
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Sep-2023)

http://dx.doi.org/10.12785/ijcds/140185

FPGA based object parameter detection for Embedded Vision
Application

Modi P R Prasad1 and Arvind K Singh2

1,2Department of Electrical Engineering National Institute of Technology, Kurukshetra, India

Received 14 Jul. 2022, Revised 16 Sep. 2023, Accepted 19 Sep. 2023, Published 22 Sep. 2023

Abstract: Real-time image/video processing contains complex algorithms, and the number of computation operations such as a number
of additions and the number of multiplications, which are solved by CPU, results decrease in processing speed and consume more power.
On the other hand, FPGA has high processing speed and low power consumption and it also has the capability to work with CPU.
Hence, sharing the load and performing complex tasks, results increase the system performance. In this work, there is the development
of IPs for single object detection and canny edge detection using different filters. These IPs can be used in FPGA for real-time image
processing. The tool which is used is Vivado HLS, to generate the hardware accelerator and the library which is used is the xfOpenCV
library. Both are developed by Xilinx. XfOpenCV library is the optimized version of OpenCV means to reduce the complexity of an
algorithm for fast performance. Single object detection detects the object in real-time by using FPGA based system and xfOpenCV
APIs. Similarly, edge detection using a different filter shows the effect of filters, which means removing noise in the image and making
it smooth, for edge detection. Smoothing image also reduces the number of computations (Addition and Multiplication). Resource
utilized by the generated IPs is very less which makes the system less heavy and more reliable.

Keywords: Zybo board, Vivado HLS, Object Detection, xfOpenCV, Edge detection

1. INTRODUCTION
The role of FPGA-based object parameter detection

for embedded vision applications is attracting a lot of
research interest due to novel and innovative software
and hardware implementation. Various image processing
techniques are applied which treated the image as a two-
dimensional signal. The main purpose of real-time image
processing is to remove unwanted noise and disturbance
from the image and improve the motion picture quality.
Increasing picture/image quality increases the pixel’s useful
information related to its own image such as the corner
pixel. Corner pixels in the image contain useful information
and are used as a key point in many applications, such as
moving object tracking. Some applications such as motion
detection required previous data to compare with current
data for detection. Storing previous data required memory
along with being closer to the processing unit to make the
system process fast.

However, processing video images with a more com-
plicated algorithm requires a lot of computing power due
to the high pixel count. On the other hand, FPGA can
collaborate with the CPU to make it appropriate for image
processing. For high-speed operation, FPGA makes use
of a tackle accelerator. The FPGA performs several pre-
processing tasks to speed up processing. FPGA, which has

the ability to regulate the process without involving the
CPU, can also be built with the control sense in place and
enforced [1], [2].
FPGA is a programmable device that consists of a number
of arrays of an element that can be programmed directly by
the end-user. The user can develop or design their own im-
age processing application in C/C++. And convert them into
hardware descriptive language and then implement them on
FPGA. The array element in FPGA is DSP slices, LUTs
(lookup tables), and memory cells. These DSP (Digital
signal processing) slices are used for the fast operation of
image algorithms. LUTs are used for logical arithmetical
operations. Memory cells are used to store the data, done
by LUTs and again reuse the data whenever they are
required. Along with hardware, optimized software code is
also important. Therefore xfOpenCV which is an optimized
computer vision library is used for effective Performance
[3], [4].
The contributions of this work:

• The novelty of this work is a Software implementa-
tion of canny edge detection using xfOpenCV library
on Vivado HLS tool targeted for Zynq7000 based
Zybo board achieves better accuracy and better ef-
ficiency compared with other existing methods [5]
using the proposed algorithm and in this implemen-

E-mail address: mprprasad@nitkkr.ac.in, arvind 61900132@nitkkr.ac.in https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/140185
https://journal.uob.edu.bh/


1092 Modi P R Prasad, et al.:FPGA based object parameter detection.

tation, flipflop resource usage is only 21% and lookup
table resource usage is only 49%.

• The proposed FPGA implementation is cost-effective
and experimental results achieve good results com-
pared with the existing method [5].

