InceptionNet. Due to
this, the Xception achieves a comparably outperforming
classification accuracy compared to InceptionV3.

4) DenseNet201

DenseNet is comparable in architecture to ResNet with
fewer variations. In the DenseNet model, feature maps of
all the earlier layers are concatenated and used as input to
the forthcoming layer. For L Layers there will be L(L+1)/2
straight connections. Dense blocks are bound together using
transition layers. The transition layer reduces the spatial
extents of the inputs, and also “compresses” the feature
maps to a smaller number. Figure 3 depicts the DenseNet
architecture.

C. Model Formulation

This section focuses on the model formulation for binary
classification OSCC images. To consider the transfer learn-
ing approach, we have applied four pre-trained DL-CNN
models such as InceptionV3, NASNetLarge, Xception, and
DensNet201 for the OSCC detection. These models have

C.

Figure 3. DenseNet Architecture with 5 layers, Courtesy of model
[34]

achieved success in the field of computer vision and medical
imaging and thus preferred in our study for the classification
of benign and malignant cases from oral lesion images.
These models are already trained on large-scale labeled
dataset called ImageNet [37] and is now fine-tuned over
the oral lesion image dataset. These models were modified
by adding appropriate layers to achieve great performance
for OSCC detection. Later the best performing model is
selected and considered for further comparison.

Our proposed DL-CNN model accepts an input image
of size 224x 2243 and gives a binary decision on malig-
nant or benign classes. For the binary classification case,
we propose a DL-CNN for the detection of OSCC. The
proposed DL-CNN model consists of (1) an input layer
with the images of the size 224x224 x3; (2) transferred
convolutional and pooling layers of any of the four pre-
trained models (3) a single convolutional layer with a filter
size of 32 and kernel size 4x4, (4) a ReLU activation
function (5) a MaxPooling layer for down-sampling the
image (6) a flatten layer (7) a dropout out layer with 0.5
dropout rate (8) and a final dense layer with SoftMax
activation function for classification of a binary output
using the binary cross-entropy function. Max-pooling layers
decreases the number of trainable parameters to reduce
the image representation. Figure 4 highlights the proposed
model without the pre-trained DL-CNN model layers. In
the convolutional layers, filters of size 3x3 with stride [1
1] and padding “same” have been applied to the image.
Max-Pooling has been performed over a 2X2 pixel window
with stride [2 2]. The ReLU function accomplishes the non-
linear transformation of inputs present in the model. The
dropout layer with a rate of 0.5 drops some units to prevent
the model from overfitting.

4. EXPERIMENTAL RESULTS

In our experimental study we have selected four recently
developed candidate pre-trained DL-CNN models namely
InceptionNet, NASNetLarge, Xception, and DenseNet201
through the approach of transfer learning for the oral lesion
biopsy histopathological image dataset. These candidate
models were modified with additional layers for effective
OSCC detection. We have considered the total size of 2000
images combining both malignant and benign images which
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TABLE I. Different DL-CNN models and Parameter Specifications

DL-CNN Models  Depth in terms of No. of Layers

Image Dimension(w,h,d) No. of Parameters(millions)

VGG-16 [9] 16

ResNet50 [10] 107
Inception-V3 [31] 189
NASNetLarge [32] 533

Xception [33] 81
DenseNet201 [34] 16402

224x224%3 138.4
224x224x%3 25.6
299x299x3 24.0
224x224%3 88.90
224%224%3 2291
224%224%3 20.20

Figure 4. The architecture of the Proposed DL-CNN model

is still less number compared to the ImageNet dataset.

We considered the dataset from [35] and [36] and
created a subset of 2000 images. The collection and usage
of the images is addressed properly through citation. A
set of 1200 malignant images and 800 benign images are
considered to evaluate the performance of the four candidate
pre-trained DL-CNN models. All the images are resized
to 224x224 pixels to solve compatibility issues before
providing them as input to the DL-CNN models.

