
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 16, No.1, (Jul-24)

http://dx.doi.org/10.12785/ijcds/160131

An FPGA Implementation of Basic Video Processing and
Timing Analysis for Real-Time Application

Marwan Abdulkhaleq Al-yoonus1 and Saad Ahmed Al-kazzaz2

1Electrical Engineering Department, College of Engineering, University of Mosul, Iraq
2Mechatronics Engineering Department, College of Engineering, University of Mosul, Iraq

Received 14 Oct. 2023, Revised 20 Mar. 2024, Accepted 6 Apr. 2024, Published 1 Jul. 2024

Abstract: For real-time video processing, the analysis time is a big challenge for researchers. Since digital images from cameras or
any image sources can be quite large, it is common practice for researchers to divide these large images into smaller sub-images.
The present study proposes a subsystem module to read and display the region of interest (ROI) of real-time video signals for static
camera applications to prepare for background subtraction (BGS) algorithm operation. The proposed subsystem was developed using
Verilog hardware description language (HDL), synthesized, and implemented in the ZYBO Z7-10 platform. An ROI background image
of (360×360) resolution was selected to test the operation of the module in real time. The subsystem consists of five basic modules.
Timing analysis was used to determine the real-time performance of the proposed subsystem. Multi-clock domain frequencies are used
to manage the module operations, 445.5MHz, 222.75MHz, 148.5MHz, and 74.25MHz, which are six, three, two, and one-time pixel
clock frequencies, respectively. These frequencies are chosen to perform five basic processing operations in real-time during the pixel
period instant. Two strategies are selected to explain the effectiveness of choosing the trigger instant of the used clock signals on the
system performance. The operation revealed that the latency of the proposed ROI reading subsystem was 13.468ns (one-pixel period),
which matched the requirements for real-time applications.

Keywords: — Background subtraction, Clock domain, Real-time, Region of Interest, Verilog HDL.

1. INTRODUCTION
Field-programmable gate array (FPGA) designs are

more easily reconfigured to any functionality than the
application of specific integrated circuit (ASIC) designs as
they possess hardware resources such as; dedicated block
random-access memory (BRAM), multiplexers, and so forth
[1]. They also enable flexible trade-offs facilitating the
concurrent execution of multiple small heterogeneous tasks
or optimizing a single low-latency or high-accuracy task by
using more onboard resources for applications that do not
fully occupy them [2].

From a technological standpoint, FPGAs are ideal for
processing data in parallel at high speeds. Because of this,
they allow for a high level of customization [3]. Their fast
processing speeds, ability to be implemented in parallel,
and ability to produce deterministic performance and la-
tency make them excellent options for real-time detection
algorithm implementation [4][5][6].

An area within an image known as a region of interest
(ROI) allows the localized application of image-processing
operations. This area is typically rectangular in shape. It
is defined by Line and Column addresses [7][8]. The ROI

or search domain might be diminished to the absolute
minimum in order to reduce the processing time and ef-
fort of the object detection algorithm [9]. Selecting and
reading the ROI to prepare for object detection algorithms
like Background subtraction (BGS) is a fundamental step
in many computer applications, such as intelligent video
surveillance, medical evaluation, human-machine interac-
tion, traffic monitoring, vandalism deterrence, and suspi-
cious object detection systems.

Background subtraction (BGS) is an algorithm com-
monly used to detect moving objects. The frame differenc-
ing method which detects motion by calculating differences
in the pixels of two adjacent frames is the simplest method
of doing so [10][11][12]. A pixel is classified as a part of
the foreground if its difference exceeds a specific thresh-
old (TH), otherwise, it is a part of the background. The
aforementioned threshold is determined by observation or
experience [13].

Autonomous synthesis tools and hardware description
languages (HDL) were first used in the design of large-
scale digital systems circa 1990. For the purpose of de-
scribing digital electronic circuits, Verilog is standardized

E-mail address: marwanathy1972@uomosul.edu.iq, kazzazs60@uomosul.edu.iq https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/160131
https://journal.uob.edu.bh/

392 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

as IEEE 1364. At the RTL abstraction level, Verilog HDL is
primarily utilized for design and verification purposes. An
individual system is covered in a single file by a Verilog
design. There is a module in the file that contains the system
description. This module comprises the description of the
behavior as well as the interface to the system (i.e., the
inputs and outputs) [14][15][16].