The Canny edge detector is known for its optimality based
on three criteria of good detection, good localization, and
good response to an edge. Based on the three criteria of
good detection, good localization, and good reaction to an
edge, the Canny edge detector is renowned for its opti-
mality. Because it incorporates Hysteresis, Thresholding,
Non-Maximum Suppression, and Sobel Edge Detection in
addition to Sobel Edge Detection, Canny Edge Detection
produces the greatest results.
As a result, the algorithm’s final phases can identify and
link edges with greater flexibility. Most edges may be found
using the clever edge detector. Sigma, the standard deviation
for the Gaussian filter, and the threshold values have a
significant impact on the performance of the canny method.
The size of the Gaussian filter increases as the value
increases. This suggests greater blurring, which is required
for noisy images, as well as the detection of sharper edges.
When one of the components, such as localization or
detection, reaches infinity, the Canny optimization approach
suffers a significant disadvantage. The maximization of the
product in this situation does not ensure that the other factor
is still reasonable. Boundary conditions for the suggested
technique are pixels in the foreground (highest value) and
pixels in the background (lowest values).
The shortcomings of the canny edge detector include its
narrow focus on local alterations, lack of semantic segmen-
tation, and low accuracy.
Any edges with intensity gradients more than the maximum
value are regarded as edges, whereas any below the min-
imum value are not. According to the connectivity, those
that are in between two thresholds are either edges or not.
The organization of the paper is as follows: Section 2 con-
sists of an overview and literature survey, and methodology
is explained in Section 3, followed by simulation results,
and Section 4 is the conclusion and future scope, followed
by references.

2. OVERVIEW AND LITERATURE SURVEY
A. Overview Of Zynq-7000 Soc

The Zynq-7000 family is integrated with a feature-
rich single or dual-core ARM cortex-A9-based processing
system (PS) and programmable logic (PL). Figure 1 shows
an overview of the Zynq SoC architecture, with the right
part being Processing System (PS) and the left being
Programmable Logic (PL). The processing system consists
of many components such as on-chip memory, external
memory interface, DMA controller, Watchdog timer, and
peripheral controller with I/O multiplexed to 54 dedicated
pins (MIO pins)[6], [7].

Figure 1. Overview of Zynq Architecture

B. softwaretool Overview
Vivado HLS tool is developed by Xilinx and is used

to implement the code in the FPGA. The programming
language used to configure the FPGA is Verilog or Sys-
temVerilog, which is a hardware descriptive language. But
sometimes, complex algorithms are very difficult to develop
using hardware descriptive language when compared to
any high-level language such as C/C++. As a result, this
tool transforms languages like C/C++ in to an appropriate
Verilog format that may be used to program FPGA. Once
the designer completes its coding, it can be verified and
tested using this tool. After converting code into RTL
format, these tools generate the IP for the following RTL
code, which can be used in flashing FPGA [8].
Vivado HLS tool 2019.2 is used for the experiment. The
flow of the tool is shown in Figure 2 where before im-
plementing or flashing the RTL code into FPGA, the RTL
code must go through various steps in the tool including the
writing of code, error checking of the code, and checking
the functionality of the code. Writing the algorithm is done
in C/C++ and after the end of our synthesis, this code is
converted into RTL format. Vivado HLS contains a number
of directive pragmas. These pragmas are used to optimize
the C synthesis. Various combinations of debugging and
testing can be obtained by using these different numbers
of directives pragmas for the best-optimized solution of an
application.
Firstly we have to write the top-level function according to
the desired functionality. After that user run the simulation
to check the correctness of the top-level function. The
simulation uses a test-bench file that calls the top-level
function. Error and warning after the simulation are shown
in the error and warning window. Once the synthesis is done
the file is ready for IP packaging which can be performed
by RTL export from tool[9].

C. Xfopencv Library Overview
Xilinx develop the optimized xfOpenCV library for the

FPGA device. These libraries are designed to work on
a High-level synthesis development environment and SDx
development environment. XfOpenCV libraries are similar

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1091-1099 (Sep-2023) 1093

Figure 2. Workflow for Vivado HLS Synthesis

to OpenCV libraries in functionality. Both libraries are
written in C++.
The major difference between xfOpenCV and OpenCV is
that OpenCV is dedicated to runs on CPU and xfOpenCV
is dedicated to runs on FPGA devices. As a result of which
it gives up to 40x faster than GPUs and 90x faster than
CPU.
Some classes and objects in the XfOpenCV library which
are very useful in this project.

