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Image Classification Based on Disaster type Using

Deep Learning

Abstract

People nowadays use social media platforms to capture and share real-time
incidents in the form of images, videos and text. However, sharing too much infor-
mation at once makes it harder for first responders to determine where exactly
individuals are in need and whether they require immediate assistance. In the
past, machine learning techniques were used to automatically identify and infer
disaster response from images, as manually identifying disaster types is currently
challenging. Therefore, in this paper, deep learning models are used to investi-
gate how well they can classify the images according to their disaster type by
learning the features extracted from the input images on their own. In this study,
2 existing datasets namely the ‘Comprehensive Disaster Dataset’ (CDD) and
‘Natural Disaster Dataset’ (NDD) based on disaster types were customized into
a dataset entitled as ‘Customized Disaster Dataset’. The Customized Disaster
Dataset comprises of a total of ten classes, three of which are non-damage images,
Pre-trained models like the MobileNetV2, VGG16 and InceptionV3 were used to
train the datasets to allow for further comparison with existing studies. Along
with that, a customized neural network model was created and trained on the
datasets. Different scenarios were devised to assess the top 3 performing models.
The InceptionV3 being best model had a classification accuracy of 96.86%. In
this study, we have demonstrated the effectiveness of CNN models as a tool for
automatic disaster type classification.

Keywords: First aid responders, Convolutional Neural Networks (CNN), deep
learning models, dataset, MobileNetV2, VGG16, InceptionV3
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1 Introduction

In an era where natural calamities endanger human lives and destroy infrastructure,
the ability to reliably categorize disaster-related images is critical for disaster response
management and mitigation operations. Earthquakes, floods, landslides, and other
natural calamities generate massive destruction. The Emergency Event Database (EM-
DAT) reported 387 natural disasters in 2022, resulting in the deaths of 30,704 persons
[1]. Natural catastrophes cause infrastructure damage, a high death toll, and local
economic losses. Following a tragedy, millions of people use social media platforms to
post videos, pictures, and tweets about the incident in hopes of receiving support from
the rightful authorities to provide relief and medical treatment to victims. This is crit-
ical for first responders, disaster management, and non-governmental organizations
(NGOs), as they are the ones that infer appropriate emergency responses based on the
type of disaster [2]. However, manually filtering all disaster-related postings among
other irrelevant posts such as random movies and advertisements is challenging. As a
result, in order ensure an efficient emergency response, it is critical to first classify the
images according to their disaster type. This has resulted in the surge to use deep learn-
ing algorithms to automate the disaster image classification process [3]. This paper
attempts to address the disaster image classification problem by developing a robust
deep learning model that can automatically recognize and categorize disaster-related
images based on disaster categories such as ‘Cyclone’,’ Earthquake’, ‘Flood’, ‘Drought’,
‘Landslide’, ‘Wild Fire’ and ‘Urban Fire’ with the intention to improve the efficiency
and efficacy of disaster response activities by automating the image classification pro-
cess. By adopting deep learning algorithms, the time and necessary resources such as
human intervention are reduced drastically allowing for a faster and more informed
decision-making during crucial situations [4]. This paper has a dual focus on develop-
ing a custom image classification model and utilizing pretrained convolutional neural
network (CNN) models separately for the classification of seven major disaster types:
‘Earthquake’, ‘Cyclone’, ‘Wildfires, Urban fires’, ‘Landslide’, ‘Drought’ and ‘Flood’
along with three non-damage classes labelled as ‘Non Damage Buildings Streets’,
‘Non Damage Wildforest’ and ‘Sea’. These non-damage classes are added to test the
model’s ability to differentiate between catastrophe images like earthquakes, floods,
and wildfires and non-disaster images like buildings, forests, and seas. These non-
damage categories are chosen specifically since the class Earthquake and non-damage
building both contain images of buildings but in different scenarios: Similarly, flood
and sea contain comparable patterns, as do wildfires and wild forest. This research will
encompass a wide range of imagery sources, including satellite imagery for the category
‘flood’ and ground-based images for the other categories, to ensure a comprehensive
understanding of disaster classification across different data types. For the custom
model, a neural network architecture is designed to accurately classify the different
disaster types. In addition, the research leverages pre-trained CNN models for disaster
type classification. These pre-trained models such as VGG16, MobileNetv2, and Incep-
tionV3, are fine-tuned and adapted to the specific disaster-related dataset, enabling
the extraction and utilization of generic visual features relevant to the different dis-
aster types. This approach aims to benefit from the pre-trained models’ knowledge of
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generic visual patterns while incorporating the domain-specific information required
for accurate classification [5].

