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Abstract: Spiking Neural Network (SNN) is very popular and effective in modelling the physical neurons compared to other models of
the neural network. Besides the software implementation of the neuromorphic processors, hardware implementation of the neuromorphic
processors is also very important in order to apply it in real-time domain. In this work, a hardware efficient architecture of the
neuromorphic processor is proposed. The proposed architecture is efficient in terms of low usage of memory elements and other
hardware resources. Virtex-6 field programmable gate array (FPGA) development board is used to validate the proposed design. Fixed
data format of width 18 is used in this work and 10-bit is reserved for the fractional part. The proposed architecture is applied to detect
the handwritten digits. In this work, MNIST database is used to train and validate the SNN. The proposed architecture achieves 90%
accuracy when used to recognize the handwritten digit data.

Keywords: Spiking Neural Network (SNN), Spike Timing Dependent Plasticity (STDP), Leaky Integrate and Fire (LIF), Field
Programmable Gate Array (FPGA), Hand written digit recognition

1. INTRODUCTION
The human brain is considered as the most complex,

energy-efficient system as it is responsible for managing the
body functions, interpretation of information, taking proper
actions and mostly for controlling the central part of the
mind. Scientists have surveyed a lot and tried to introduce
a network system that can mimic the biological brain
and predict the probability of the output. Thus, artificial
neural networks (ANN) are developed. There are various
kinds of neural networks like, convolution neural networks
(CNN), deep neural networks (DNN), feed-forward neural
networks (FNN), recurrent neural networks (RNN) and
spiking neural networks (SNN). Spiking are actually the
one which closely replicate the human brain. The goal of
SNN is to link the gap among neuroscience and machine
learning. These proofs made researchers to focus on brain-
inspired computing as a new approach to deal with growing
multi-layered arithmetic calculations. Thus, in current era
of artificial intelligence (AI), SNNs have been evolved and
attracted everyone due to its asynchronous event-driven cal-
culation and parallel architecture feature [1]. SNNs provide
better efficiency in terms of energy and hardware compared
to traditional ANNs. SNNs might use lateral inhibition

technique (IT), which means that every neuron transfers its
firing rate of spikes not only to next layer but also to the
nerve cell in the same layer. The dismissal in the similar
layer is considered as an indication to lower the membrane
potential.

SNNs have been evolved in wide variety of applications
like classification of images, detecting the objects, naviga-
tion and motor control [2]. In any platform, users choose
between their implementations on the basis of speed, power,
area and cost. Moreover, SNNs can be developed using soft-
ware, analog/digital hardware. SNNs can be implemented
on central processing unit (CPUs), graphics processing
units (GPUs) or on other microcontrollers using Python
or C language. Secondly, dedicated hardwares like FPGA,
application specific integrated circuit (ASIC), digital signal
processing (DSP) used to design these networks. However,
same importance is given to analog hardware implemen-
tation of these networks such as CMOS technologies for
designing of SNN. The main reason behind the software
based and analog based models of SNNs is that they are
attractive and can handle large number of data but they are
inefficient in terms of energy and speed. As a result, parallel
digital neuromorphic systems running on FPGA and ASICs
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Algorithm 1 SNN model based on STDP Learning Rule

Input: External input spikes vector (E) and different con-
stants.

Output: The weight matrix (W).
1: Initialization Set r0 = y, Λ0 = [ ], Ω = [ ] and i = 0.
2: for k = 1:M do
3: for t = 1:tm do
4: for i = 1:N do
5: Vmin(i) = Vmin(i − 1) + Ksyn

∑N
j=1 W( j, i)S ( j) +

KextE(i) − Vleak
6: end for
7: for i = 1:N do
8: if Vmin(i) ≤ Vth then
9: S (i) = 1; Vmin(i) = Vrest

