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Abstract: The automated handwritten digit recognition system has numerous applications. It is required to be performed for address
interpretation in postal services, bank cheque processing, or digitization of paper documents. But, for computers to recognize
the handwritten numeral images is a challenging task. Various techniques have been utilized for this purpose, like convolutional
neural networks architectures. This paper presents a novel design of a Posit-based handwritten digits recognition system, one of the
convolutional neural network applications. Posit, a universal number system is a substitute of floating point arithmetic format and is
hardware friendly. Herein, LeNet and ResNet-18 based HDRS (Handwritten Digits Recognition System) architecture is used for training
and inference of model. The parameters obtained after training were converted to (8,0) Posit number system. Training of LeNet and
ResNet-18 based HDRS has been done over the MNIST database, an open-source database for handwritten digits recognition. The
proposed Posit (8, 0) based HDRS provides comparable accuracy to traditional floating point and fixed point based HDRS.
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1. INTRODUCTION
During the current scenario, almost everyone uses visual

patterns to communicate figures and facts , and it is also
common to bring out useful data from them. One of
the difficult jobs in the relatively new domain of pattern
recognition is the computerized identification of human
writing with high accuracy because handwriting differs from
person to person [1][2]. Training and inference of LeNet and
ResNet-18 based Handwritten Digits Recognition System
(HDRS) is used to resolve the accuracy problem because
the variance of handwriting does not cause any problem
to human beings. Still, teaching computers to recognize
common handwriting is difficult [1][3].

Deep learning and machine learning require lots of
mathematical calculation during training and inference;
deep understanding incorporates different layers. Each layer
has its weights and biases and complex linear algebra
operations. The colossal complexity of the algebraic process
in deep learning affects the computation time. It intro-
duces memory problems when single-precision and double-
precision floating-point based modules are implemented on
the hardware. The algorithm part optimizes the memory
and accuracy problem of deep learning. In the past decade,
a fixed point-based model was implemented to replace the
single-precision floating-point number system with less pre-
cision, but it deteriorated the accuracy during the inference
of the model [4][5].

In 2017, Posit number system was introduced by John-
Gustafson [6] system which is a category-III variant of uni-
versal numbers system (Unum). The Posit number system is
a better substitute for IEEE754 standard floating-point and
fixed-point arithematic format. . It provides better vital span
, tapered accuracy, and parameterized precision superior
todeep learning and machine learning application. When
implemented on the hardware, it can also reducememory
utilization for applying deep learning and machine learning
[6][7][8].

The paper focuses on the implementation of (8,0) and
(16,1) posit-based handwritten digits recognition system
that involves training and inference of LeNet and ResNet-
18 (HDRS) model, conversion of obtained different layers
parameters from 32-bit floating point to 8-bit and 16-bit
posit number system. The outcomes are compared to models
based on IEEE 754 floating-point and fixed-point number
systems. Training of the model is done on a 32-bit floating-
point number system, and its inference is made on a posit
(8, 0) number system. Training data is collected from the
MNIST database, an open-source database for handwritten
digit recognition. The collected information is trained using
the tensor-flow-2.0 and PyTorch framework with a jupyter
notebook as an editor tool.

The rest of the article is structured as given herein.
Section 2 presents the associated efforts, and Section 3
focuses on the related framework study. Section 4 presents
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the implementation of the work. Section 5 discusses the
obtained result of the work, and the article is summarized
in Section 6, which explains the conclusion, future work,
and references related to the work.

2. RELATEDWORK
In the previous decade, single and double-precision

floating-point and fixed-point number systems have been
used for the training and inference to apply machine
learning and deep learning. The work proposed in 2017
by S.Hashemi et al. explains the use of single-precision
floating-point and fixed-point number systems by perform-
ing deep neural network inference on the LeNet, ConvNet,
and Alexnet deep neural networks using 32-bit fixed-point
and 32-bit floating-point. It was found that using a fixed-
point number system reduced energy consumption by 12%
and improved accuracy by less than 1% [9].