This paper proceeds as follows: In the next section, we provide an overview of
recent works that have been done on disaster image classification using computer vision
and machine learning techniques. The methodology is described in section 3 while
the implementation details, the results and their evaluation are provided in section 4.
Section 5 concludes the paper with some ideas for future works.

2 Related Works

Amit et al. [6] created an automated approach for identifying catastrophes by analyz-
ing satellite photos with convolutional neural networks (CNN). Three convolutional
layers, two max-pooling layers, and two fully linked layers comprised their CNN design.
Using 30,000 to 40,000 picture patches from Google Earth aerial photographs, the sci-
entists generated a training dataset for landslides and floods in Japan and Thailand.
Using a raster scan approach, the CNN was trained for fast extraction of disaster
zones. To show the occurrence of a disaster, regions with high forecast values were
highlighted by creating a 32x32 rectangular box and labeling it with 1. Both catas-
trophes had F1- Scores ranging from 80% to 90%. For feature extraction, the model
utilised six RGB channels, prevailing over previous techniques that only used two
grayscale channels. It should be pointed out, however, that their dataset only com-
prised images captured in bright weather conditions. Tackling the difficulty of diverse
color changes associated with varying weather conditions remains a work in process
[6]. Liu and Wu [7] used wacDAE-2 (Wavelet Auto-Encoder with 2 Hidden Layers)
to build a deep learning-based approach to detect landslides in optical remote sens-
ing images. They used a wavelet transformation to capture hidden characteristics.
They also used a corrupting and denoising strategy to increase the resilience of the
model in recognizing landslide characteristics. To learn high-level characteristics and
representations for each picture, a deep autoencoder network with several hidden lay-
ers was employed. For class prediction, a softmax 20 classifier was applied. Google
Earth remote sensing images were used in the evaluations. The suggested wavDAE-2
approach by Liu and Wu surpasses SVM and ANN classifiers in terms of efficiency
and accuracy, reaching a classification accuracy of 97.40%. They intend to test the
approach on real-world optical remote sensing datasets, compare it to existing meth-
ods, and investigate network optimization methodologies. They also intend to create a
robust deep autoencoder network for highperformance computation on CUDA-enabled
GPUs [7]. Dunnings and Breckon [8] implemented a real-time, automatic fire detection
in videos using modified versions of AlexNet and InceptionV1 models, called AlexNet
and InceptionV1-OnFire respectively. They used superpixel localization techniques.
The implemented CNN architectures obtained a maximum accuracy of 93% for binary
fire detection in images, and an accuracy of 89% within their superpixel localization
framework. The models also performed significantly faster, processing frames at a
rate of 17 frames per second. However, the study focused only on fire-related disas-
ters [8]. Ofli et al. [9] proposed an early fusion multimodal deep learning architecture
for joint representation learning of text and picture modalities. For text and pictures,
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they employ two parallel architectures, including the VGG16 model for image clas-
sification and a customized CNN model for text. The multimodal architecture uses
a shared dense layer to aggregate data from both modalities and softmax to pre-
dict output. The studies make use of the CrisisMMD dataset, which contains pictures
from seven natural disasters in 2017. In unimodal experiments, image-only models
outperform text-only models by 2.5% and 6.4% in informativeness and humanitar-
ian categorization tasks respectively. The multimodal technique, on the other hand,
performs marginally better, with a 1.1% improvement in informativeness classifica-
tion and a 1.6% improvement in humanitarian categorization tasks [9]. Asif et al. [10]
created a disaster taxonomy and emergency response pipeline for automated decision-
making in emergency circumstances using deep learning algorithms. Card sorting was
used to validate the taxonomy’s correctness and completeness. The authors classi-
fied and identified objects found in disaster-related pictures using the VGG-16 and
YOLO algorithms. The analytic hierarchy process (AHP) mapped catastrophe images
to the taxonomy and chose relevant emergency response categories, while decision
tables aligned intermediate results. With YOLOv4, the technique obtained 96% clas-
sification accuracy [10]. Zou et al. [11] investigated how to detect catastrophe images
from social media using the VGG16 deep learning model and the FastText frame-
work. Using the CrisisMMD dataset, they developed a data fusion model that used
visual and linguistic features to categorize relevant photos. In Task 1, the multimodal
approach outperformed unimodal methods, with an accuracy of 87.6% against 83.3%
for image-only approaches and 85.2% for text-only approaches. In Task 2, the mul-
timodal technique outperformed unimodal methods by 0.4%, with 92.6% accuracy
vs 90.7% for text-only and 92.2% for image-only approaches. The study recognizes
the problem of imbalanced data and intends to solve it in a future work [11]. Dinani
and Caragea [12] investigated capsule networks against convolutional neural networks
(CNNs) for classifying disaster photographs as useful or uninformative. They used
images from various disasters, including the CrisisMMD dataset, to compare capsule
network models to ResNet18 models in both in-domain and cross-domain situations.
The results demonstrated that capsule 23 networks performed better when training
datasets were small or imbalanced, outperforming ResNet18 models. The researchers
intend to perform controlled experiments to further understand the effects of sample
size and class imbalance, as well as adapt CapsNet models to additional multi-class
classification challenges, such as classifying different types of disasters [12]. Hossain
et al. [13] created a multimodal catastrophe detection system that uses textual and
visual information to properly classify tweets. They extracted textual data using a
bidirectional long-term memory (BiLSTM) network with an attention mechanism,
while visual characteristics were extracted using a pretrained convolutional neural net-
work (CNN) like ResNet50. For combined predictions, the system was fused using a
feature fusion technique and a softmax classifier. To better capture word token depen-
dencies, the researchers compared BiLSTM with attention mechanisms to CNN-based
approaches. The multimodal system outperformed conventional unimodal and multi-
modal models, improving performance by around 1% and 7%, respectively [13]. Table
1 provides a summary of the research papers.
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Table 1 Summary of papers