10: else
11: S (i) = 0;
12: end if
13: end for
14: for i = L f irst : Llast do
15: if S(i) = 1 then
16: for j = L f irst : Llast do
17: if S(j) = 1 then
18: Ap( j, i) = Ap( j, i) + o f f set1
19: Aq( j, i) = Aq( j, i) + o f f set1
20: else
21: Ap( j, i) = Ap( j, i)et/τ + o f f set1
22: Aq( j, i) = Aq( j, i)et/τ + o f f set1
23: end if
24: W( j, i) = W( j, i)+Ap( j, i)+Aq( j, i)+o f f set3
25: end for
26: end if
27: end for
28: end for
29: end for

are becoming popular [3], [4].
Neuromorphic machines owe the concept of SNNs

and works when electric signals or spikes passes through
artificial neurons. Neuromorphic computing works on cre-
ation of brain’s architecture and data processing capabilities
with new computer hardware chips and software algorithms.
This system uses computational hardware pattern on human
brain by considering the connection of neurons which make
it possible to encode the information and are efficient
than standard computer chips. SNNs with neuromorphic
processor incorporates parallel based architecture which
can model the dynamics of neurons in real time using
software algorithm. In general, the dynamics of neurons
is achieved by various neuron models such as Izhikevich
neuron model (INM) [5], Hodgkin-Huxley model (HH) [6]
and Leaky integrate and fire (LIF) [7] neuron model. Along
with that, spike timing dependent plasticity (STDP) rule
[8] is used to calculate and update the membrane potential,
synaptic weights and firing rate of neuron which are the
major parameters taken into consideration while building
the neuromorphic processor. LIF and STDP plays a major

role in implementation of SNN for a digital neuromorphic
processor as they closely analyze the behaviour of human
brain and nervous system very efficiently. In comparison
to von Neumann architectures, the neuromorphic system
promises high processing speed capability with low power
consumption as they can resolve the issues based on their
unfasten parallelism and less energy consumption with
respect to spiking dynamics [9], [10].

Many works on development of architecture for neuro-
morphic processor have been reported in literature. Biao
F, et al. [11] proposed a low power design for digital
recognition with the help of multi-kernel parallel technique.
A real-time digital neuromorphic system to simulate the
large conductance based on SNN is reported in [12].
A simple and computationally efficient design of spike
response model with STDP learning has been proposed
[13]. An organized quantitative, qualitative and guidelines
for optimal temporal encoding of SNNs is presented [14].
A hardware emulator for an RRAM-based neuromorphic
chip on FPGA [15] is demonstrated. Labelled data related
procedure [16] is formulated for multilayer SNNs to com-
pute the gradient components. A small and low power
neural processing system [17] is reported for diagnosis
of pathological conditions. Hong T., et al. [18] worked
on implementing the neuromorphic computing system on
FPGA for image classification on handwritten-digits. A
digital neuromorphic system of the pair-based and triplet-
based STDP [19] is demonstrated by linear approximations.
Wenzhen G., et al. [1] depicted a parameter optimization
scheme and neuromorphic platform for digital design using
Euler and Runge-Kutta method on FPGA. A supervised
learning algorithm to study timed multiple spikes in a multi-
layer SNNs is illustrated in [20]. A parallel neuromorphic
processor architecture for SNNs on FPGA is proposed
[7]. Zhang et al. [21] reported a compact, programmable,
unique and scalable neuromorphic design. An overview
on implementation of spike response model and temporal
coding for SNNs is described [22]. A wide-ranging survey
of the study and inspirations for neuromorphic computing
is reported [23]. J. S. et al., [24] presented a comparative
analysis of STDP learning systems with the help of shift
register and counter. The software and hardware implemen-
tation on decoupling the SNN calculation work from the
network gateways to provide multiple network gateways
is demonstrated [25]. The Hebbian model of development
and learning for pre and post synaptic neurons using STDP
was demonstrated [26]. The processing of information by
neurons and neural systems using integrate and fire neuron
model was described [27]. P. U. Diehl et al. proposed the
unsupervised learning of digit recognition using STDP [28].
An event driven MNIST data for SNN using Poisson’s
distribution has been described [29]. The triple core digital
neuromorphic processor’s design on an Altera Quartus II
FPGA is reported [30]. The paper [31] presented neurons
and synapses with STDP integrated circuits on 90 nm
CMOS with lowest energy level. LIF neuron circuits for
second generation Brain Scales mixed signal 65 CMOS neu-
romorphic hardware along with the winner take mechanism
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of STDP for cortical processing was demonstrated [32]. Su-
pervised learning in SNN using triggered Normalized Ap-
proximate Descent algorithm for the problem of handwritten
digit recognition was demonstrated [33]. Review of low
power SNNs accelerators with both software algorithm and
neuromorphic hardware implementations and unsupervised
STDP learning rule would be a possible solution to adapt
changes has been demonstrated [34], [35], [36].