• xf:: Mat2AXIvideo class converts the image object
from Mat format to AXI format.

• xf:: Canny function used for edge detection

• xf:: GaussianBlur function used for Gaussian filter

• xf:: medianBlur function used for bilateral filter

• xf:: bilateral filter function used for the median filter

• xf::threshold function used to remove the pixels from
an image which are below the threshold level

• xf:: fast function used to detect the corner in the
image.

• xf:: bounding-box used to make the rectangle box.

The common format used for using xfOpenCV:

• xf’ namespace is used to define all functions.

• Templates are used to design the functions.

• Xf::Mat is used as an argument for an image.

• xf:: Mat2AXIvideo class converts the image object
from Mat format to AXI format.

• xf:: Canny function used for edge detection

• xf:: GaussianBlur function used for Gaussian filter

• xf:: medianBlur function used for bilateral filter

• xf:: bilateral filter function used for the median filter

• xf::threshold function used to remove the pixels from
an image that are below the threshold level

• xf:: fast function used to detect the corner in the
image.

D. Single Object Detection Overview
Object detection plays an important role in real-time

image processing like in an automatic electric vehicle,
ship detection, security surveillance, and satellite-based
detection. Real-time image processing required very fast
processing such as in automatic electric vehicles to track
the object present on the road should be detected very fast
otherwise it results in a serious accident. Also in electric
vehicles, power saving is an important factor. Therefore
making a system that has fast processing and less power
consumption is very useful. So, in this experiment, we
are detecting a single object in an image using xfOpenCV
libraries. XfOpenCV libraries have similar functionality as
OpenCV. These libraries are optimized for Vivado HLS
by Xilinx making the system fast. FPGA uses a hardware
accelerator for high-speed operation and reduces the amount
of work that is to be done by the CPU. Also, the power
required for FPGA is very less which makes the system
power efficient [10].

E. Edge Detection Using Different Filter Overview
Image processing is used in many applications. To get

accurate and correct results from the application, different
filters are used to reduce the noise in the image and also to
smooth the image for fast processing. In this work, we are
detecting the edge of an object using a canny edge algorithm
and see how the edge detection [11] is affected when we
use different filters such as the Gaussian filter, bilateral
filter, and median filter. Filters are used to smooth the
image and reduce the noise in the image which reduces the
computation process (addition and multiplication). Canny
edge and different filters are from xfOpenCV libraries which
are optimized by Xilinx for the Vivado HLS tool [11].
FPGA is used for high-speed operation and low power
consumption. We also see how much resource is utilized
by a different filter in FPGA [12].

3. METHODOLOGY
A. Single Object Detection

1) Functions Used

a) Threshold

According to the specified value [5], this function adjusts
the intensity of pixels to either minimum or maximum
[5]. Threshold operation can be used for a wide variety
of operations.

Step 1 The pixel intensity is set to the highest value if
it is more than or equal to the specified threshold, else it is
set to the minimum value.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1094 Modi P R Prasad, et al.:FPGA based object parameter detection.

Step 2 Whenever the pixel intensity crosses the set thresh-
old, it is left as it was in the original picture pixel.
Step 3 Whenever the pixel intensity crosses the set thresh-
old, it is set to zero (the minimum).
Step 4 The pixel intensity is set to a maximum or lowest
in step 1 by the threshold and maximum values.
Step 5 In step 1, the output of the threshold picture
is assumed to have two kinds of pixels: pixels with the
highest value in the foreground and the lowest value in the
background.

b) In range

This function removes the background pixels entirely from
an image [5]. lower and upper values of boundaries are
detected using this function. If it is false, the output pixel
is set to 0 (dark/black), and if it is true, the output pixel is
set to 255 (bright/white).