References Datasets Classifier Accuracy/F1-Score

Amit et al. [6] Google Earth aerial images CNN 80 ∼ 90
Liu and Wu [7] Google Earth remote sensing images WacDAE-2 97.4
Dunnings and Breckon [8] Fire related images Alexnet & InceptionV1 93.0
Ofli et al. [9] CrisisMMD VGG16 83.3
Asif et al. [10] CrisisMMD VGG-16 & YOLOV4 96.0
Zou et al. [11] CrisisMMD VGG16 & FastText 92.2
Dinani and Caragea [12] CrisisMMD Capsule network & ResNet-18 92.2
Hossain et al. [13] Twitter ResNet50 & BiLSTM 81.88

This section explores previous studies along with its techniques and approaches
used for disaster image classification. This paper aims to explore different deep learning
models using two existing disaster image datasets on Kaggle, integrating them into
a single dataset for disaster image categorization. Since the CrisisMMD dataset is a
multimodal dataset that includes tweets and disaster related images from Twitter, it
will not be employed in this research since its focus is unimodal.

3 Methodology

The main objective of this study is to perform automatic image disaster recognition.
In this section, a solution has been proposed to overcome the main challenge of manual
classification of disaster type. Figure 1 depicts an overall system architecture of the
stages involved in creating the image disaster classification.

Fig. 1 Proposed System Architecture
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Fig. 2 Flowchart for the proposed system

Figure 2 demonstrates the flowchart for the proposed system. The two datasets,
namely Comprehensive Disaster Dataset (CDD) and the Natural Disaster Dataset
(NDD) are customized into a new dataset. Two variations of the dataset will be
employed, one comprising 350 images and the other consisting of 750 images, to exam-
ine the impact of dataset size on model training. The dataset will be divided into two
different ratios to observe how varying the number of images in the training and vali-
dation sets affects the outcomes. Three different pre-trained models, namely VGG16,
MobileNetv2, and Inceptionv3, will be utilized for training the model through transfer
learning. The model’s performance will be evaluated using the test set. The evaluation
metric employed will be the Classification Accuracy. Additionally, the best-performing
models will be further evaluated under different scenarios. The top-performing model
will be then integrated into a web application.
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3.1 Dataset and Preprocessing