Technical details of the research methodology of this
research are summarized by the following steps.

• Step 1: Handwritten digit data acquired from standard
MNIST database.

• Step 2: MNIST digit data is then converted into csv
file.

• Step 3: SNN input must be in spike form, thus the
digit image data is converted into spike trains using
Poisson’s distribution in MATLAB.

• Step 4: STDP learning algorithm is used to train and
test the handwritten digit images for N = 212 and
1591.

• Step 5: STDP algorithm is used during training phase,
to update the membrane potential, regularly monitor
the firing activity, and update the synaptic weights.

• Step 6: During testing phase, the updated weights is
used to detect any digit.

• Step 7: Finally, the input digit image and the output
digit image are plotted using MATLAB.

Methodology for hardware implementation of the proposed
neuromorphic processor are summarised by the following
steps

• Step 1: All the parameters of STDP learning algo-
rithm used in MATLAB are converted using conven-
tional 2’s complement method for 18-bit word size in
Verilog.

• Step 2: The individual blocks of neuromorphic pro-
cessor and its global timing and control signals are
implemented in Verilog.

• Step 3: The proposed processor is implemented for
N = 212 and 1591.

• Step 4: The parallelization of the proposed architec-
ture is achieved by folding the architecture by factor
of fk.

• Step 5: The hardware implementation of SNN on
FPGA is carried out for K = 128, 256 and 512.

• Step 6: Virtex-6 field programmable gate array
(FPGA) development board is used to validate the

proposed design.

• Step 7: The size of the registers, memory blocks
and power consumption are carried out and compared
with other works.

The paper is organized as follows. The theoretical details
of SNN are explained in Section 2. STDP algorithm for
updating the weights and the weight matrix are also defined
in this section. The proposed architecture is described in
details in Section 3. The performance of the planned neu-
romorphic processor is analyzed in Section 4. Comparative
analysis of the architecture is also carried in this section.
Concluding remarks on the proposed work are made in
Section 5.

2. THEORETICAL BACKGROUND
A. SNN Topology

The projected spiking neural network shown in Figure
1 is employed for letter or digit recognition that enters the
input layer as encoded external input spikes. This topology
involves N number of neurons. In this SNN model, M
number of neurons are used in the input layer, L number
of neurons are used in output layer and H number of
inhibitory neurons are used. Out of H inhibitory neurons,
six are for input layer and one is used for output layer.
Inhibitory neurons establish strong negative feedback to the
excitatory neurons to meet winner-take-all situation in the
network. The synaptic weights associated with inhibitory
neurons are fixed, whereas the feed-forward nerve cell
that connects input and output layer are plastic. These
plastic synapses have the ability to change their strength
on the basis of aided biologically-inspired STDP learning
rule. During the learning procedure, each synapse adjusts
its weight on the basis of relative timing of spikes with
respect to presynaptic and postsynaptic neurons [26]. In
our work, LIF is used to determine the neuron’s dynamics
as it is well-suitable for implementing SNN for designing
the proposed neuromorphic processor. The generalized LIF
model is described by the following Euler equation [27].

τ
dVmin(t)

dt
+ Vmin(t) = R.I(t) (1)

where Vmin represents the cell membrane’s potential, τ is
the time constant, R is the resistance and I is the current.
For digital hardware implementation, the LIF neurons are
shortened and digitalized as follows:

Vmin(t) = Vmin(t−1 +
∑
i=0

nItr − Vleak (2)

where Itr tells the rate at which the neurons transmit the
chemical message to the human brain and Vleak is the
constant leakage value for the neuron’s membrane potential
i.e., Vmin.