The total number of 2000 images are split into testing
and training datasets in the ratio of 20% and 80% based
on the train-test split strategy. For the training and testing
processes, the images from both the classes i.e., malignant
and benign are selected. The training set data is used
for training the model and the test data set is used for
validating the model on previously unexamined data, after
training and performing the hyper-parameter selection. The
work is carried out with the open-source Keras framework
and tthe TensorFlow backend using Google Colab with
Python. All of the experiments were performed using a
laptop with a dual-core IS5 processor and 8 GB RAM.
All of the experiments were performed using a desktop
computer equipped with a dual-core I3 processor with 6 GB
of DDR4 RAM. During experimentation, we considered the
most suitable functions and hyperparameters heuristically as
depicted in Table 2.

A. Evaluation Measures

The evaluation measures for the results are based on
the overall number of truly classified and misclassified
detections. This can be depicted by a confusion matrix.

A confusion matrix is an outline of detection results for
a classification process. The overall number of correctly
identified and misidentified detections are represented by
sum values and divided into two categories: Predicted
Labels and True Labels. The parameters associated with
the confusion matrix are depicted in Table 3.

The performance of the proposed model is evaluated
from the following factors: True positive represents those
numbers where the subjects are predicted with OSCC and
the subjects actually have OSCC. True negatives represent
those numbers where the subjects are predicted healthy
(benign) and the subjects actually are healthy.

False positives represent those numbers where the sub-
jects are predicted with OSCC when the subjects are
actually healthy. False negatives represent those numbers
where the subjects are predicted healthy when the subjects
are actually having OSCC. As a result of the experiments,
the confusion matrix parameters are also utilized to discuss
other classification parameters such as Sensitivity, recall,
precision, F1-Score, and accuracy. A classification test’s
recall parameter is specified in (1) as,

Ip
Recall =
ty + fa
The count of true positives is given by 7, whereas the count
of false negatives is given by f,. The classification test’s
precision parameter is specified as,

%100 1)

t
Precision = 2 %100 2)

I+ Jp
The correctness of the classification task is also indicated
by the F1-Score. The F1 score may be a special measure
to apply when there is an irregular class division due to the
presence of a significant count of Actual labels. The Recall
and Precision values as established in (3) can be used to
estimate this value.

F1Score = 2 % [Recall * PI’ECi.si.on] 3
[Recall + Precision]

The accuracy of the experiment in terms of confusion matrix
parameters is computed as the ratio of true findings (, +1,)
and all findings (¢, + f, + f, + t,) specified in (4),

() +1,)

— %100 4
Gt fot Syt i) “®

Accuracy =
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TABLE II. Functions and Hyperparameter Value Settings

Hyperparameters

values

Input size

Train Test Split ratio

Batch Size
Epochs
Optimizer
Learning Rate
Dropout
Rotation range

224%224 pixels
80:20
8 Samples
10
Adam
le-4
0.5
15

TABLE III. A 2x2 Confusion Matrix

Total No of Subjects

Label Predicted (Yes)

Label Predicted (No)

True positive Label
True Negative Label

true positive (t,)
false negative (f,,)

false positive (f,)
true negative (t,)

The area under the ROC Curve (AUC) fuses the receiver
operating characteristics (ROC) curve from (0,0) to (1,1).
It provides the collective measure of classification perfor-
mance at numerous threshold values. AUC has a range from
0 to 1. The higher the AUC, the better the model is at
classification.

B. Comparison of various CNN-DL models

The results of the four candidates’ pre-trained DL-
CNN models modified with additional layers have been
compared. We presented the confusion matrices results of
these four modified pre-trained DL-CNN models on the
selected dataset. The training performance can be evaluated
from training loss, validation loss, and validation accuracy
obtained by the selected DL-CNNs for the selected number
of epochs. Table 4 shows the Recall, Precision F1 Score,
and accuracy values for the applied pre-trained models. All
the values here reported are from the results of the 10th
epoch.