Fig. 3 Samples Images from the Customized Disaster dataset

The Natural Disaster Dataset (NDD) and Comprehensive Disaster Dataset (CDD)
were integrated into another dataset named ’Customized Disaster Dataset’ to focus
on various disaster categories. To produce the customized dataset, a subset of pic-
tures from the NDD dataset were merged into some of the classes in the CDD
dataset, excluding certain classes such as ’Human’ and ’Human Damage’. Furthermore,
the class ’Water Disaster’ was renamed ’Flood’ to conform to the Natural Disaster
dataset’s naming convention. Furthermore, because the images for the classes ’Infras-
tructure Damage’ and ’Earthquake’ were similar, rather than considering them as
different classes, several pictures from the ’Infrastructure Damage’ folder were shuffled
into the ’Earthquake’ category following the dataset cleaning process. Figure 4 shows
some sample images for the non- damage categories.
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Fig. 4 Samples Images for the Non - Damage classes

These non-damage classes are incorporated in the customized disaster dataset so
that the model can better distinguish between disasters and non-disaster categories
that share similar patterns.

Both the datasets with 350 photos per class and the other one with 700 images per
class, were split into various versions using the following split ratios shown in Table 2.

Table 2 Split ratios

Train(%) Validation(%) Test(%)

80 10 10
60 30 10

3.2 Classification Phase Using Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of artificial neural network designed
to recognize visual patterns from pixel images with minimal pre-processing. These
networks use features of the visual patterns. Convolutional neural networks consist
of two simple elements: convolutional layers and pooling layers. Convolutional layers
and pooling layers work together to allow CNNs to automatically learn hierarchical
data representations, making them extremely effective for tasks such as image classifi-
cation [14]. The Convolutional neural networks are popular due to their architecture,
which eliminates the need for manual feature extraction. Instead, the system uses
convolution of image and filters to generate invariant features, which are then passed
on to the next layer. The features in the next layer are convoluted with different fil-
ters to generate more invariant and abstract features, resulting in an output that is
invariant to occlusions. Common convolutional neural network architectures include
LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, and ResNet [15]. A CNN architecture
is depicted in Figure 5.
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Fig. 5 Architecture of CNN (Li & Zhao) [16]

The convolutional layer uses filters to extract features from the input image. It
involves identifying edges, colors, and textures. The Activation function (e.g ReLU)
introduces non-linearity to the model and helps decide if neurons should be activated.
The pooling layer reduces computational complexity by downsampling feature maps
while retaining important information. The Flatten layers converts pooled feature
maps into a flat vector hence preparing data for input to a Fully Connected Layer.
The Fully connected layer is a neural network layer that performs classification or
identification based on extracted features. Softmax function is used to convert raw
scores to probability distributions while Cross-entropy is used as the loss function for
training [17].

Call back functions are functions that are called repeatedly to evaluate the per-
formance of the model during the training. ModelCheckpoint and EarlyStopping are
inbuilt callback functions that are used in this paper.

ModelCheckpoint is one of the callback functions. During the training phase, the
ModelCheckpoint is used to preserve the best model as well as the best model weights
at each epoch interval [18]. The parameters that are associated with the function
involves a file path to specify the model file path for saving, a ‘monitor’ to be used as
a metric for early stopping detection and the ‘save best only’ parameter can be set to
‘True’ to save the best model and weights [19].

Early Stopping If the model achieves optimal performance sooner than expected,
the Early Stopping function stops the training process. ‘Patience’ is one of the func-
tion’s parameter. A number is assigned to it. This value denotes the number of epochs
to wait for, if no improvement in performance is noted before halting the training [20].

3.3 Experimental Setup

This section aims to describe the different components of the system, the hardware
and software requirements that are required to perform the disaster image recognition.
Table 3 lists the libraries and tools utilized in the system’s development.