Output(Image)=Lower Value<Input (Image)<Upper
Value

Following the identification of the foreground pixels in
the image, the Fast (Features from accelerated segment test)
corner detection method is carried out. The quick function
locates an object’s corners that are visible in our image.

c) Corner Detection

The Fast (Features from accelerated segment test) corner
detection method is carried out after the foreground pixels
in the image have been located. The quick function locates
an object’s corners that are visible in our image [5], Corner
of an object is only deemed to exist if 9 consecutive pixels
with the same intensity are detected to exceed the specified
threshold [5]. The corner that was located has a marking of
255 (bright/white), otherwise, it is marked as 0 [5].

d) Finding Pixel Location

After obtaining an object’s corners, it is necessary to locate
each corner that was found, which can be done by using
the XF BITSHIFT function [5]. Until the data transfer size,
the XF BITSHIFT function counts each time the image
size shifts to the right [5]. The x and y coordinates of
any point where a value (pixel) is found are stored in the
array when this function is used in a loop to check every
row and column. The region of interest (ROI) determines
which recorded coordinates are chosen [13]. An HSV image
(HueSaturation-Value) is created initially from the color
image. Take the HSV image’s saturation feature out. Pixels
that are lost during feature extraction are added back into
the object using dilation [13]. The pixels are divided into
maximum and minimum pixel intensities by the threshold.
The minimal value pixel is completely removed from the
image using In Range. The corner of an item is found
via fast corner detection. Choose the region of interest

(ROI) and locate the corner location. Utilizing the boundary
function, draw a boundary over the object visible in our
image using the region of interest [14], [15].

B. Implementation
1) Steps For Algorithm

a) Designer creates the top-level function for synthesis
in C++:

b) Detection of objects.
c) Detection of ip is a synthesis wrapper function.
d) Use the HLS #pragma interface pragma directive.

The syntax is HLS INTERFACE axis register both
port = input.
The output port on both the HLS Interface’s axis
registers.

e) Develop a class of image objects using source code.
f) Develop Hue-Saturation-Value variable with pragma

directive.

C. Edge Detection Using Different Filters
An integral part of object detection is edge detection.

The algorithms below are implemented to perform the pro-
cess of edge detection. The canny edge detection method-
ology is used as the base for edge detection with different
filters being used for noise removal. The performance of the
algorithm with each filter is studied and the best possible
combination is implemented to obtain more flawless object
detection. The procedure for edge detection followed is
explained below.

1) Functions Used
a) Canny Edge

It is the most commonly used algorithm for edge detection.
It is a multistage edge detection algorithm [16][17].

b) Pre-processing

This stage is required to remove or filter out the noise
present in the image. Smoothing the image reduces the noise
which is done by using a different filter such as a Gaussian
filter, bilateral filter, and median filter.

2) Gradients

Gradient magnitude and direction are important parameters
in canny edge detection. The algorithm calculates the gra-
dient and finds out whether this single point in the image
is possibly an edge or not. High magnitude means it is
considered an edge and low magnitude means the point is
not considered as an edge. The gradient’s direction reveals
information about the edge’s orientation. The computation
of the gradient’s magnitude and direction (angle) comes
next.

M(x, y)⇒
√

gx
2 + gy

2 (1)

α(x, y)⇒ tan−1
[

gy

gx

]
(2)

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1091-1099 (Sep-2023) 1095

3) Non-maximum suppression

In this stage of edge detection, the algorithm finds out in
which direction pixels are moving. There are 4 possible
ways in which pixels move top to bottom, left to right,
top left to bottom right(diagonally), top right to bottom
left(diagonally) [18], [19]. After finding the direction, the
algorithm finds out the maximum magnitude pixel by com-
paring it with neighboring pixels’ magnitude present in the
detected direction [20].