Zhejiang Liu et al. in 2016 suggested an HDL-based
convolution neural network (CNN) model that used a 16-
bit fixed-point for input data and an 18-bit fixed-point for
output data. This suggestion [10] focused on prevention
of data flooding during the calculation of task. However,
fixed-point arithmetic faulted, minimizing calculation loss.
In 2020, Jinze Li et al. put forward a handwritten digit
recognition system using the convolutional neural network.
It introduced an offline detection system built on convolu-
tional neural networks for handwritten digits. This system’s
implementation can significantly reduce labour costs and
increase productivity, which is critical in many disciplines
[11].

In 2021, Pu et al. proposed a pool-based algorithm to
select data using the least confidence method and entropy
sample model. It helps to bring down the training duration
and the cost of manual labeling [12]. Li et al. suggested
an algorithm to implement the HDRS model, which is
further migrated to android. It introduces the concept of
multilayer perceptrons in the HDRS model. It introduced
the Gradient diffusion problem when the number of hidden
layers increases [13]. Whereas, Liu et al. proposed an
HDRS model based on BP neural network. It uses input
data processing and training of the model. It achieved 85.88
accuracy [14].

In 2022, Faghihi et al. proposed an explainable attribute
abstraction technique for handwriting digit classification
dependent on keeping image particulars on single neurons
as non-synaptic memory. It achieves 75% accuracy for
0.016% of training data and 85% overall accuracy for
the MNIST dataset using one epoch [15]. In 2020, Ali
et al. suggested a Java-based deeplearning4j framework
and a CNN architecture that helps to improve the accu-
racy problem [16]. Besides this, in 2021, Agrawal et al.
suggested another deep-learning technique for handwritten
digit classification. It attains 99.06%of training accuracy
and 98.08% test accuracy by adding a convolutional layer
with pooling and dropout [17].

Chakraborty et al. initiated a handwritten digit string
recognition method. It uses a deep auto-encoder based
segmentation technique and ResNet architecture to acquire
the machine-encoded digit string [18]. Chen et al. proposed
a multilayer self-organizing impulse neural network struc-
ture. The hidden layer assumes the LIF model. It achieves
92.8% recognition accuracy [19]. Koster et al. in 2014
submitted a Flexpoint data pattern that completely replaces
the 32-bit floating-point data format used for training and
inference of deep neural-based models [20]. Posit arithmetic
is also used in weather and climate models. In 2019, Milan
Klowry et al. suggested posits as a substitute to floating
for environmental models. It uses a software emulator for
testing posit arithmetic for weather and climate simulation
[21].

Bryan J Moore et al. in 2020 proposed a peculiar deep-
learning proceed towards using a convolutional neural net-
work to design output neural spike activity from input neu-
ral spike activity. The proposed model can achieve a high
interconnection linking the speculated and actual probability
of spiking in the output neuron for data generated with a
generalized linear model. It also shows that the kernels
accustomed in a synthetic GLM of spike transformation
interconnecting layers of neurons can be learned by CNN
[22].

Different works have also been reported to analyze
the results obtained after implementing deep learning and
machine learning applications by replacing floating and
fixed-point number systems with the posit number system.
It found that posit provides a more comprehensive dynamic
range that minimizes the system memory uses. In 2020, N.
Buoncristiani et al. presented a healthy learning between
32-bit Posit and 32-bit IEEE 754-2008 depiction. They
proposed a conceptual investigation for the two number
representations for single-bit flips and double-bit flips and
experiments were carried out on machine learning appli-
cations. They concluded that posit demonstrates higher
robustness than IEEE 754 representations [23].

An arithmetic unit was designed by J. Johnson in 2018,
which is used for merging posit addition with logarithmic
multiplication for CNN inferences. The author designed a
posit-based deep neural network accelerator to represent
the weights and activation and combine it with an FPGA
softcore for 8-bit posit exact multiply and accumulate
(MAC) operation. This model’s training is based on the
floating-point number, but the inference was made in the
low-precision POSIT format. It also depicts that ImageNet
categorization using the ResNet-50 deep neural network ar-
chitecture can be done with less than 1% accuracy loss and
that using 8/38-bit Exact log-linear multiply-add (ELMA)
instead of an 8/32-bit integer multiply-add and an IEEE-754
float16 fused multiply-add can save around 4% and 41% of
power, respectively [24].