All the codes were trained on Google Colab since it provides access to Tesla
T4 GPU hardware for 12 hours a day. Furthermore, Google Drive may be readily
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Table 3 Tools and Technologies used

Tools Description

OpenCV Open-Source library for image processing and machine learning.
Numpy Matrix and multidimensional arrays.
TensorFlow Allow the implementation of deep learning model.
Keras API used for deep learning
Google Colab Platform to train deep learning models. Provides usage of free GPU (eg. T4)

mounted on top of the Google Colab platform, from which the dataset can be accessible
instantly.

3.4 Feature extraction using pre-trained models

In this section, various pre-trained models were utilized to extract features from the
data. The pre-trained models employed include ‘MobileNetV2’, ‘VGG16’ and ‘Incep-
tionV3’. Freezing the base model layers prevents their weights from being updated
during training, allowing them to be used as fixed feature extractors. Transfer learn-
ing is a technique that uses a pre-trained deep neural network models to perform task
like image classification. These models are trained on large dataset like the ImageNet
and COCO datasets. This technique yields better results than training with limited
data, as the model leverages learned features to perform the task. It helps to prevent
overfitting and reduces the computational burden during training since the gradients
are not calculated or applied to these layers. If the value of the ‘trainable.layer’ is
set to ‘True’, the weights will be updated during the training phase. Both scenarios
are tested in this paper. Different image sizes were utilized depending on the specific
pre-trained model used. Table 4 provides a summary of the pre-trained models used.

Table 4 Summary of pre-trained models Used

Feature Extraction Image Size Trainable Layer Classifier

MobileNetv2 224*224
True

Softmax
False

VGG16 299*299
True

Softmax
False

InceptionV3 224*224
True

Softmax
False

The base layer of a pre-trained model has been enhanced with custom layers such
as Global Average Pooling, Dense layers, and Dropout layer to reduce overfitting.
The last dense layer uses the Softmax function to generate probability values for the
dataset’s 10 classes.

A custom CNN model is implemented using the Sequential API in Tensorflow, con-
sisting of Conv2D layers for feature extraction and Maxpooling2D layers for reducing
spatial dimensions. Global AveragePooling2D layers average feature map values, which
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are converted to 1D vectors by the flatten layer. The custom model has 4,472,970 of
trainable parameters in total.

This study uses a custom callback function, ModelCheckpoint and EarlyStopping,
to modify model parameters during training. A ’lr schedule’ learning rate schedule
function is created, adjusting the learning rate value exponentially based on epoch
count. If the epoch count is less than 10, the learning rate value remains intact;
otherwise, if the epoch count is larger than 10, the learning rate value is lowered
exponentially at a rate of 0.1. This fine-tunes the model’s parameters and improves
performance. The Adam optimizer is used, with an initial learning rate of 0.001 and a
decay rate of 1e-6. The loss function is categorical cross entropy which is best suited
for multi-class classification instances.

4 Results and Evaluation

The models that were tested with the different dataset versions and split ratios are eval-
uated in this section. For each dataset version, its classification accuracy is calculated
and compared with all the models.

4.1 Pre-trained Model Results

The results for the pre-trained models trained on the different ratios for both the small
and large dataset are presented in the tables below.

4.1.1 Large Dataset

Tables 5 and 6 show the findings for the large dataset for the ratios 8:1:1 and 6:3:1.

Table 5 Large 8 1 1 Results

Model Trainable Layers Classification Accuracy (%)

MobileNetV2
False 92.00
True 96.86

VGG16
False 86.57
True 92.86

InceptionV3
False 96.86
True 94.86

For the MobileNetV2 when the trainable layers were set to ‘False’, an accuracy
and a recall of 92.00%. When the trainable layers were changed to ‘True’, the accuracy
increases by 4.8%. Additionally, for the VGG16 model, the accuracy has increased from
86.57% to 92.70% when the trainable layers were changed from ‘False’ to ‘True’. The
InceptionV3 model has achieved an accuracy and a recall of 96.86% with the trainable
layers being set to ‘True’. However, when setting the trainable layers to ‘False’, the
model yielded a decrease in its accuracy by 2%.