B. Algorithm of Spiking Neural Networks Based on STDP
Rule
The Algorithm 1 describes SNN learning process on

the basis of STDP rule. Handwritten images are taken from
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Figure 1. Spiking neural network for character recognition as men-
tioned in [7].

MNIST dataset to identify the performance during testing
and training phase . An image consists of M pixels and each
pixel is converted to spike strain of length N according to
the technique mentioned [28], [30]. Then these strains are
taken as an input to the algorithm. Vmin is the potential
gradient of the membrane, W is weight, E is the external
input spike, S specifies if a neuron excites or not and N is
the number of neurons. L f irst to Llast are the indices of first
and last excitatory neurons in the output layer respectively.
Similarly, M f irst and Mlast indicates first and last excitatory
neuron in the input layer respectively. The SNN algorithm
runs for certain number of iterations (tm) for one pixel
to settle down to a correct output. For each iteration, the
membrane potential Vmin gets updated by incrementing the
scaled version of synaptic weights (W) based on firing flag
(S ). Vleak acts as a constant leakage voltage for Vmin. Kext
is a random number that represents amplitude of external
input spikes and also produces irregular inserted currents.
Once the Vmin gets updated, then it is equated with Vth to
check the firing activity of neuron. If Vmin is greater than
or equal to Vth, then the neuron fires and flag S is set.
Simultaneously, Vmin is reset to the resting potential Vrest.
If Vmin is less than Vth then S is reset.

After the updation of membrane potential, the change in
weight is calculated using STDP rule. During the firing of
specific neuron in present iteration, the pre-synaptic neurons
tend to receive the most recent firing times. Each iteration
is denoted as ‘t’ and ‘τ’ represents the time taken by each
iteration. Ap and Aq finds the maximum number of synaptic
changes. Post updation of weights leads to new iteration.

C. The Weight Matrix
The weights matrix shown in Figure 2 uses an ideal

N × N crossbar array to visualize the interconnections
between neurons. Every column signifies the networks
among a specific neuron and all its synapses. The weights
corresponding to pre-synaptic neurons (M f irst to Mlast) and
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Figure 2. The connections between neurons as mentioned in [7].

post synaptic neurons (L f irst to Llast) are only needs to be
updated. Thus, these weights are called plastic. An example
of this weight matrix is shown in Figure 2 for N = 212,
M = 196 and L = 9. During the training phase, weights
correspond to this plastic region to be updated in each
iteration. The remaining synaptic weights associated with
inhibitory neurons are constants and it is observed that there
is no connection between neurons within the same layer.

3. PROPOSED NEUROMORPHIC PROCESSOR
In this work, a parallel neuromorphic processor is

proposed which is scalable to any number of neurons.
The proposed neuromorphic processor shown in Figure 3
consists of four major blocks called NU block, STDP block,
LAU block and W logic block. NU block is responsible
for generating and storing firing flags whereas LAU block
is used to update the membrane potential based on weights
and firing flags. STDP block is used to update the weights
in the training process. A neuromorphic processor control
(NMP) block is used to generate all the control signals.
W logic block is used to efficiently handle the weights.
This processor has two modes, training and execution. In
the training process, the processor is learned means the with
the help of STDP unit, weights get updated here. In the
execution step, the updated weights are used to detect any
digit. Thus, in the execution step, STDP block is bypassed.
The parallelization of the proposed architecture is achieved
by folding the architecture by factor of fk. Total number
of neurons are divided into fk groups. Thus, weights and
flags are read in fk phases from NU block and the W logic
blocks respectively. This way the architecture supports any
number of neurons. The value of fk is 2 and 13 for N = 212
and 1591 respectively if K = 128 is chosen. Each block is
described in detail below.