In this work, the implementation of the digital circuit
that makes up the ROI reading subsystem and performs
basic video/image processing is done using Verilog HDL.
The present study is organized as follows. The literature
survey and the main points of our contributions are pre-
sented in Section 2. Section 3 presents a brief definition of
the image ROI. The description of the proposed hardware
is presented in Section 4. The hardware implementation of
the proposed module and timing analysis are discussed in
detail in Section 5. The results and discussion are found in
section 6. Finally, the conclusion of this study is presented
in Section 7.

2. LITERATURE SURVEY
The BGS algorithm for the ROI obtains a reference

image to represent the background scene. This algorithm
works correctly when a fixed camera is used [17]. A
thorough analysis of a diagram is necessary to understand
the operation of this algorithm in real-time surveillance sys-
tems, especially when accurate object detection is required.
This section provides a summary of some extant studies in
this field.

Sousa et al. [8] discussed a dynamic ROI control algo-
rithm that was used to modify the exposure time, gain, and
light of an LED source that was connected to a camera head.
The suggested system was implemented using an FPGA.
It was predicated on an ROI computed using the picture’s
histogram. The authors used nested multiplexers and simple
bit shift processing in place of the divider and multiplier
cores that were commonly used in the implementation of
PID controllers.

Vidya et al. [12] used a Spartan 6 FPGA kit to develop
an area of efficiency detection algorithm by decreasing the
number of slice registers in face detection from 861 to 537
and the moving object detection from 365 to 320.

Wang et al. [2] demonstrated a smart camera design
based on FPGA that allows streaming processing to accom-
modate the particular requirements of video surveillance
applications. In order to lessen the smart camera’s overall
system load and enhance resource efficiency, the authors
used the background subtraction algorithm to filter out static
video frames that did not require processing.

Elisa et al. [18] gave a presentation on the creation
and application of specific hardware IP modules for em-
bedded vision systems that will be used to implement
the background subtraction algorithm. A variety of quality
parameters had been evaluated in order to carry out various

algorithms. A low-cost FPGA (SPARTAN-3A) was used
to implement five candidate algorithms (the more suitable
for implementation in the mentioned device) for image
resolutions ranging from QCIF (176 x144) to CIF (352 x
288) formats.

To shorten the design process’s time-to-market, Cortes et
al. [19] used Vivado HLS to implement widely used image
processing algorithms built into Zynq SoC. They suggested
that the use of image processing libraries like OpenCV,
where software designers were in charge of the design,
helped to cut down development time even more because
they were already acquainted with them. However, there
was a significant increase in the required FPGA resources
when using these kinds of libraries.

A low-level processor that was meant to be a component
of an algorithm for image analysis and interpretation was
presented by Benetti et al. [20]. The low-level adaptive
background subtraction that was used as the foundation of
the architecture was implemented at the pixel level by uti-
lizing analog fully parallel architecture. By using effective
digital methods implemented on an FPGA, the binary image
provided by the sensor was directly segmented.

Basic image processing operations had been imple-
mented on an FPGA by Asha et al. [6]. The suggested
methodologies involved using Verilog HDL to design and
develop the controlling parameters for an image, such as
brightness, threshold, and inversion. They used MATLAB
to convert the BMP image file to a Hex file.

An alternative version of the BGS method based on
independent component analysis (ICA) was proposed by
Carrizosa et al. [21]. Four image sequences were examined
for motion detection. The results from the implementation
that used both the FPGA and the embedded processor
of the SoC showed a decrease in runtime from 4326.60
to 125.81 milliseconds compared with others that used
only embedded processors. The background estimation and
picture capturing was not taken into account during the
measurements.

Conti et al. [22] described the testing of two hardware
implementations that use RGB and grayscale color spaces,
respectively, and an analysis of the system reliability. They
showed that processing an RGB sequence was about 6%
slower than processing a grayscale sequence, and still adds
very little overhead. The developed system had the capa-
bility to process data in real-time, ranging from (192×192)
base resolution to (640×480), from a commercial Zenith
camera at 15 frames per second.

Alejandro et al. [23] implemented real-time event-based
filters and featured extractors with minimal resources. Three
primary circuit components were used in the VHDL im-
plementation of the filter: (a) Finite State Machines for
the control unit, (b) an FPGA-embedded BRAM memory
for the 2D array of timestamps, and (c) a counter for

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 16, No.1, 391-402 (Jul-24) 393

time control. (the FSM made up of flip-flops, adders,
comparators, and SRAMs).