For the MobileNetV2 when the trainable layers were changed from ‘False’ to ‘True’,
the classification accuracy increases from 93.71% to 96.86%. However, for the VGG16
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Table 6 Large 6 3 1 Results

Model Trainable Layers Classification Accuracy (%)

MobileNetV2
False 93.71
True 96.86

VGG16
False 77.71
True 65.71

InceptionV3
False 95.71
True 95.71

model, the classification accuracy decreases from 77.71% to 65.71% when the train-
able layers were changed from ‘False’ to ‘True’. The InceptionV3 model has achieved
an accuracy of 95.71% with the trainable layers being set to ‘False’. The accuracy
remained the same when the trainable layers were set to ‘True’.

4.1.2 Small Dataset

Tables 7 and 8 show the findings for the small dataset for the ratios 8:1:1 and 6:3:1.

Table 7 Small 8 1 1 Results

Model Trainable Layers Classification Accuracy (%)

MobileNetV2
False 93.43
True 95.71

VGG16
False 84.86
True 84.29

InceptionV3
False 95.71
True 95.43

For the MobileNetV2 when the trainable layers were set to ‘True’, an accuracy of
93.43. When the trainable layers were changed to ‘False’, the accuracy increases by
2.28%. However, for the VGG16 model, the accuracy has dropped from 84.86% to
84.29% when the trainable layers were changed from ‘False’ to ‘True’. The InceptionV3
model has achieved an accuracy of 95.71% with the trainable layers being set to ‘True’.
However, when setting the trainable layers to ‘False’, the model yielded a decrease in
its accuracy by 0.28%.

Table 8 Small 6 3 1 Results

Model Trainable Layers Classification Accuracy (%)

MobileNetV2
False 92.29
True 96.00

VGG16
False 85.71
True 74.86

InceptionV3
False 94.86
True 93.43
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The accuracy of the MobileNetV2 model is 96.00% when the model’s trainable
layers were set to ’True’. But when the trainable layers were set to ”False,” the accu-
racy fell by 4.29%. On the other hand, the VGG16 model’s accuracy decreased from
85.71% to 74.86% when the trainable layers were enabled. Setting the trainable layers
to ”True” produced an accuracy of 93.43% for the InceptionV3 model.

The results reveal that setting false trainable layers in ImageNet weights improves
accuracy in CNN pre-trained models trained on a large dataset of 1000 classes. The
models successfully used transfer learning when combined with ImageNet weights,
resulting in better classification accuracy rates on the disaster dataset. However,
the performance was not significantly improved when the dataset size was doubled
from 350 to 700 photos per category using pre-trained models like InceptionV3,
MobileNetV2. The small dataset of 3500 photos already shows a balanced represen-
tation of classes, suggesting that increasing the dataset size might not improve class
distribution or lead to higher performance.

4.2 Custom CNN Model Results

The findings for the custom model are tabulated in Table 9.

Table 9 Custom Model Results

Model Classification Accuracy (%)

Custom Small 8 1 1 71.11
Custom Small 6 3 1 69.14
Custom Large 8 1 1 88.57
Custom Large 6 3 1 82.29

An accuracy of 71.11% was attained using the Custom Small 8 1 1 dataset. Based
on these findings, it can be concluded that the model performed relatively well in cor-
rectly identifying disaster images from the Custom Small 8 1 1 dataset. The model’s
accuracy decreased to 69.14% when trained on the Custom Small 6 3 1 dataset. A
high accuracy of 88.57% were achieved by the Custom Large 8 1 1 dataset.

The results obtained show the model’s excellent capability to correctly categorize
samples from the Custom Large 8 1 1 dataset. Lastly, the Custom Large 6 3 1 dataset
has an accuracy of 82.29%.

The classification accuracy for the small dataset showed a slight improvement
over the 8:1:1 split ratio, but not statistically significant. The difference between
Custom Small 8 1 1 and Custom Large 8 1 1 showed a 17.46% increase in accuracy,
indicating an overall improvement in the model’s performance.