It has been observed that the proposed model along
with the pre-trained DenseNet201 DL-CNN model has
attained the top outcomes with a precision of 93.00%,
recall of 93.00%, Fl-score of 93.00%, and accuracy of
91.25%. The sensitivity and specificity of the proposed
model are 88.75%, and 92.92% respectively. The best
performing model is built by the DenseNet201 DL-CNN
model which has layers of densely connected CNN [34].
The special structure of this pre-trained model and the
addition of certain layers enhances data flow across the
network and relieves the vanishing gradient issues. Addi-
tionally, DenseNet201 improves the parameter efficacy and
offers each layer shared learning of the network. A further
significant feature of this model is its regularization effect
which offers reduced over-fitting on training with reduced
data sets [34].

Also, it is observed that the acquired precision values
are surprisingly good with 92.00% with the modified Incep-

tionNet model and 90.00% with the modified NASNetLarge
model but with fewer recall values. Xception is the second-
best performer which obtained a precision of 87.00%, and
recall of 90.00% with an accuracy of 86.50% at the 10th
epoch.

Figure 5 illustrates the detection results of the modi-
fied DL-CNN model with DenseNet201 as the pre-trained
model. The indicator true value=0 indicates that the de-
tection=0 for OSCC true detection i.e., malignant case.
Whereas true value=1 indicates that the detection=1 for
normal patients i.e., the benign case with correct outcome.

The training accuracy, training loss, validation accu-
racy, and validation loss graphs are shown in Figure 6 to
Figure 9 for InceptionNet, NASNetLarge, Xception, and
DenseNet201 respectively. The significance of the proposed
model along with the pre- DenseNet201 pre-trained model
is that it automatically avoids overfitting issues due to
the inclusion of drop-out layers. From these results, we
can deduce that any patient who is having benign results
(true negatives) can be diagnosed as normal with high
accuracy by considering the histopathological images and
applying the modified DenseNet201 DL-CNN model.
Figure 10 represents the confusion matrices for different
modified DL-CNN models. It represents the true labels
(benign and malignant) accordingly with predicted labels
(benign and malignant) for different models. This gives a
clear assessment of the t,, t,, f,, and f, values. While it
is always desirable to have the large values of the #, and
t,, consequently the values of f, and f, are also likewise
significant in the medical field. When a person is having
a benign lesion but is considered as having a malignant
lesion then we have an f), value, and this means undesirable
psychological distress and harmful health side effects due
to cancer therapy.

The confusion matrix for the modified DenseNet201
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TABLE IV. Evaluation Metrics results (%)

CNN-DL Models Precision Recall F1-Score Accuracy
DenseNet201 93.00 93.00 93.00 91.25
InceptionNetV3 92.00 80.00 86.00 84.50
NASNetLarge 90.00 81.00 87.00 85.25
Xception 87.00 90.00 89.00 86.50
TABLE V. Evaluation Metrics results (%)

CNN-DL Models optimizer Precision Recall FI-Score Accuracy
Xception SGD 87.00 89.00 87.00 85.80
Xception Adadelta 86.00 89.00 88.00 86.00
Xception Adam 87.00 90.00 89.00 86.50

DenseNet201 SGD 91.00 90.00 92.00 90.45
DenseNet201 Adadelta 92.00 92.00 91.00 90.10
DenseNet201 Adam 93.00 93.00 93.00 91.25

TABLE VI. Performance Comparison with Notable work

DL-CNN

Accuracy (%)

G. Forslid et al. [8]

Rutwik et.al. [38]

Welikala et. al. [14]

Gupta et. al. [21]
Song et al. [22]

Rahman et. al. [35]

Kim et al. [39]

M. Aubreville et. al. [40]
Proposed DL-CNN Model- Modified DenseNet201

82.39
89.52
88.20
89.30
86.90
89.70
78.10
88.30
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Figure 5. Detection Results for sample Histopathological Images of
DenseNet201
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Figure 6. Training Loss and Accuracy plots of InceptionNet