A. NU Block
The proposed NU block is shown in Figure 4. The

potential of the membrane corresponding to a nerve cell
is compared with the threshold value (Vth). Firing activity

https://journal.uob.edu.bh
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Figure 3. Proposed Neuromorphic Processor.

flags (S 1, S 2, . . . ., S K) are set if Vmin is greater than or
equal to Vth. These firing activity flags are stored initially
in a memory named S mem. Once the identification of
firing flags is finished, S mem is read. Output of the
S mem goes to a register bank where N 1-bit registers
are connected in series. fd is the control register block that
stores the data when the control signal is high. Computation
of three type of firing flags is shown in Figure 4 which
are S Mnew, S Mold and S Lout. S Mnew flags are generated in
a particular iteration corresponding to excitatory neurons
in the input layer. S Mold flags are S Mnew flags generated
in the previous iteration. S Lout flags represents the firing
activity flags corresponding to the excitatory neurons in
the output layer. Initially, when L count is zero then S Lint
control signal becomes high and this signal chooses Sin as
S Mnew. Once the reading of S Mnew flags is completed then
one value of S Lout flag is read serially through S M+1 flag.
Fig. 4 stores the existing membrane potential and firing flags
where S acts as a controlling parameter for all global timing
and control signals. Whereas firing time, existing membrane
potential, and firing flags was illustrated [7]. This is why
the architecture of NU, STDP units are different than the
architectures mentioned [7].

B. LAU Block
LAU block, shown in Figure 5, helps in updating the

membrane potential (Vmin). This block takes membrane
potentials and firing activity flags (S 1, S 2, . . . ., S K) from
NU block as inputs. This block also receives weights from
the W logic block. The spike strains corresponding to an
image pixel is also input to this block. A buffer module
is used which receives weights (W1,W2, . . . .,WK) at one
end and firing activity flags (S 1, S 2, . . . ., S K) at another
end. The output of this module is considered as input to
the adder tree. Output of the adder tree goes to another
adder for accumulation. The accumulation of weights takes
fk cycles. This accumulated output is then multiplied by a
ksyn by another multiplier. Simultaneously, Vmout and Vleak
are passed to an adder. A multiplexer is used which has two
inputs named kext and 0. The multiplexer is controlled by
the external input spikes (E). This way the constant kext is
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added to the equation randomly. Lastly, the output of the
LAU block (Vmin) is again used as an input to the NU block
and stored in V mem. The LAU block generates one Vmin
sample in fk cycles.

C. STDP Unit
The proposed STDP unit is shown in Figure 6. This

unit helps in updating the synaptic weights on the basis of
pre-synaptic and post-synaptic neurons. Api and Aqi are the
synaptic parameters that identifies the changes in weights
for each iteration. The input Api comes from Ap mem
memory block which is then sent to right shift (RSH1)
block as shown in Figure 6. RSH1 block is used for right
shifting the input data by 1 bit. Similarly, Aqi is read from
Aq mem memory block and it is also passed through a
RSH1 block. A lookup table (LUT) block stores the value
of the expression e(it/τ)where τ is a constant and it is the
iteration count which is input to the STDP block from the
controller block. Output from the LUT block goes to a tri-
state buffer. The tri-state buffer is controlled by the S Mnew
control input. Scaled Api and Aqi values are multiplied by
output of the tri-state buffer. The STDP block receives the
scalar weight inputs from the W logic block. The weights
are also scaled by a RSH1 block. In the path of Api, Aqi
and Win three constants o f f set1, o f f set2 and o f f set3
are added respectively. Apo and Aqo values are written into
Ap mem and Aqmem respectively. The output of the STDP
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block is Wout which is again written into W mem.

D. Scheme for Storing Ap and Aq

The values of Ap and Aq are needed to be stored in
memory properly. It is observed that in any given iteration
only two values of Ap and Aq are produced. Thus, it is
not required to store the entire matrix of Ap and Aq. In
this work, the Ap and Aq values are efficiently stored in
Ap mem and Aq mem. The scheme of storing the Ap and
Aq values is shown in Figure 7. The firing flags S Mnew
which comes from NU block goes to a fd block and the
inverted version of S Mnew goes to another fd block. The
unique values of Apo are stored in the control registers. But
S Lout flag decides whether these values will be stored in the
memory or not. The reading of the Ap or Aq values are done
through a 2:1 multiplexer. The multiplexer is controlled by
the previous value of firing activity flag (S Mold).