4) Edge tracing

We marked pixels as edges whose gradient magnitude is
greater than the given threshold. Once we detect the pixels
edge tracing is applied to draw the edges on the image [5].

a) Gaussian Filter

The Gaussian filter function blurs the input image. Gaussian
filter is a non-linear low pass filter. Gaussian filtering uses a
Gaussian kernel to convolve each point in the input image.
The value of Gaussian kernel coefficients depends on sigma.
The larger the value of sigma produces greater blurring [13].

b) Bi-Lateral Filter

The median filter works by going pixel-by-pixel across the
image and replacing each pixel’s value with the median
of its surrounding pixels [21], [22]. The weighted average
of the intensity values of adjacent pixels is used by the
bilateral filter to replace each pixel’s value. The bilateral
filter is similar to the Gaussian filter. But the bi-lateral filter
also uses sigma color and sigma space parameters for better
filtering the image and reducing noise much more efficiently
[23].

c) Median Filter

A nonlinear digital filter is the median filter. The median
filter operates by traversing through the image pixel by pixel
and then replacing each pixel value with the median value
of its neighboring pixels[24] [9], [25].

D. Implementation
a) Software Tool

Vivado HLS is a Xilinx tool used to flash the FPGA. The
programming language used in FPGA is Verilog, which is
hardware descriptive language. But sometimes it is very
difficult to develop an application writing Verilog when
compare to another high-level language such as C/C++.
Simulation and Synthesis can also be done by using Vivado
HLS. Once the designer completes its coding, it can be
verified and tested using this tool. For testing the top-
level edge detection function, a test- bench is created After
verification is done, the designer synthesizes the desired
code and generates IP.

b) Libraries

XfOpenCV is Xilinx’s computer vision library written in
C++, mainly developed for Xilinx hardware. Some classes
and objects in the XfOpenCV library which are very useful
in this project.

• xf:: Mat class uses to define the image object in mat
format

• xf:: AXIvideo2xfMat class converts the image object
from AXI format to Mat format

• xf:: Mat2AXIvideo class converts the image object
from Mat format to AXI format

• xf:: Canny class used for edge detection

• xf:: GaussianBlur class used for Gaussian filter xf::
medianBlur class used for bilateral filter

• x:: bilateral filter class used for the median filter

c) Steps for the Algorithm

• Wrapper function used to wrap the intellectual prop-
erty (IP), means the input and the output of the func-
tion become the input and output port of generated
IP.

• Inside the wrapper function

1) Pragma directives are used to interface inHLS
2) Define the image object class inside the wrapper

function. This image object is used to store the image
once the image is converted into a matrix format
from AXI format. This stored image is passed to the
top-level function.

3) HLS stream variable using pragma directive
4) Data flowpragma

• Inside the Top-Level function

Firstly, convert the input image into a grey image, then
pass the grey image into the filter for smoothing the image.
Smoothing reduces the noise in the image and helps in
reducing unwanted edge detection. Different filter is used
for smoothing such as Gaussian, bilateral and median filter.
Finally, the filtered output is the pass to the canny edge for
edge detection.

Figure 3. Flow of Algorithm in the proposed system.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1096 Modi P R Prasad, et al.:FPGA based object parameter detection.

E. Results
1) Simulation Results

Figure 4 is the Source image in Vivado HLS for C-
simulation shown below. Figure 5-7 is the output image
generated after the C-simulation is shown below respec-
tively.
In Figure 5, the Gaussian filter reduces the noise present in

Figure 4. Input Considered.

the image as a result of which in edge detection very less
unwanted edge is detected when compared to the median
filter. In the median filter, noise is present which makes
the edge detector detect an unwanted edge in the image.
In Figure 5 and 7, the letter A and S in edge detection
using a Gaussian filter contain less noise and produces fewer
unwanted edge compared with a median filter. Also, a sharp
edge is shown better in edge detection using a Gaussian
filter rather than the edge detected by using a median filter.

Edge detection using a bilateral filter reduces noise much

Figure 5. Canny using Gaussian.

better than Gaussian and median filters. Therefore the letter,
A and S do not contain noise and no unwanted edge is
detected. Edge sharpness is also better than the other two
filters. In Figure 6, edge detection using bilateral catches

Figure 6. Bi-lateral Filter.

Figure 7. Median Filter.

the edge while using the other two filters fails to catch the
edge as shown in Figures 5 and 6.

2) Resource Utilization
The Resource utilization when the canny algorithm is

used with different filters is as follows. The results show
the optimized resource utilization by FPGA after generating
RTL in system design. Utilization of the lookup table (LUT)
and the flip flop is nearly equal in all the edge detection
[26], [27]. DSP(digital signal processing) uses is much more
in edge detection using Gaussian filter and very less in
median filter edge detection and moderate in bi-lateral filter
edge detection [28], [29]. DSP helps in fast performance in
filtering.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1091-1099 (Sep-2023) 1097

TABLE I. RESOURCE UTILIZATION CANNY USING GAUS-
SIAN.