The reversible contrast mapping (RCM) algorithm’s
flaws were examined and fixed by Das et al [24] for invisible
watermarking. A gray-scaled video input was used to test
the suggested corrected RCM algorithm. the proposed sys-
tem makes use of parallelism and pipeline structure to attain
high performance. The results of a comparative analysis
between software and hardware implementations were also
examined and briefly discussed.

Liu et al. [15] investigated several image scaling al-
gorithms, weighed the benefits and drawbacks of each,
and used a top-down design approach to create FPGA
video scaling that was later verified to be accurate. To
enlarge the video image, a fuzzy interpolation algorithm
was employed. The image was improved through the use
of a binary interpolation scaling algorithm, and the compu-
tational complexity was decreased through the creation of
an interpolation factor table.

A hardware architecture was proposed by Sarkar et al.
[25] to link an FPGA to a low-cost digital camera for real-
time video processing and recording. Simple logic architec-
tures have been used to implement the Transition Minimized
Differential Signaling Encoder (Converter), the optimized
Finite State Machine (Controllers), and several interfacing
blocks. In order to lower the hardware consumption of
various Color Plane Conversion blocks, shifters and adders
were employed.

To our knowledge, there is a research area for timing
analysis of video processing in real-time systems. In this
paper, the main contributions can be listed as:

• An introduction of a novel model aimed at managing
subsets of vast data streams generated daily by cam-
era observations, addressing the challenge posed by
the sheer volume of data.

• Emphasis on the necessity of efficient data handling,
recognizing that a significant portion of acquired data
may be irrelevant or redundant.

• A basic video timing analysis that uses a multi-
domain clock signal is presented to control the read-
ing procedure and the displaying of the ROI for an
input video/image.

• Practical solution offered to enhance efficiency and
effectiveness in handling massive volumes of video
data in a real-time system.

3. IMAGE REGION-OF-INTEREST (ROI)
The area of an image frame in which the target object is

present, as defined by a bounding box, constitutes the ROI.
During performing vision tasks, especially in real-time,
fewer pixels mean fewer clock cycles, which impacts the

post-processing stage. A decrease in the pixel count lessens
the computational load and frees up onboard resources and
memory for use in other tasks. By using ROI technology,
the camera’s frame rate might be increased [8][26]. One
of the common post-processing stages that depends on the
size of the input video/image is the BGS algorithm. The
following common equation describes the operation of the
BGS algorithm:

output(BGS) =
{

1 if | I(i,j,t)-Ref(i,j) | > T H
0 if | I(i,j,t)-Ref(i,j) | < T H

(1)

where I(i, j, t) and Re f (i, j) were the pixels of the current
input image and the reference image, respectively. The
TH was a predetermined threshold. It can be estimated by
training the system or via observation and experience [27].

In this study, a fixed ROI was selected with (360×360)
size from the full-size (1280×720) resolution for timing
analysis as shown in Figure 1. The importance of the
suggested subsystem is that it will serve as an initial module
to implement the BGS algorithm for the chosen ROI and
speed up processing.

Figure 1. ROI size with respect to the input image.

4. SUBSYSTEM HARDWARE DISCRIPTION
Within the selected ROI, basic video/image processing

was implemented using the Digilent Zybo Z7-10 device. In
order to simulate memory write/read operations, the basic
processing consists of converting the RGB input pixels to
grayscale, adding and subtracting pixels one at a time using
a constant byte stored in a single storage element (D-FF),
and then returning the formatted pixels from grayscale to
RGB before displaying them at the designated ROI.

To implement a hardware module that has different
conditions (states), a finite state machine (FSM) is used
for this purpose. From Figure 2, the wait conditions are
active in States 1 and 2 until the condition of the positive
edge of vertical synchronous (Vsync) and video active line
happened, respectively to make a transfer from the current
state to the next one (i.e. from state one to state two
and so on). In State 3, the pixels/row counter counts to
(360 pixels/row) and then jumps to wait for the end of
the image’s single line in State 4. In the detection of the
negative edge of the end of the active line in State 4, the
algorithm checks if the selected rows (360 rows in this case)

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

394 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

ended or not. A test condition is always performed at state 5
to determine the end of the ROI which is (360×360) pixels.