Posit arithmetic is also used in self-governing driving

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. 13, No.1, 1217-1225 (May-23) 1219

practices. M. Cococcioni et al. discussed how to accelerate
deep neural network computing in an automotive applica-
tion. For that, a Posit Processing Unit (PPU) was designed,
which is the second to a Floating-point Processing Unit
(FPU). These 16-bit posits replace conventional FPU be-
cause self-driving cars need 16-bit floating-point depiction
for security demanding applications. PPU also saves energy
because it uses less number of transistors than FPU [25].

In 2019, De Dinechin et al. explained how the posit is
suitable for the machine learning application because acti-
vation functions scale their convolutions and other neuron
summations. The statical count in each plane is little for
the total to hold on in the golden region. It discusses where
posits are superior than floating-point and where it is infe-
rior [26]. While, Raul Murillo et al. described an algorithm
for multiplying two Posit numbers and integrating them into
the FloPoCo framework. Posit is analyzed for inference and
training stages of neural networks, and the results while
working with the MNIST dataset are promising compared
to Floating-Point [27].

Beside this, Yohan Uguen et al. proposed work to ana-
lyze the hardware cost for implementing the posit number
system. It discusses the operational value of translating a
floating-point application to a posit number system. It was
found that Posit hardware is overpriced than floating-point
hardware, but from an application point of view, posit is
more accurate than the floating-point number system for
the same size [28].

In 2020, Murillo et al. proposed a DeepPeNSieve struc-
ture for training and inference of deep neural networks
(DNNs) applications using the Posit number system. It uses
an 8-bit Posit and fused operation for the low-precision
inference. It is used for training with posit (32, 2) and Posit
(16, 1) and carry out post-quantization to Posit (8, 0) with
the assistance of the quire and the fused dot product. It
provides more than 4% improvements in training compared
to the floating-point number system [29].In 2021; G. Raposo
et al. proposed a new DNN framework (PositNN) that
helps training and inference for any posit precision. It uses
quire for accumulation. It found that the DNN framework
provides a similar result as float [30].

3. BACKGROUND
A. MNIST Database

Modified National Institute of Standards and Technology
(MNIST) is an open-source directory generally handled for
training and testing in machine learning. It was formed by
”re-mixing” the NIST’s actual files [1][10]. It consists of
sixty thousand training data sets and ten thousand test data
sets. The sample of the MNIST dataset is shown in fig 1.

B. Floating Point Number System
High precision data representation is required to ac-

curately capture sample data, which is fulfilled using a
floating-point number system. The standardizing authority,

IEEE introduced the technical representation for floating-
point arithmetic called IEEE 754. It was revised in 2008 to
IEEE 754-2008 [31], later superseded by IEEE-754 2019
[31]. The floating-point number representation standard
IEEE 754 is used to represent real numbers effectively.
A standard floating-point number representation has four
parts. i.e, Precision, Sign bits, Exponent, and mantissa.
Based on precision, a floating-point number is categorized
into two types: single precision and double precision [31].

Figure 1. Sample image from MNIST database

The single and double-precision floating-point number
system representation is shown in fig 2 and 3.

A Floating Point (FP) number F can be expressed by
equation 1

F = (−1)s f .(m f ).(2)e f (1)

Where s f indicates the sign, m f represents the mantissa
that is normalized within the range [1; 2), 2 represents the
radix, and e f represents the exponent by which mantissa is
scaled.

The significant advantage of FP design is that it can
represent a more extensive set of characters with high
accuracy. However, FP representation has complex tech-
niques for arithmetic operations which create overhead in
terms of area, delay, and power. Hence, it is required
to convert floating-point number representation to lower
precision number representation.

C. Posit Number System
The IEEE standard for floating-point arithmetic can be

replaced by a POSIT number system that provides better
dynamic range, tapered accuracy, parameterized precision,
and many more[28]. As most of the network’s weights fall
in the range of -1 to 1, and most of the POSIT coding
space also falls in that range, using the POSIT system of
numeration in a deep learning network is very efficient
[6][7]. Mostly 8-bit or 16-bit posit schemes are used in the
deep learning system, and 32-bit posit formats are common
in scientific arithmetic. Also, the 32-bit posit format is used
to replace the IEEE 754 double precision floating-point
format.