E. W logic Block
All the neurons in the input or in output layer are

connected through the weights. This connectivity is shown
in Figure 2. All the columns of the weight matrix take
participation in the operation but only the weights belonging
to plastic region are updated. Also, the weights which does
not belong to plastic region are constant. This is why it is
not required to store the complete weight matrix.

In this work, a novel strategy has been used to reduce

TABLE I. The passing of constants for efficient evaluation of weights
based on Ncount .

1 ≤ Ncount ≤ M W1 to WM
M ≤ Ncount ≤ M + L WM+1 to WM+L)

M + L ≤ Ncount ≤ M + L + (H − 1) WM+L+1 to WM+L+(H−1)
Ncount = M + L + H W1 to WN = WM+L+H

the number of digital storages to store the weights. In
this strategy, memory blocks are only used to store the
weights that belong to plastic region as shown in Figure
2. The proposed W logic block is shown in Figure 8. The
W logic block is divided into two sections. In the first
section, a memory block, W mem is designed which stores
the weights in the plastic region. In this block, M number
of dual ports RAMs are used. Each RAM has capability to
store L words.

In the second section, a novel control strategy is applied
to pass the constant weights. This strategy is shown in
Figure 8. Two multiplexer banks (MB) are designed. MB1
selects between output of W mem and 0. MB2 selects
between output of MB1 and output of another Read Only
Memory (ROM). ROM stores the constant value of weights
corresponding to inhibitory neurons. Two control signals
ctrl and ctrl1 controls MB1 and MB2 respectively to
generate W1 to WM . The constants 250, 200,170,150,130
and 100 are stored in ROM as shown in Figure 2. A counter
is used to count up to N and output of this counter (Ncount)
is compared with N by COMP1 block to generate weights
from WM + 1 to WM + L. Similarly, Ncount is compared with
M to generate weights from WM + L+1 to WM + L+6. The
COMP3 block is used to compare Ncount with Llast+M+L to
generate WN (i.e., WM + L+H). This process of generating
the constant weights based on comparison is shown in Table
I.

4. PERFORMANCE EVALUATION OF THE PRO-
POSED DESIGN
The objective of this work is to propose a neuromorphic

processor which is efficient in terms of hardware resources,
timing complexity and also in terms of dynamic power
consumption. Besides this, the architecture should also
achieve certain acceptable accuracy. In order to validate the
design, image pixels are first converted to strain of pulses
and these bits are serially fed to the FPGA using serial to
parallel interface (SPI) protocol. The proposed architecture
is implemented on Virtex-6 FPGA device using fixed point
arithmetic. 18-bit is used to represent a data where 10-
bits are used to represent the fractional parts. The proposed
processor is first tested by taking N = 212 neurons where
M = 196, L = 9 and H = 7. In this case, fk = 2 clock cycles
are needed to accumulate the weights according to flags for
K = 128. After successful validation of this prototype, the
proposed design is again tested for N = 1591 number of
neurons. In this case, M = 784, L = 800, H = 7 and
fk = 13 for K = 128. The proposed design is validated by
detecting handwritten digits. The MNIST database is used
to train the SNN. Once the SNN is trained, the architecture
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Figure 8. Proposed scheme for evaluation of weights.

is verified by taking the digits from the same MNIST set.
The proposed work achieves 90% accuracy for N =1591
and 92% accuracy for N = 212. The comparison of input
handwritten digits obtained from MATLAB with recognized
digits by FPGA is illustrated in Figure 9. The performance
of the proposed design is described below.

A. Hardware Complexity
The parallel architecture mentioned in [7] is not scalable

as it is difficult to design adder tree for huge number of neu-
rons. Fully parallel architecture of neuromorphic processor
becomes a challenge if number of neurons is beyond 200
[35]. Thus, a foldable LAU unit is proposed in this paper.
This architecture is fk times folded because of which it is
scalable to any number of neurons. Whereas M-BRAMs
are used to store the weights and four memory elements
are used to store synaptic parameters values. The limits
would be long computation time with increase in number of
neurons. The purpose behind choosing the specific number
K is based on the excitatory neurons in the input and
output layer along with the neurons in the plastic region
and inhibitory neurons of SNN topology.