Figure 2. FSM diagram of the ROI image reading (360×360 pixels).

The overall layout indicated by a block diagram of
the suggested subsystem is shown in Figure 3. Two sam-
pling units, D-Flip-Flops (D-FF), one placed before the
main processing module and the other after it, are used
to ensure signal stability at the sampling time which is
managed by the input pixel rate. The pixel clock frequency,
declared by Clk-D, is used as the sampling frequency of
both D-FFs. Five IP modules implemented using Verilog
HDL are located in the center block, which is the main
processing stage. This stage is operated by four clock
frequency domains (Clk-D, 2×Clk-D, 3×Clk-D, and 6×Clk-
D). The operation of the main processing stage is managed
by multi-domain clock frequencies which are; 148.5MHZ,
222.75 MHZ, and 445.5MHZ, derived from the pixel clock
frequency (74.25MHz) as shown in Figure 4.

Figure 3. Framework of the proposed ROI reading module and the
operating clock frequencies.

To describe the operation order that is used to read
the ROI section of an input video/image, the flowchart
shown in Figure 5 illustrates the principal actions of the
reading control algorithm. The control (command) signals
are denoted by the black lines, while the green lines point
to the data (pixel) path. To verify the module operation, a

Figure 4. Clocking wizard IP block.

video/image source is taken from a Laptop HDMI port with
a frame rate equal to 60 frames/sec.

5. HARDWARE IMPLEMENTATION
This section presents the implementation of the main

processing stage using Verilog HDL with IP cores from the
Vivado library to complete the basic video/image processing
through HDMI ports of the ZYBO board. The complete
subsystem processing was implemented only using the
programmable logic (PL) part of the board.

The ROI reading Verilog code is described in the shown
reading control algorithm. The five states that are used
to implement the FSM (see Figure 2) are; Wait-Vsync,
Wait-Active-line, Pixel-count-row, Wait-line-end, and row-
check. Two counters have been used to read the ROI, one
for pixels‘s row reading (resets every 360 pixels/row) and
the other was used for the ROI row counting (resets after
reading 360 rows/ROI).

The proposed algorithm which is implemented as an IP
module block is shown in Figure 6. The Vsync and the
Active-line inputs represent the vertical synchronous and
the row active line respectively. The preselected ROI from
the input video/image signal can be displayed or hidden
using the output signal EN-ROI.

Figure 7 depicts the entire real-time video pass system
with ROI reading circuit, where the red box contours
the main processing stage. Figure 8 shows the basic IP
modules that set up the main unit. The main processing
stage applies the following five fundamental operations,
carried out at the pixel level, to the input video/image
stream during a single pixel period:

1- RGB to Grayscale (RGB2Gray) format conversion
(24-bit to 8-bit),
2- Read a constant value (reference pixel) from a single
memory cell (8-bit D-FF),
3- Add/Sub operation (input pixel ± reference pixel),
4- Grayscale to RGB (Gray2RGB) format conversion (8-bit
to 24-bit), and
5- Generate the ROI-Enable signal for a video/image
display with a size of (360×360) pixels.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 16, No.1, 391-402 (Jul-24) 395

Figure 5. ROI reading algorithm (360×360), the green lines are for
data path and the black lines are for algorithm commands. TH; is a
predetermined threshold value.

Figure 6. ROI displaying enable IP module (Figure 2) using Verilog
HDL.

A linear combination of the RGB signals can be used
to calculate the Y signal as explained in eq. (2), which rep-
resents the intensity of the grayscale. An approximation is
done to implement the RGB to Grayscale IP module which
is responsible for converting from RGB (24-bit) to grayscale
(8-bit). In order to reduce resource utility and processing
time, the shift operation is used instead of multiplication as
shown in eq. (3) to obtain the approximated grayscale level
of eq. (2) that is defined in eq. (4) which is acceptable in
some applications:

Y = 0.299 ∗ R + 0.587 ∗G + 0.114 ∗ B (2)

Y = (R ≫ 2) + (G ≫ 1) + (B≫ 3) (3)

Y = 0.25 ∗ R + 0.5 ∗G + 0.125 ∗ B (4)

From eq. (3), shift by two to the right means that R (red)
is divided by four, shift by one to the right for G (green)
means divided by two, and shift by three B (blue) means
divided by eight as explained in eq. (4).