The floating-point number system has a sign bit, a set
of bits to represent the exponent term, and a bunch of bits
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Figure 2. Single precision floating-point number system

Figure 3. Double precision floating-point number system

called the mantissa, whereas posits add an extra bit known
as a regime. Therefore, a posit number has four parts: sign
bit, regime, exponent, and fraction bits. The sign and regime
bits have higher priority than others [6][31][26].

Figure 4. Posit number system representation

Posit is mainly represented as (N,es) format, where N is
the total number of bits and es is the number of exponent
bits. The first bit of the posit number system represents the
sign bit, which means a negative number if set to ’1’. The
Sign bit is followed by regime bits which can be varied,
and for a ’n’ bit posit number, the regime can be of length
2 to n-1. It can be running ones followed by zeros or
running zeros followed by a one. The exponent bits and
fraction bits occupy the rest of the bit positions. The binary
representation of the Posit number system is exhibited in
fig 4.

A Posit number system X can be expressed by the
equation 2

X = (−1)s.((2)(2)es
)
k
.(2)e.(1 + f ) (2)

Where s represents the sign bits, es represents the
maximum exponent bits, k represents the regime bits which
depend upon the MSB (Most significant bits) of the regime
bits, and the value of m represents the number of identical
bits in regime bits. K = -m if the regime has m 0’s and m-1
if the regime has m 1’s.

The posit Number system has the following advantage
over floating-point and fixed-point [6 ][32].

• • Unique exclusive depiction for zero.

• • No representations wasted for Not-a-Number
(NaNs).

4. SYSTEM DESCRIPTION
A LeNet and ResNet-18 architecture-based HDRS

(Handwritten Digits Recognition System) is implemented
using a Posit number system with low precision com-
pared to a floating and fixed-point number system. The
implementation of the model follows different steps like
training of the model, extraction of different parameters, and
conversion of the parameter from a 32-bit floating number
system to an 8-bit Posit number system. The model is
trained on the MNIST database, an open-source handwritten
digits recognition system.

LeNet architecture comprises seven different layers: two
convolution layers, two max-pooling layers, two dense
layers, and one dropout layer. The ResNet-18 architecture
comprises four different layers: average-pooling and FC
(Fully Connected layer). The four layers of ResNet-18 are
named layer1, layer2, layer3, and layer4. Layer1 consists
of two BasicBlock, and each BasicBlock comprises: two
convolutional layers (conv1 and conv2), two BatchNor-
malisation (bn1 and bn2), and ReLU activation function,
the BasicBlock of the remaining layers has one extra
layer(downsample), which comprises of convolutional layer
and BatchNormalisation.

MNIST database consists of 60,000 training data sets
and 10,000 testing data sets. Training data is used to train
the model to obtain maximum training accuracy, and testing
data is used to test the model for securing test accuracy.
The model’s training is done by importing different pre-
defined python modules and frameworks. Tensorflow-2.0 is
used as a framework for LeNet based HDRS model and
PyTorch frameworks for the ResNet-18 based HDRS model,
an open-source python software library mainly used for
machine learning and deep learning. It permits the developer
to craft data flow graph structures. Similarly, Keras is also
an open-source library that runs on top of Tensorflow-
2.0 and expands the capability of the base of machine
learning and deep learning. The functions used in training
are Conv2D, MaxPooling2D, BatchNorm2d, AvgPool2d,
Dense, and Dropout; these are predefined functions. The
shape and size of the model are set according to the LeNet
and ResNet-18 architecture before training. Input provided
in the grayscale form and having pixel range from 0 to
255 and digit labels data as integers in the range of 0 to
9. The data of pixels in the field of 0 to 255 is normalized
to provide better accuracy. The Dropout layer, which aid
prevention of overfitting, sets input units to 0 with a rated
frequency at each step during training period. Inputs that
are not zero are scaled up by 1/(1 - learning rate) so
that the total sum continues the same. During training,
different kernels are used for convolution and max-pooling
operation, and ReLU is used as an activation function for
the model. After adding all layers, the model is compiled
to create a final model. The loss (categorical cross-entropy)
function finds fault or deviation in the learning process
during compiling. Adam is an optimizer used to optimize
the input weights by comparing with prediction and loss
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functions. Accuracy is used as a metric to assess the model’s
performance. After compiling, a model is trained using a
different number of epochs that helps to provide stabilized
parameters like weights and bias values. Training of the
LeNet model is done for 25 epochs, 0.1 validation split, one
verbose, one shuffle, and having a batch size of 400, and
the training of ResNet-18 model is done for ten epochs, 128
batch size and having a learning rate of 0.001. The training
of the ResNet-18 is done over GPU where cuda: 0 is used
as a GPU device.