The introduced architecture is parallel and hardware effi-
cient than the architecture reported [7] and is more efficient
version of STDP algorithm. Here, the memory consumption
for synaptic weights is optimized. In addition to that, this
architecture needs only 72 ∗ L bits to store the synaptic
parameter (Ap and Aq) matrices, compared to 6272 ∗ L bits
used [7]. In this work, hardware implementation of SNN on
FPGA is carried out for K = (128, 256 and 512) whereas
same parallelization factor (K = 128) has been applied
[7]. The design in [7] is not fully parallelized and runtime
is not improvised when the number of neuron processing
units gets increasing for the larger communication. Thus,
in present work, the architecture is fk -folded and runtime
has been improvised compared to earlier reported literature
[7]. Earlier research presented many architectures and did
not imply on the parallel architecture of neuromorphic
processor [7], but to improve the speed we need to adopt
the parallel architectures. LAU for the parallel architecture
[7] involves an adder tree which is having N inputs. This
scenario is not realizable when size of neurons is huge. The
proposed folded LAU architecture, Neuron Unit and STDP
units are different from the architecture mentioned [7].
Earlier research doesn’t consider the concept of registering
the time flags. Instead, the proposed method uses registering
the flag status, and reducing the memory requirement to
store the Ap and Aq elements. The hardware complexity of
each block is summarized in Table II.

B. Timing Complexity
The proposed architecture is parallel and fk times folded

compared to recent research [35] and makes this archi-
tecture faster than previous serial design. Out of the four
major blocks, LAU block starts processing first. The time
complexity of this block is TLAU = fk × N + lLAU where
lLAU is the latency of the LAU block and it is equal to
(k + 4) where K = 2k. The NU block starts processing
simultaneously and thus no extra time is needed to write
the flags. Once the flags are registered, the STDP module
starts processing. The timing complexity of this module is
TS T DP = L × M + lS T DP where lS T DP is the latency of this
module and it is equal to 5 clock cycles. The algorithm for
SNN is iterated for maximum tm iterations. Thus, the total
timing complexity for the proposed architecture to process
an image with M pixels is:

TS NN =

{
Mtm( fkN + llau + LM + lstdp, for training
Mtm( fkN + llau, for testing

(3)

According to this equation of timing complexity, the pro-
posed processor takes 7.94 seconds for training when a
28 × 28 handwritten digit is taken as an input and 0.8
seconds to test a handwritten image. In both cases viz. in
training and testing phase, the value of tm = 16 and fk = 4 is
considered. Earlier result includes the value of fk = 2 or 13,
and K = 128 for N = 212 or N = 1591 respectively. fk = 4
is further considered to estimate and verify high speed
with affordable power. The proposed architecture achieves
maximum frequency of 125 MHz. Thus, execution time of
the proposed processor is computed by taking Tclk= 8ns.
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(a) Original handwritten digit from the MNIST dataset (b) Output of the FPGA implementation of SNN

Figure 9. Comparison of input handwritten digits obtained from MATLAB with recognized digits by FPGA

TABLE II. Block wise hardware complexity.

Blocks 18-bit Comp. 1-bit Mux. 1-bit Reg. Memory (Words) Multiplier Add./Sub.
NU 1 21 ≈ N (N + 1) 0 0

LAU 0 18 18K − 90 0 1 4K − 4
STDP 0 36 72L + 288 0 2 5

W logic 3 36M + 72 0 ML 0 0
Others 0 36(M − 1) + 19K( fk − 1) 0 0 0 0

*: 18-bits are considered as one word.

The architecture is routed on the FPGA device which is
Virtex-6 FPGA using Xilinx 14.7 EDA tool. The best timing
parameter is achieved after many trials by meeting all the
setup and hold time constraints.

C. Power Consumption
Power consumption is an important design parameter to

evaluate the performance of an architecture and is measured
using Xilinx XPower Analyzer. The consumption of power
is accredited to utilization of memory blocks and hardware
resources. Dynamic power is measured by considering all
the switching activity of the design. The proposed de-
sign consumes 418 mW and is higher than that of serial
neuromorphic architectures [7] because of more hardware
resource requirements for minimum time consumption.