Two strategies are proposed to control the order of the
five fundamental operations applied to the input pixels to
verify the real-time functioning of the main processing unit.
The timing diagram shown in Figure 9 explains the first
strategy of the multi-domain clock signals that were used to
implement the suggested subsystem to control the operation
sequence in real-time. These clock signals can be generated
from the clocking wizard IP module (see Figure 4), the
orange triangle on the negative edge of the Clk-D clock
is the sampling instant of the input pixels. The moment
at which the incoming pixel is converted from RGB to
grayscale format at 3×Clk-D is represented by the green
triangle. The black triangle at the positive edge of 6×Clk-D
is for reading the BG pixel or a predefined threshold value.
The subtraction operation is done at the positive edge of
Clk-D (the red triangle). Finally, the blue triangle indicates
the instant of data width back converting from 8-bit to 24-
bit. By using a multi-clock domain the latency is equal to
a one-pixel clock period (13.468nsec).

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

396 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

The second strategy is shown in Figure 10. This strategy,
in contrast to the previous one, involved converting RGB to
grayscale at the falling edge of the 2×Clk-D clock signal,
which happens when Clk-D=’0’. The subtraction process
is carried out at the Clk-D signal’s positive edge. The
Grayscale to RGB conversion is carried out when Clk-
D=’1’ at the rising edge of the 2×Clk-D clock signal.

6. RESULTS AND DISCUSSION
Figure 11 depicts the entire configuration of the proto-

type system, which includes a display unit (right) that shows
the display of the ROI video/image with a size of (360×360)
pixels, the ZYBO Z7-10 board (mid), and a laptop that
serves as a video/image source via the HDMI port (left).
Figure 12 illustrates the pulse signal that permits the chosen
360 pixels/row for the ROI image window’s output display.

The signals displayed in Figure 13 have been plotted
during the prototype’s operation using the integrated logic
analyzer (ILA) IP core for the second strategy, which is
depicted in Figure 10. Clk-D, 2×Clk-D, and 6×Clk-D are
signals that control the order in which the main processing
unit operates. The third signal, EN-ROI, is the output of
the suggested module that permits the ROI to be displayed.
These clock signals are produced using the clocking wizard
IP core. The following is a list of the operation sequence
declarations:

• White circle: the instant of the enable signal for each
image line. This signal holds at level one during (360
pixels/line).

• White arrow: the time instant of the input pixel
sampling.

• White solid circle: The time instant of converting the
RGB to Grayscale format.

• Red arrow: the instant of subtraction operation.

Figure 14 shows the critical path of data. It is between
the first sampling DFF unit (see Figure3) and the RGB to
Grayscale IP. The timing report shown in Figure15 indicates
the slack value, the source unit, and the destination unit
of the data path. The slack value is computed during the
implementation process using Equation 5;

S lack = DataRequiredT ime–DataArrivaltime. (5)

By changing the time instant for the operations of the
main processing unit as explained in the second strategy
(see Figure10), the critical data path is now between the
first DFF and the Sub-Byte IP as shown in Figure16. The
value of the slack time has been reduced from (-1.63nsec)
to (-1.05nsec) using the second timing trigger strategy as
shown in Figure17. The type of resources used to implement
each module, depending on its purpose, and the clock
frequency value of that module are the causes of these
timing variations.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 16, No.1, 391-402 (Jul-24) 397

Figure 7. The complete real-time basic video processing system.

Figure 8. The main processing unit between two samplings units (Green DFF) see Figure3.

Figure 9. The proposed timing diagram sequence for basic video processing (Strategy 1).

The suggested architecture is successfully implemented
in FPGA. Table I provides information about the used
logic cells. These numerical results show that the suggested
model architecture has low hardware requirements.

Because the related works cover a wide range of hard-
ware types, input source types, and application scenarios,
direct comparisons of resource utility and performance are
difficult. We used the most widely used parameters in order
to enable a fair comparison and to give the reader an
overview of the current state of the art in the relevant
fields. As a result, Table II gathers the crucial factors from

the earlier study publications, including the used device,
programming language, synthesis tools, input image/video
resolution, input image/video source, data width, applica-
tion, and the operating frequency.

TABLE I. Resource Utilization (ZYBO-7z010clg400-1).

FPGA
Resources

Slice
LUTs

Slice
Reg.