During training, the function adjusts the weights accord-
ing to the data to achieve better accuracy. The training data
set has different training data and corresponding levels used
to compare the output with their corresponding level. If an
error is found, it rectifies with the back propagation.

During inference of the model, the parameters of dif-
ferent layers like no. of layers, weights values, bias values,
and an activation function is calculated. The trained LeNet
model is saved to HDF5 format using .h5 as an extension.
The ResNet-18 trained model is saved to PTH format,
commonly used in PyTorch using .pt as an extension.

Different parameters like weights and bias values are
obtained by writing a separate python script. It saves to
different files corresponding to a different layer in CSV
format using a 32-bit floating-point number system. Keras
replica functions are developed for each operation from
scratch that can operate on any image of any depths without
using the python Keras sequential model. Similarly, posit
functions are developed to convert the trained parameter
to (8,0), (16,1) Posit, and different Posit operations like
Convolution, Max-Pooling, Dense, activation, and dot prod-
uct. Other parameters stored in the CSV file in 32-bit
floating-point numbers are converted to (8,0) and (16,1)
posit number system that helps to reduce the precision and
provides comparable accuracy.

After performing all the operations on the LeNet based
handwritten digits recognition system using the 8-bit and
16-bit posit number system, again, it is tested with the
10,000 MNIST testing data set to obtain the test accuracy
based on the low precision 8-bit and 16-bit Posit number
system.

5. RESULTS AND DISCUSSION
The LeNet and ResNet-18 architecture used to develop

a Posit-based handwritten digits recognition system are
shown in fig 5and 6, respectively.

It represents the seven different layers of LeNet architec-
ture. The input feeding to the LeNet model has a dimension
of (28*28). The first layer of the neural network is a convo-
lutional layer having 30 kernels of size (5*5*1). The output
of the first layer (convolution layers) having dimension
(24*24*30) is fed as input to the second layer (Max Pooling
layer) having a kernel of size (2*2). The output of the Max
Pooling operation having dimension (12*12*30) is fed as

input to the third layer (convolutional layer), having 15
kernels of size (3*3*30). Further, the output of the third
layer having dimension (10*10*15) is fed as an input to
the fourth layer(Max Pooling layer) having a kernel of size
(2*2). The output of Max Pooling layers having dimension
(5*5*15) is catered as an input to the fifth layer(flatten
layer), having a dimension of (375*500). The output is fed
as input to the sixth layer (Dense layers), and the output
of the sixth layer with a dimension of (500*10) is fed as
input to the last layer that provides output as one dimension
vector having dimension (10*1). Training is carried out in
single-precision floating-point format using the TensorFlow-
2.0 python framework, and all the model parameters are in
fp32 format. The model obtained a accuracy for training:
98.92%, validation: 98.70%, and test: 97.98%.