From the results obtained above, the top 3 best performing models were further
evaluated under different conditions. The MobileNetV2, InceptionV3, and Custom
models are assessed in this section under various situations such as variable light
intensities, reduced picture quality, variation in image perspective angles, and occluded
images for a test set of 160 photos with 40 images per scenario. Table 10 list the
various scenarios used along with their descriptions.
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Table 10 Description for the various scenarios adopted

Scenario Description

Light Intensity The light intensity is reduced.
Image Clarity The image clarity is reduced to 100% using Windows’ Photos Editor
Viewpoints Images are rotated and flipped to various angles and orientations ranging from 0 to 180 degrees
Occlusion For each category, images with a noisy background are selected

4.2.1 MobileNetV2

Table 11 shows the results of testing the test set under various situations on the
MobileNetV2 model. It can be observed that the MobileNetv2 model works quite
effectively in varied conditions, particularly in low light, with a classification accuracy
rate of 0.975 with just one misclassified image.

Table 11 Results for MobileNetV2

Scenarios No Images in test set No of Images cor-
rectly classified

Classification Accu-
racy Rate

Light Intensity 40 39 0.975
Reduced Image Clarity 40 37 0.925
Different Viewpoints 40 31 0.775
Occlusion 40 34 0.850

4.2.2 InceptionV3

Table 12 depicts the results achieved while testing the InceptionV3 model under var-
ious conditions. Overall, the InceptionV3 model performed highly in identifying the
images under different conditions. In every scenario, the model obtained more than
85% accuracy in classification accuracy.

Table 12 Results for InceptionV3

Scenarios No Images in test set No of Images cor-
rectly classified

Classification Accu-
racy Rate

Light Intensity 40 39 0.975
Reduced Image Clarity 40 37 0.925
Different Viewpoints 40 35 0.875
Occlusion 40 35 0.875
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4.2.3 Custom model

The results for the custom model are tabulated in Table 13.

Table 13 Results for Custom Model

Scenarios No Images in test set No of Images cor-
rectly classified

Classification Accu-
racy Rate

Light Intensity 40 28 0.70
Reduced Image Clarity 40 33 0.825
Different Viewpoints 40 26 0.65
Occlusion 40 32 0.80

Table 13 shows that the Custom Model is less performant than the other two
models, MobileNetv2 and InceptionV3. There have been several misclassified images
with a classification accuracy rate of 0.65 in the scenario for ‘Different Viewpoints”.
However, the custom model performs relatively well when there is a reduction in
image clarity. Therefore, from the results gathered from Table 11, 12 and 13, it can
be concluded that the InceptionV3 model is the one with the highest classification
accuracy rate followed by MobileNetv2 and the Custom Model. Since the top three
models perform well in diverse light conditions, generating accurate predictions and
can also generalize across multiple angles, hence these models are able to provide
reliable and consistent performance when it comes to diverse types of disaster-related
images, proving their capacity to generalize variety in images.

Fig. 6 Classification results from the web application

15

15



As seen in Figure 6, the user may select and upload an image by clicking the
”Upload Image”. The user can then click on the predict button to carry out the
classification process. As seen by two of the snapshots in Figure 6, the model has
effectively classified a picture of a building and a picture of a wildfire, demonstrating
its ability to distinguish between disaster pictures and those that do not display any
damage.

5 Conclusion

In this paper, CNN pre-trained models such as MobileNetv2, VGG16, and Incep-
tionV3 were trained along with a custom neural network model to identify disasters
based on their characteristics. The models were trained on a customized dataset called
”Customized Disaster Dataset” with ten classes with three of them being non-damage
classes. This paper generated two versions of the Customized Disaster Dataset: a
small dataset with 350 pictures per class and a large dataset with 700 images per
class using two different split ratios. The experiments were carried out to determine
the most effective model in terms of performance and robustness. The InceptionV3
model performed well on the large dataset with a split ratio of 8:1:1, achieving the
highest accuracy of 96.86%. It accurately classified most images in various scenarios.
This research demonstrates the potential of deep learning models for automating dis-
aster classification processes. The InceptionV3 model was then integrated into a web
application to automate the disaster classification process, making it easier for first
aid responders. In the future, the system can be further enhanced to support both the
upload of videos for classification and real-time disaster classification. The difficulty
faced during this research work was that for models having longer training time has
posed a problem when utilizing the Google Colab since access to the GPU was revoked
numerous times and the model had to be trained again and again.
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