DL-CNN model displays the high values of #,s and the
low values for f,s. The confusion matrices allow for visual
assessment of the modified DL-CNN models for correctly
classifying each of the 400 test images into their respective
target class. Higher labels of f;s are produced by rest
of the modified DL-CNN models including InceptionNet,
NASNetLarge, and Xception can be considered critical as
the misclassified lesions are all malignant. We also exploited
the ROC curve to estimate the performance of the modified
DL-CNN models for effective OSCC detection. The ROC
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Figure 7. Training Loss and Accuracy plots of NASNetLarge
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Figure 8. Training Loss and Accuracy plots of Xception

curve plots the true positive rate (sensitivity) and the false
positive rate (1-specificity) with various threshold values
and also computes the AUC value. Figure 11 depicts the
ROC curves of the modified DL-CNN models.

Here, the modified DenseNet201 DL-CNN model was
able to achieve the highest AUC of 0.908. The other models
InceptionV3, NASNetLarge, and Xception achieved the
AUC of 0.855, 0.862, and 0.852 respectively. Sensitivity
measures the number of images of malignant patients who
are correctly classified whereas specificity measure the
number of images of benign patients who are correctly
classified. All statistical computations were performed with
scipy and scikit-learn python packages.
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Figure 9. Training Loss and Accuracy plots of DenseNet201
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Figure 11. ROC Curves of modified DL-CNN models

C. Comparison with Other Optimizers

In this work, the Adam optimizer [41] is selected for
the training of all the modified DL-CNN models. A com-
parison with other optimizers is also presented here with
SGD [42] and Adadelta [43]. Table 5 lists the confusion
matrix results for the two best performing modified DL-
CNN models Xception and DenseNet201. The outcome of
the experiments indicates the efficacy of Adam optimizer
against other optimizers. The selection of other optimizers
does not affect much to the performance parameters, still
Adam optimizer surpasses these values.

D. Comparison with Contemporary Methods

Here, we compared the modified DenseNet201 DL-CNN
model results with other DL models for OSCC detection
using histopathological images as tabulated in Table 6. It is
observed that the proposed modified model with the pre-
trained DenseNet201 has attained better outcomes com-
pared with other candidate modified models and also with
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other existing methods for OSCC detection. Compared to all
these notable works [8], [38], [14], and [30] we considered a
dataset with a relatively larger number of histopathological
images for OSCC detection. D. W. Kim et al. [39], in their
work achieved an accuracy of 78.10% for OSCC detection
from comparatively large size database. M. Aubreville et
al used the laser endomicroscopy images of the oral cavity
for OSCC detection and achieved an accuracy of 88.30%.
The proposed model in this study which has DenseNet201
DL-CNN modified with additional layers achieved excellent
results compared with methods for OSCC detection.

5. CONCLUSION

Recently DLTs have offered ample opportunities for
automatically detecting OSCC with the performance match-
ing or even better than that of human experts. The DL-
CNN-based detection of oral lesion images provides a non-
invasive and cost-effective method to detect OSCC lesions
in early-stage and thus enables early treatment. This work
aimed to perform an automated classification of benign and
malignant oral histopathological images by implementing
modified DL-CNN models. The work proposes an applica-
tion of the best suitable DL-CNN model for fully automated
OSCC detection and examined the performance of the
proposed DL-CNN model for OSCC classification. For
this, four recently developed candidate pre-trained DL-CNN
models namely InceptionNet, NASNetLarge, Xception, and
DenseNet201 were selected through the approach of trans-
fer learning. A proposed DL-CNN model is constructed
with suitable additional layers and the candidate models
were modified with this architecture for effective OSCC
detection. A suitable dataset is constructed from the 2000
histopathological images including benign and malignant
images. Among these, the DenseNet201 DL-CNN model
with modified architecture outperforms other modified mod-
els and achieved an accuracy of 91.25%. The proposed work
was also found to be significantly superior in results to some
of the notable work. Thus, the proposed DL-CNN model has
achieved substantial performance for binary classification of
benign versus malignant biopsy histopathological images.
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