The input data fed to ResNet-18 model having dimen-
sion (1*28*28) acts as an input to neural networks which
is fed to Layer1 of the neural network which is convolu-
tional layer having 64 kernels of size (1*7*7) generates 64
filters and output of first layer (convolution layer) having
dimension (64*14*14) is normalized using BatchNormal-
ization and applied ReLU activation and fed as input to
the second layer (max-pooling layer) having kernel of size
(2*2) and the output of max pooling operation(output1)
having dimension (64*7*7) is fed as input to convolutional
layer having 64 kernels of size (64*3*3), The output of this
convolution layer having dimension(64*7*7) is normalized
using BatchNormalization and applied ReLU activation and
fed as input to the convolution layer having 64 kernels
of dimension(64*3*3), the output of this convolution layer
is normalized and added to (output1), the result of ad-
dition is applied ReLU activation, The output of ReLU
activation(output2) having dimension (64*7*7) is fed to
a convolutional layer having 64 kernels of size (64*3*3)
generates 64 filters and output of convolution layer having
dimension (64*7*7) is normalized using BatchNormaliza-
tion and applied ReLU activation and fed as input to the
convolution layer having 64 kernels of dimension(64*3*3),
the output of this convolution layer is normalized and
added to (output2), the result of addition is applied ReLU
activation, The output of ReLU activation(output3) having
dimension (64*7*7) is fed as input to convolutional layer
having 128 kernels of size (64*1*1), The output of this
convolution layer having dimension(128*4*4) is normalized
using BatchNormalization, Let the output is represented as
downsample1, Output3 having dimension (64*7*7) is fed
as input to a convolutional layer having 128 kernels of size
(64*3*3), The output of this convolution layer having di-
mension(128*4*4) is normalized using BatchNormalization
and applied ReLU activation and fed as input to the convo-
lution layer having 128 kernels of dimension(128*3*3), the
output of this convolution layer is normalized and added
to downsample1. The result of addition is applied ReLU
activation, The output of ReLU activation(output4) having
dimension (128*4*4) is fed to convolutional layer having
128 kernels of size (128*3*3) generates 128 filters and
output of convolution layer having dimension (128*4*4)
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Figure 5. ResNet-18 model architecture

is normalized using BatchNormalization and applied ReLU
activation and fed as input to the convolution layer having
128 kernels of dimension(128*3*3), the output of this
convolution layer is normalized and added to (output4), the
result of addition is applied ReLU activation, The output
of ReLU activation(output5) having dimension (128*4*4)
is fed as input to convolutional layer having 256 kernels of
size (128*1*1), The output of this convolution layer having
dimension(256*2*2) is normalized using BatchNormaliza-
tion, Let the output is represented as downsample2, Output5
having dimension (128*4*4) is fed as input to convolutional
layer having 256 kernels of size (128*3*3), The output
of this convolution layer having dimension(256*2*2) is
normalized using BatchNormalization and applied ReLU
activation and fed as input to the convolution layer having
256 kernels of dimension(256*3*3), the output of this
convolution layer is normalized and added to downsam-
ple2, The result of addition is applied ReLU activation,
The output of ReLU activation(output6) having dimension
(256*2*2) is fed to a convolutional layer having 256 kernels

of size (256*3*3) generates 256 filters and output of con-
volution layer having dimension (256*2*2) is normalized
using BatchNormalization and applied ReLU activation and
fed as input to the convolution layer having 256 kernels of
dimension(256*3*3), the output of this convolution layer
is normalized and added to (output6), the result of ad-
dition is applied ReLU activation, The output of ReLU
activation(output7) having dimension (256*2*2) is fed as
input to convolutional layer having 512 kernels of size
(256*1*1), The output of this convolution layer having
dimension(512*1*1) is normalized using BatchNormaliza-
tion, Let the output is represented as downsample3, Output7
having dimension (256*2*2) is fed as input to convolutional
layer having 512 kernels of size (256*3*3), The output
of this convolution layer having dimension(512*1*1) is
normalized using BatchNormalization and applied ReLU
activation and fed as input to the convolution layer having
512 kernels of dimension(512*3*3), the output of this
convolution layer is normalized and added to downsam-
ple3, The result of addition is applied ReLU activation,
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Figure 6. LeNet model architecture

The output of ReLU activation(output8) having dimension
(512*1*1) is fed to convolutional layer having 512 kernels
of size (512*3*3) generates 512 filters and output of con-
volution layer having dimension (512*1*1) is normalized
using BatchNormalization and applied ReLU activation and
fed as input to the convolution layer having 512 kernels of
dimension(512*3*3), the output of this convolution layer is
normalized and added to (output8), the result of addition
is applied ReLU activation, The output of ReLU activa-
tion(output9) having dimension(512*1*1) is fed to dense
layer having dimension(512*10), The output of dense layer
is applied softmax activation function and the final output
having dimension(10,1) is obtained which can be used to
predict the class of the image.