TABLE II. RESOURCE UTILIZATION CANNY USING BI-
LATERAL.

TABLE III. RESOURCE UTILIZATION CANNY USING ME-
DIAN.

4. Final Results Of Single Object Detection
A. Simulation Result

The source and output images in Vivado HLS for C-
Simulation are presented in Figures 8 and 9, respectively.
The source image is processed by C-Simulation in Vivado
in accordance with the xfOpenCV library function.
The results of the C- simulation is displayed in Figure 9.
The detector object is contained in a rectangle in the output
images.

B. IP GENERATED
Below is a screenshot of the created IP using Vivado

HLS’s export RTL function and C-synthesis.According to
the AXI standard protocol, that contains AXI input and
output ports.

C. Resource Utilization
The Vivado HLS utilization report, which displays the

resources used by the FPGA to produce RTL during system
design, is provided below. Only 1% of the flip flop is used
in this approach, and only 3% of the lookup table, which
is very little.

Figure 8. Source image in Vivado HLS.

Figure 9. Output image after C-simulation.

5. Conclusions and FutureWork
The xfOpenCV library in Vivado HLS has been suc-

cessfully used for single object detection. Instead of being
written in Verilog, complex image processing algorithms
are written in high-level languages (C/C++). In comparison
to the OpenCV library, the algorithm from the xfOpenCV
library produces quicker results.
The resource utilization table demonstrates that the FPGA’s
resources are being used very sparingly. To achieve better
outcomes, other filters can be applied throughout the pro-
cedure, such as the bilateral, median, and dilation filters.
Compared to the OpenCV library, the approach from the
xfOpenCV Library produces quicker results.
The result shows a comparison of the resource utilized by
different filters. A bilateral filter reduces more noise as
compared to Gaussian and median filters due to which a
better edge is detected while using a bilateral filter. When
compare to sharpness, edge detection using a bilateral filter
gives better results than by using the other two filters.
But if we compare between Gaussian and median filters,
edge detection using the Gaussian filter gives good results
than median filter edge detection. In the process of edge
detection, selecting a threshold also plays an important
role. By changing these value, the efficiency of smoothing

http:// journal.uob.edu.bh

http://journal.uob.edu.bh


1098 Modi P R Prasad, et al.:FPGA based object parameter detection.

Figure 10. Generated IP.

TABLE IV. UTILIZATION ESTIMATES.

the image can change which change the edge detection
performance.
As in real-time image processing, performance is consid-
ered a very important factor. Better edge detection increases
the accuracy to identify the object used in image processing
applications such as security systems and object detection.
It alters the image’s smoothness, making it easier to identify
an object’s pixel placements. To prevent pixel loss of the
targeted item, it is possible to alter the higher threshold and
lower threshold values in the code. Changing the threshold
improves the effectiveness of detection.
Real-time image processing plays an important role in Deep
learning and machine learning application. But to resolve
these algorithms, high processing speed and low-power
consumption devices are needed. We can use powerful
CPU’s to fulfill our requirements but this will cost very
high and also consume power. Alternate solution is FPGA,
which has high performance and less power consumption.
FPGA stands for field programmable gate array means it
can be re-program whenever want. One special ability of an
FPGA is to work with the CPU and change the complete
system property and performance. The controlling part is
done by the CPU and the complex algorithm part is done by

FPGA, both parallel. 42 Many FPGA and Machine learning
companies have collaborated to design a specific Tiny
Embedded devices that can be capable of doing machine
learning algorithms called TinyML. Embedded devices such
as a smartwatch and cell-phones contain a small processor
and limited battery power. To run these ML algorithms,
force the device to consume more power and make the
small processor heated. TinyML is the optimized machine
learning algorithms mainly develop for small embedded
devices.