D. Comparative Analysis
The comparison among different SNN implementation

methods with our work is summarized in Table III. In
this simulation work, MNIST handwritten digit image is
converted into spike trains using Poisson spike distributions.
The resultant spike train is sent to SNN followed by STDP
learning algorithm. The Euler method was implemented for
neuron dynamics. The long simulation time is due to the
huge number of iterations and large number of neurons as
we have trained and tested SNN by taking N = 212 and
1591. Consequently, the existing membrane potential also
gets updated for subsequent increasing iteration steps. This

work achieved an accuracy of 90% for 800 output neurons.
The long simulation time is for solving the differential
equations of Euler and Runge-Kutta (RK3) method where
an accuracy of 89.5% and 89.7%, is achieved respectively
[1]. Whereas in [7], Euler method was used to implement
SNN in MATLAB for 800 output neurons and achieved
90% accuracy. Frenkel et al. [35] implemented 0.086-mm2

64k synapse 256-neuron online-learning digital spiking neu-
romorphic processor in 28 nm FDSOI CMOS and obtained
84.5% efficiency. An accuracy of 88.6% is achieved for
SNN implementation in software simulation [28].

The hardware requirement of the proposed architecture
is compared with the existing works in Table IV. The
introduced architecture is parallel and hardware efficient
than the architecture reported [7], [1]. In addition to that,
this architecture needs only 72 ∗ L bits to store the synaptic
parameters (Ap and Aq) matrices, compared to 6272∗L bits
used [7]. The number of slice registers and slice LUTs used
[7] is almost double compared to the same used in present
work for K = 128. This justifies the extra usage of DSP and
memory blocks. In this work, hardware implementation of
SNN on FPGA is carried out for K = 128, 256 and 512
whereas same parallelization factor (K = 128) has been
applied [7], [1]. Recent literature [1], reports the NAND
gate counts for both slices and BRAMs followed by an
estimation method [36] to compare the area occupation of
different designs. As a result, the memory size shown in
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TABLE III. Comparison of our work with previous works in terms of accuracy.

Methodology Accuracy (%) Ref.
Euler Method, FPGA 92, 90 This work

Euler and RK3 Method 89.5, 89.7 [1]
Euler Method (MATLAB) 90 [7]

CMOS 84.5 [35]
FPGA 88.6 [28]

TABLE IV. Comparison of the proposed architecture with the previous work in terms of hardware resources.

Architectures This Work Std. Mul. [7] Apprx. Mul. [7] Euler Method [1] RK3 Method [1]K=128 K=256 K=512
Slice LUTs 32,349 32,384 51,865 97,287 93,232 45,531 88,053

32987 54313
Slice Registers 29,043 29,053 30,091 58,826 58,345 - -

BRAM 395 396 396 34 34 289,101 289,101
DSP 20 155 538 - - - -

Runtime (ns) 8.12 8 7.94 16.8 16.8 0.053 0.029

Table IV is comparatively smaller with respect to present
work. The design [7] is not fully parallelized and runtime
is not improvised when the number of neuron processing
units gets increasing for the larger communication. Thus,
in present work, the architecture is fk -folded and runtime
has been improvised compared to reported literature [7].
The proposed architecture is almost two times faster than
the architecture [7] as shown in Table IV. Whereas, with
the parameter optimization scheme, genetic algorithm, and
parallel architecture design [1], the runtime has been impro-
vised compared to present work which is shown in Table
IV. However, present work has less hardware complexity
and better accuracy than the reported literature.

5. CONCLUSION
In this work, a hardware and memory efficient folded

parallel architecture of neuromorphic processor is proposed.
The architecture uses very few memory elements compared
to that of recent implementations of neuromorphic proces-
sor to accommodate the weights. This efficient usage of
memory elements leads to the lower power consumption.
The architecture is parallel but scalable to any number of
neurons. Scalability factor is introduced by partially folding
the architecture by the factor of fk. The speed of the
architecture can be increased by changing the value of fk or
decreasing the folding factor. Further increase in the value
of fk will increase the resources and the power requirement.
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