Figure 7. Validation loss and training loss vs epochs

The training accuracy of the handwritten digits recogni-
tion system depends on the number of epochs.The model’s
validation and training losses depend on the number of
epochs shown using the graph shown in fig 7. The accuracy
result of the model obtained by using predefined Keras and
PyTorch function is compared with (8,0), (16,1) posit and
float16, float32, 8-bit fixed-point, and 16 bit fixed point-

TABLE I. Accuracy Comparison.

Number Format LeNet(%) ResNet-18(%)
32-bit floating point 98.98 99.54
16-bit floating point 96.42 97.81

16-bit fixed point 98.02 98.70
8-bit fixed point 91.53 93.21

(8,0) Posit 98.18 98.91
(16,1) Posit 98.98 99.54

based model. It dispenses almost similar accuracy.

The accuracy comparison of the proposed Posit-based
LeNet HDRS system and ResNet-18 HDRS system with
floating-and fixed-Point system is shown in Table 1. It
can be seen that the Posit-based system gives comparable
accuracy with the ideal fp32 system with reduced bit
precision from 32 to 8, 16 bit and better accuracy compared
to fixed-point systems.

6. CONCLUSION AND FUTURE WORK
The proposed system successfully carries out the im-

plementation and analysis of LeNet and ResNet-18 based
handwritten digits recognition system using a posit number
system.The accuracy level of projects is divided into three
classes of accuracy viz. training, validation , and test .
Training accuracy was 99.08% and the proposed system
provided 98% approx as test accuracy when it tested with
10,000 MNIST datasets. It can be seen that the Posit- based
system gives comparable accuracy with the 32-bit floating-
point number system. POSIT number system provides a
better dynamic range, tapered accuracy, and parameter-
ized precision. The implementation of the ResNet-18based
HDRS model takes longer time than the LeNet-based HDRS
but provides better accuracy.

When done with a posit unit in the deep neural network,
a quantization technique dramatically reduces the memory
requirement and computational cost, and it can also be used
to improve power efficiency.
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The LeNet and ResNet-18 based handwritten digits
recognition system using posit number system is further
implemented and analyzed on the posit-based AI (Artificial
Intelligence) accelerator to verify the efficient utilization of
the system’s memory. A parallel posit processing engine
(PPE) and a systolic array are developed to reduce the
time of the extensive computational process.

Acknowledgment

We would like to thank Viswanatham Prashanth, Dr.
Pranose J Edavoor, Mr.Aneesh Raveendaran, Mr. Vivian
Desalphine and Mr. A Devid Selvakumar of Center for
Development of Advance Computing (C-DAC) organization
for their active guidance, help and encouragement during
the project’s development.

References
[1] R. Walid and A. Lasfar, ”Handwritten digit recognition using sparse

deep architectures,” 2014 9th International Conference on Intelligent
Systems: Theories and Applications (SITA-14), 2014, pp. 1-6, doi:
10.1109/SITA.2014.6847284.

[2] O. Agaton, S. Kustrin, R. Beresford, “Basic concepts of artificial-
neural network (ANN) modeling and its application in pharmaceu-
tical research”, Journal of biomedical analysis, vol. 22, no. 5, pp.
717-727,2000.

[3] Luca B. Saldanha, Christophe Bobda, ”An embedded sys-
tem for handwritten digit recognition”,Journal of Systems Ar-
chitecture, vol 61, Issue 10,2015,Pages 693-699,SSN 1383-
7621,https://doi.org/10.1016/j.sysarc.2015.07.015.

[4] M. Zhu, Q. Kuang, C. Yang, and J. Lin, ”Optimization of convo-
lutional neural network hardware structure based on FPGA,” 2018
13th IEEE Conference on Industrial Electronics and Applications
(ICIEA), 2018, pp. 1797-1802, doi: 10.1109/ICIEA.2018.8398000.

[5] Jianhui Han, Zhaolin Li, WeiminZheng, and Youhui Zhang,
“Hardware Implementation of Spiking Neural Networks on
FPGA”,TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-
0214 04/10 pp479–486 DOI: 10.26599/TST.2019.9010019Volume
25, Number 4, August 2020.