References
[1] M. Ning, “A soc-based acceleration method for uav runway detec-

tion image pre-processing algorithm,” in 2019 25th International
Conference on Automation and Computing (ICAC). IEEE, 2019,
pp. 1–6.

[2] A. B. Amara, E. Pissaloux, and M. Atri, “Sobel edge detection
system design and integration on an fpga based hd video streaming
architecture,” in 2016 11th International Design & Test Symposium
(IDT). IEEE, 2016, pp. 160–164.

[3] W. Liu, H. Chen, and M. Long, “Moving object detection and
tracking based on zynq fpga and arm soc,” in IET Conference
Proceedings. The Institution of Engineering & Technology, 2015.

[4] S. Chhabra, H. Jain, and S. Saini, “Fpga based hardware implemen-
tation of automatic vehicle license plate detection system,” in 2016
International Conference on advances in computing, communica-
tions and informatics (ICACCI). IEEE, 2016, pp. 1181–1187.

[5] M. K. Lokender Vashist, “Design of canny edge detection hardware
accelerator using xfopencv library,” springer, vol. 8, 2019.

[6] A. Cortes, I. Velez, and A. Irizar, “High level synthesis using vivado
hls for zynq soc: Image processing case studies,” in 2016 Conference
on design of circuits and integrated systems (DCIS). IEEE, 2016,
pp. 1–6.

[7] M. Kowalczyk, D. Przewlocka, and T. Kryjak, “Real-time imple-
mentation of contextual image processing operations for 4k video
stream in zynq ultrascale+ mpsoc,” in 2018 Conference on Design
and Architectures for Signal and Image Processing (DASIP). IEEE,
2018, pp. 37–42.

[8] X. Inc., Xilinx OpenCV User Guide, Xilinx Inc.,
2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
ug1233-xilinx-opencv-user-guide.pdf

[9] T. Wu, W. Liu, and Y. Jin, “An end-to-end solution to autonomous
driving based on xilinx fpga,” in 2019 International Conference on
Field-Programmable Technology (ICFPT). IEEE, 2019, pp. 427–
430.

[10] Q. D. Ma, Z. Ma, C. Ji, K. Yin, T. Zhu, and C. Bian, “Artificial
object edge detection based on enhanced canny algorithm for high-
speed railway apparatus identification,” 2017 10th International
Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), pp. 1–6, 2017.

[11] Z. Fu, S. Song, X. Wang, J. Li, and H.-M. Tai, “Imaging the
topology of grounding grids based on wavelet edge detection,” IEEE
Transactions on Magnetics, vol. 54, no. 4, pp. 1–8, 2018.

[12] M. Mittal, A. Verma, I. Kaur, B. Kaur, M. Sharma, L. M. Goyal,
S. Roy, and T.-H. Kim, “An efficient edge detection approach to

http:// journal.uob.edu.bh

https://docs.xilinx.com/v/u/en-US/ug1233-xilinx-opencv-user-guide.pdf
https://docs.xilinx.com/v/u/en-US/ug1233-xilinx-opencv-user-guide.pdf
http://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 1091-1099 (Sep-2023) 1099

provide better edge connectivity for image analysis,” IEEE Access,
vol. 7, pp. 33 240–33 255, 2019.

[13] E. Dong, B. Han, X. Yu, and S. Du, “Moving targets detection
based on improved single gaussian background model,” 2018 IEEE
International Conference on Mechatronics and Automation (ICMA),
pp. 1179–1183, 2018.

[14] M. Chen and P. Liu, “A deep learning-based fpga function block
detection method with bitstream to image transformation,” IEEE
Access, vol. 9, pp. 99 794–99 804, 2021.

[15] X. Zhang, L. Zhang, and X. Lou, “A raw image-based end-to-end
object detection accelerator using hog features,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 322–
333, 2022.

[16] M. Kalbasi and H. Nikmehr, “Noise-robust, reconfigurable canny
edge detection and its hardware realization,” IEEE Access, vol. 8,
2020.

[17] H. T. . Lee and J. Park, “Energy efficient canny edge detector
for advanced mobile vision applications,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 7, 2018.

[18] S. Kim, S. Na, B. Y. Kong, J. Choi, and I.-C. Park, “Real-time
ssdlite object detection on fpga,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 6, pp. 1192–1205,
2021.