F7
Mux

F8
Mux BRAM

Available 17600 35200 8800 4400 60
used 1259 1860 16 8 6

Utility % 7.15 5.26 0.18 0.18 10.0

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

398 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

Figure 10. The proposed timing diagram sequence for basic video processing (Strategy 2).

Figure 11. The demonstration prototype for the ROI displaying of video/image signal.

Figure 12. The red circle points at the enable signal for each line within the ROI, and the lower is the video active line signal (the arrow points
to one of the video line periods).

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 16, No.1, 391-402 (Jul-24) 399

Figure 13. Multi domain clock signals where; clk-out3 is the pixel clock (Clk-D=’74.25MHz’), clk-out4 is (2×Clk-D). The 6×Clk-D signal is not
displayed here because it is used as an input trigger clock for the ILA core.

Figure 14. The RTL design (strategy 1) of the whole proposed system and the critical data path (blue line).

Figure 15. Timing report for the data path between D-FF and RGB to Grayscale IP.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

400 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

Figure 16. The RTL design (strategy 2) of the whole proposed system and the critical data path (blue line).

Figure 17. Timing report shows that the negative slack is between the D-FF (storage device) and Sub-Byte IP.

7. CONCLUSION
Complex analysis of surveillance systems requires an

understanding of real-time performance and basic video
timing signals. This paper presents an implementation
of a basic processing operations-based ROI video/image
reading algorithm for real-time applications using FPGA
technology. A fixed ROI with a size of (360×360) was
selected to demonstrate the idea behind this work. By
modifying the setting of the counters, the ROI’s display size
can be manually adjusted in both vertical and horizontal
dimensions. Because Verilog HDL was used in the design
of the suggested subsystem, the timing diagram for real-
time applications could be understood more clearly. Using
multi-clock domain frequencies derived from the operating
frequency gives a choice to add a pixel-by-pixel opera-
tion during the instant of the sampling time (13.468nsec).
For the proposed subsystem, lowering the operating clock
frequency for applications with lower video resolutions
reduces the negative slack to zero or a positive value. One
of the limitations of the proposed design is that the source
of the video is the laptop’s HDMI port, which outputs
1280x720 pixels at 60 frames per second. As a result,
controlling the resolution and frame rate of the video source
is not permitted.

Furthermore, because of the laptop’s HDMI port as
the video source, the suggested system is unsuitable for
portable applications. The results in this paper could be
used to guide future applications. To regulate the ROI size
according to the requirements of a particular application,
a software algorithm that integrates adaptive processing
could be added. This algorithm could be implemented in the
processing system (PS) of the chosen board. Additionally, a
design of an IP module by utilizing the PL part to adjust the
ROI’s size based on the dimensions of the object of interest.
The suggested work could be expanded to incorporate
additional processing, such as object detection, tracking,
and image filtering.

Acknowledgment
This research paper was completed in the University of
Mosul laboratory. The authors would like to thank the
University of Mosul for their support.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 16, No.1, 391-402 (Jul-24) 401

TABLE II. The summary of the most common factors collected from the recent related works with our work. Unavailable data marked as (—).

Comparison
factors Wang [2] Conti [22] Das [24] Liu [15] Sarkar [25] Devi [6] This

Work

Device
(Board)

Zynq
UltraScale
+MPSoC

Zed board
7020

(CPU+
FPGA)

-Virtex7XC
7V28000T

-Zynq
XC7Z030

Ultra-large
prog.

CycloneII

-Nexys video

-Zybo Z7-10
Zed board

ZYBO-
(7Z010

clg400-1)

Prog.
Language C++ C++ and

OpenCV 3.1
C and

MATLAB — VHDL C and
MATLAB

Verilog+
IP cores

Simulation
& synthesis

tools

Xilinx SDK
& Vivado

HLS

Xilinx
Vivado
HLS

Xilinx
Vivado
HLS

— Xilinx
Vivado

Xilinx
Vivado+

SDK Soft.

Xilinx
Vivado

-input image
size (Pix.)