[6] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nam-
biar, K. Niyogi, and R. Leupers, “Parameterized posit arithmetic
hardware generator,” in Proc. IEEE 36th Int. Conf. Comput. Design
(ICCD), Oct. 2018, pp. 334–341.

[7] M. Jaiswal and H.K.H. “Universal number posit arithmetic generator
on FPGA”. In Proceedings of the Design, Automation & amp;
Test in Europe Conference and amp, Exhibition, Dresden, Germany,
19–23 March 2018;pp. 1159–1162.

[8] J.L. Hennessy and D. A. Patterson, “A new golden age for com-
puterarchitecture,” Communications of the ACM, vol. 62, no. 2, pp.
48–60, Jan 2019.

[9] S. Hashemi, N. Anthony, H. Tann, R. Bahar, and S. Reda, “Un-
derstanding the impact of precision quantization on the accuracy
and energy of neural networks,” in Proceedings of the Conference
on Design, Automation & Test in Europe. European Design and
Automation Association, 2017, pp. 1478–1483.

[10] Zhiqiang Liu, Yong Dou, Jingfei Jiang, JinweiXu,”Automatic
code generation of convolutional neuralnetworks in FPGA
implementation,” in 2016 International Conference on Field-
ProgrammableTechnology (FPT), Xi’an, China, 2016.

[11] Jinze Li, Gongbo Sun and LeiyeYi,”Handwritten Digit Recognition
System Based on Convolutional Neural Network,” IEEE Inter-
national Conference on Advances in Electrical Engineering and
Computer Applications (AEECA), 2020.

[12] Pu, Tiantian. ”Application of active learning algorithm in handwrit-
ing recognition numbers,” Journal of Physics: Conference Series.
vol. 1861. No. 1. IOP Publishing, 2021.

[13] Li, Yiqing. ”Deep learning based handwritten digit recognition in
Android,” Journal of Physics: Conference Series. vol. 2010. No. 1.
IOP Publishing, 2021.

[14] Liu, Jianghai, and Jie Hong. ”Design of Handwritten Numeral
Recognition System Based on BP Neural Network,” Journal of
Physics: Conference Series. vol. 2025. No. 1. IOP Publishing, 2021.

[15] Faghihi, Faramarz, et al. ”A Nonsynaptic Memory Based Neural
Network for Hand-Written Digit Classification Using an Explainable
Feature Extraction Method,” Proceedings of the 6th International
Conference on Information System and Data Mining. 2022.

[16] Ali, Saqib, Zareen Sakhawat, Tariq Mahmood, Muhammad Saqlain
Aslam, Zeeshan Shaukat, and Sana Sahiba. ”A robust CNN model
for handwritten digits recognition and classification,” In IEEE
International Conference on Advances in Electrical Engineering and
Computer Applications (AEECA), pp. 261-265. IEEE, 2020.

[17] Agrawal, Ayush Kumar, A. K. Shrivas, and Vineet kumar Awasthi.
”A Robust Model for Handwritten Digit Recognition using Machine
and Deep Learning Technique,” 2nd International Conference for
Emerging Technology (INCET). IEEE, 2021.

[18] Chakraborty, Anuran, Rajonya De, Samir Malakar, Friedhelm
Schwenker, and Ram Sarkar. ”Handwritten digit string recogni-
tion using deep autoencoder based segmentation and resnet based
recognition approach,” In 25th International Conference on Pattern
Recognition (ICPR), 2021, pp. 7737-7742. IEEE.

[19] Chen, Hongzhou, Bin Hu, Long Chen, Dingxue Zhang, and Zhihong
Guan. ”Multilayer Self-Organizing Impulse Neural Network For
Handwritten Digit Recognition,” In 2021 IEEE 10th Data Driven
Control and Learning Systems Conference (DDCLS), 2021, pp.
1123-1127. IEEE.

[20] Köster, Urs, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K.
Bansal, William Constable, Oguz Elibol et al. ”Flexpoint: An
adaptive numerical format for efficient training of deep neural
networks,” Advances in neural information processing systems 30
(2017).
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