[19] V. Malviya, I. Mukherjee, and S. Tallur, “Edge-compatible convo-
lutional autoencoder implemented on fpga for anomaly detection in
vibration condition-based monitoring,” IEEE Sensors Letters, vol. 6,
no. 4, pp. 1–4, 2022.

[20] V. Raghavendra and L. Shrinivasan, “Time efficient design and
fpga implementation of distributed canny edge detector algorithm,”
in 2018 3rd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT).
IEEE, 2018, pp. 2135–2139.

[21] X. Wang, Y. Song, F. Hou, M. Zhang, A. G. Richardson, T. H.
Lucas, and J. V. d. Spiegel, “Design of a real-time movement
decomposition-based rodent tracker and behavioral analyzer based
on fpga,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 30, no. 9, pp. 1133–1143, 2022.

[22] W. He, J. Zhang, Y. Lin, X. Zhou, P. Li, L. Liu, N. Wu, and C. Shi,
“A low-cost high-speed object tracking vlsi system based on unified
textural and dynamic compressive features,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 1013–
1017, 2021.

[23] R. Manoranjitham and P. Deepa, “Novel interest point detector using
bilateral-harris corner method,” 2017 4th International Conference
on Advanced Computing and Communication Systems (ICACCS),
pp. 1–4, 2017.

[24] S. Vishaga and S. L. Das, “A survey on switching median filters for
impulse noise removal,” 2015 International Conference on Circuits,
Power and Computing Technologies [ICCPCT-2015], pp. 1–6, 2015.

[25] X. Fan, G. Xie, Z. Huang, W. Cao, and L. Wang, “Acceleration
of rotated object detection on fpga,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 69, no. 4, pp. 2296–2300, 2022.

[26] W. Xu, F. Li, Y. Jiang, A. Yong, X. He, P. Wang, and J. Cheng,
“Improving extreme low-bit quantization with soft threshold,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 33,
no. 4, pp. 1549–1563, 2023.

[27] G. Lee, J. K. Park, and J. T. Kim, “Ocdma codeword switching
technique to avoid interference of time-of-flight lidar system for
autonomous vehicles,” IEEE Sensors Journal, vol. 23, no. 3, pp.
3090–3102, 2023.

[28] Y. Liu, J. Li, K. Huang, X. Li, X. Qi, L. Chang, Y. Long, and
J. Zhou, “Mobilesp: An fpga-based real-time keypoint extraction
hardware accelerator for mobile vslam,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 69, no. 12, pp. 4919–
4929, 2022.

[29] M. Xu, Z. Zhang, H. Li, Q. Luo, R. Dou, L. Liu, J. Liu, and
N. Wu, “Hierarchical parallel vision processor for high-speed ship
detection,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 70, no. 3, pp. 1164–1168, 2023.

Modi P R Prasad presently working as an
Asst. Professor in the Dept. of Electrical
Engg. at National Institute of Technology
Kurukshetra. India.
His research interests are Marine Robotic
Vehicle Control, Renewable Energy, Elec-
tronic Instrumentation. He is a member of
IEEE.

Arvind K Singh working as a Research
Scholar in the Dept. of Electrical Engg. at
the National Institute of Technology Kuruk-
shetra. India.
His research interests are Power Electronics,
Renewable Energy, & Electronic Instrumen-
tation. He obtained his M.Tech in Power
Electronics from NIT Kurukshetra.

http:// journal.uob.edu.bh

http://journal.uob.edu.bh

	INTRODUCTION
	OVERVIEW AND LITERATURE SURVEY
	Overview Of Zynq-7000 Soc
	softwaretool Overview
	Xfopencv Library Overview 
	Single Object Detection Overview
	Edge Detection Using Different Filter Overview

	METHODOLOGY
	Single Object Detection
	Implementation
	Edge Detection Using Different Filters
	Implementation
	Results
	Simulation Results
	Resource Utilization


	Final Results Of Single Object Detection
	Simulation Result
	IP GENERATED
	Resource Utilization

	Conclusions and Future Work
	References
	Biographies
	Modi P R Prasad
	Arvind K Singh