-fps

360x480

—

640x480

15 fps

640x480

30 fps

1280x720

—

640x480

30 fps

768x512

—

1280x720

60 fps

Image/video
source

Video
Dataset

Zenith
camera OV7670

Image

sensor

-OV7670
-OV9655

Saved
image

Laptop
HDMI

Data width 8-bit RGB & 8-bit 8-bit 16-bit,12-bit 16-bit RGB 8-bit

Operations/
application

GMM
algorithm

BGS
algorithm

RCM
algorithm

Image
interpo-
lation

Camera
interface

with FPGA

Image
enhanc-
ement

Displaying
the ROI

Clock freq.
MHz 300 — 150 153.12 — —

-74.25
-148.5

-222.75

References
[1] M. Irfan, Z. Ullah, A. I. Sanka, and R. C. Cheung, “Accelerated

updating mechanisms for fpga-based ternary content-addressable
memory,” IEEE Embedded Systems Letters, vol. 13, no. 2, pp. 37–
40, 2020.

[2] S. Wang, C. Zhang, Y. Shu, and Y. Liu, “Live video analytics with
fpga-based smart cameras,” in Proceedings of the 2019 Workshop
on Hot Topics in Video Analytics and Intelligent Edges, 2019, pp.
9–14.

[3] R. Kaibou, M. S. Azzaz, M. Benssalah, D. Teguig, H. Hamil,
A. Merah, and M. T. Akrour, “Real-time fpga implementation of
a secure chaos-based digital crypto-watermarking system in the dwt
domain using co-design approach,” Journal of Real-Time Image
Processing, vol. 18, no. 6, pp. 2009–2025, 2021.

[4] P. Sikka, A. R. Asati, and C. Shekhar, “High-speed and area-efficient
sobel edge detector on field-programmable gate array for artificial
intelligence and machine learning applications,” Computational In-
telligence, vol. 37, no. 3, pp. 1056–1067, 2021.

[5] M. Ravi, A. Sewa, T. Shashidhar, and S. S. S. Sanagapati, “Fpga as a
hardware accelerator for computation intensive maximum likelihood
expectation maximization medical image reconstruction algorithm,”
IEEE Access, vol. 7, pp. 111 727–111 735, 2019.

[6] D. A. Devi, N. R. Kathula, G. Kalluri, and L. S. Bondalapati,
“Design and implementation of image processing application with
zynq soc,” International Journal of Computing and Digital Systems,
vol. 14, no. 1, pp. 377–385, 2023.

[7] C. Solomon and T. Breckon, Fundamentals of Digital Image Pro-
cessing: A practical approach with examples in Matlab. John Wiley
& Sons, 2011.

[8] R. M. Sousa, M. Wäny, P. Santos, F. Morgado-Dias, and I. Member,
“Automatic illumination control for an endoscopy sensor,” Micro-
processors and Microsystems, vol. 72, p. 102920, 2020.

[9] S. Malmir and M. Shalchian, “Design and fpga implementation of
dual-stage lane detection, based on hough transform and localized
stripe features,” Microprocessors and Microsystems, vol. 64, pp. 12–
22, 2019.

[10] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Rise: An
automated framework for real-time intelligent video surveillance on
fpga,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 16, no. 5s, pp. 1–18, 2017.

[11] G. Cocorullo, P. Corsonello, F. Frustaci, L.-d.-l.-A. Guachi-
Guachi, and S. Perri, “Multimodal background subtraction for
high-performance embedded systems,” Journal of Real-Time Image
Processing, vol. 16, pp. 1407–1423, 2019.

[12] V. P. Korakoppa, H. R. Aradhya et al., “An area efficient fpga
implementation of moving object detection and face detection
using adaptive threshold method,” in 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information & Com-
munication Technology (RTEICT). IEEE, 2017, pp. 1606–1611.

[13] S. Singh, C. Shekhar, and A. Vohra, “Fpga-based real-time motion
detection for automated video surveillance systems,” Electronics,
vol. 5, no. 1, p. 10, 2016.

[14] V. Taraate, Digital logic design using verilog. Springer, 2022.

[15] G. Liu, B. Zhou, Y. Huang, L. Wang, W. Wang, and E. Zhao, “Video
image scaling technology based on adaptive interpolation algorithm
and tts fpga implementation,” Computer Standards & Interfaces,
vol. 76, p. 103516, 2021.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

402 Marwan Al-yoonus, et al.: An FPGA Implementation of Basic Video Processing and Timing Analysis for..

[16] J. L. Brock, Introduction to Logic Circuits & Logic Design with
Verilog. Spinger, 2019.

[17] M. A. Al-yoonus and S. A. Al-Kazzaz, “Fpga-soc based object
tracking algorithms: A literature review,” Al-Rafidain Engineering
Journal (AREJ), vol. 28, no. 2, pp. 284–295, 2023.

[18] E. Calvo-Gallego, P. Brox, and S. Sánchez-Solano, “Low-cost dedi-
cated hardware ip modules for background subtraction in embedded
vision systems,” Journal of Real-Time Image Processing, vol. 12,
pp. 681–695, 2016.

[19] A. Cortes, I. Velez, and A. Irizar, “High level synthesis using vivado
hls for zynq soc: Image processing case studies,” in 2016 Conference
on design of circuits and integrated systems (DCIS). IEEE, 2016,
pp. 1–6.

[20] M. Benetti, M. Gottardi, T. Mayr, and R. Passerone, “A low-power
vision system with adaptive background subtraction and image
segmentation for unusual event detection,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3842–
3853, 2018.

[21] F. Carrizosa-Corral, A. Vázquez-Cervantes, J.-R. Montes,
T. Hernández-Dı́az, J. C. Solano Vargas, L. Barriga-Rodrı́guez, J. A.
Soto-Cajiga, and H. Jiménez-Hernández, “Fpga-soc implementation
of an ica-based background subtraction method,” International
Journal of Circuit Theory and Applications, vol. 46, no. 9, pp.
1703–1722, 2018.

[22] G. Conti, M. Quintana, P. Malagón, and D. Jiménez, “An fpga based
tracking implementation for parkinson’s patients,” Sensors, vol. 20,
no. 11, p. 3189, 2020.

[23] A. Linares-Barranco, F. Perez-Peña, D. P. Moeys, F. Gomez-
Rodriguez, G. Jimenez-Moreno, S.-C. Liu, and T. Delbruck, “Low
latency event-based filtering and feature extraction for dynamic
vision sensors in real-time fpga applications,” IEEE Access, vol. 7,
pp. 134 926–134 942, 2019.

[24] S. Das, A. K. Sunaniya, R. Maity, and N. P. Maity, “Efficient
fpga implementation of corrected reversible contrast mapping algo-
rithm for video watermarking,” Microprocessors and Microsystems,
vol. 76, p. 103092, 2020.

[25] S. Sarkar, S. S. Bhairannawar, and R. KB, “Fpgacam: A fpga-
based efficient camera interfacing architecture for real-time video
processing,” IET Circuits, Devices & Systems, vol. 15, no. 8, pp.
814–829, 2021.

[26] O. Iqbal, V. I. T. Muro, S. Katoch, A. Spanias, and S. Jayasuriya,
“Adaptive subsampling for roi-based visual tracking: Algorithms
and fpga implementation,” IEEE Access, vol. 10, pp. 90 507–90 522,
2022.

[27] X. Ren and Y. Wang, “Design of a fpga hardware architecture to
detect real-time moving objects using the background subtraction
algorithm,” in 2016 5th International Conference on Computer
Science and Network Technology (ICCSNT). IEEE, 2016, pp. 428–
433.

Marwan AL-Yoonus received a B.S. degree
in Electrical Engineering in 1994 from the
Electrical Engineering Department, Univer-
sity of Mosul, Iraq. Then he was appointed
as an assistant engineer in the same depart-
ment. He received an MSc degree in 2009
from the same department as well. Upon
his graduation, he was appointed as teaching
staff (lecturer) in the Electrical Engineering
Department, University of Mosul. Now, he

is pursuing his Ph.D. degree at the same university. His research
interests include FPGA platforms for embedded applications in
real-time and computer vision.

Sa’ad Ahmed Al kazzaz received the B.S.
and M.S. degrees in electrical engineering
from University of Mosul, Mosul, Iraq, in
1986 and 1990 respectively, and Ph.D. de-
gree from Indian Institute of Technology
Roorkee, Roorkee, India, in 2001. Currently,
he is an Assistant Professor with the Depart-
ment of Electrical Engineering, University of
Mosul. His field of interest includes health
monitoring of electrical machines and drives,

application of FPGA in the field of surveillance system.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

	INTRODUCTION
	LITERATURE SURVEY
	IMAGE REGION-OF-INTEREST (ROI)
	SUBSYSTEM HARDWARE DISCRIPTION
	HARDWARE IMPLEMENTATION
	RESULTS AND DISCUSSION
	CONCLUSION
	References
	Biographies
	Marwan AL-Yoonus
	Sa’ad Ahmed Al kazzaz

