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Abstract: The automation of tasks such as environmental monitoring, toxin detection, and mineral resource identification requires
artificial agents with perceptual discrimination capabilities to identify the predominant features in environments much larger than their
sensing range. The key challenge is developing collective decision-making methods that allow agents to predict a global perspective of
the environment from local observations. Our research explores the effectiveness of collective decision-making for binary perceptual
discrimination tasks, controlled by an artificial neural network synthesised using evolutionary computation techniques. We focus
on strategies that generalised better to environments with patchy, clustered feature distribution. We investigate three communication
strategies - close-neighbour, rand-neighbour, and far-neighbour- in which robots exchange opinions about the dominant colour of the
environment based on the distance between sender and receiver robots. The results show that the rand-neighbour strategy significantly
improves performance, particularly in unseen patchy patterns. The extensive analysis of the communication dynamics among the
robots indicates that the effectiveness of rand-neighbour strategy is attributed to its efficient circulation of opinions among both close
and distant robots. Our findings support the hypothesis that primordial communication between one receiver robot and a randomly
chosen emitter robot is sufficient to develop an effective collective decision-making strategy for swarm of robots engages in perceptual
discrimination tasks.

Keywords: Evolutionary robotics, Swarm robotics, Collective decision-Making, Communication strategies

1. INTRODUCTION
The automation of tasks such as environmental monitor-

ing, toxin detection, and mineral resource identification re-
quires artificial agents capable of perceptual discrimination
capabilities to identify predominant features in unknown
environments. A key challenge in these tasks is the size
of the environment relative to the sensing capabilities of
individual agents. This limited individual perspective can
lead to an inaccurate evaluation and ineffective actions.
Employing multiple agents to cover a larger area can make
possible to gather more comprehensive information about
the quality of environmental features or options. Neverthe-
less, effective mechanisms are needed to allow the group
of agents to make autonomous collective decisions. Swarm
robotics is the research domain that tries to identify the
individual mechanisms underpinning collective decision-
making as well as other complex collective responses.
Generally speaking, swarm robotics systems address tasks
that require collaborative efforts of a large number of
agents interacting with each other to solve complex and

extensive problems that would be otherwise impossible
for a single agent to handle. Inspired to the behaviour
of social insects, the distinctive characteristics of swarm
robotics is self-organisation, distributed control, and local
sensing, which endow the swarm with a higher level of
fault tolerance, scalability, and adaptability to environmental
disturbances [1].

The design methods in swarm robotics require roboti-
cists to identify individual behaviours that generate the
swarm desired collective response [2]. However, this is a
particularly challenging design problem, since the collective
response is a phenomenon that emerges from complex
and difficult-to-predict dynamics involving both robot-robot
and robot-environment interactions. This design problem
can be found in the study of many swarm responses,
including those requiring collective decision-making, which
refers to a process in which the robots collectively choose
an option among those available. The characteristics of
collective decision-making is that once a consensus is
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reached, it cannot be attributed to any specific member
of the swarm. Rather, it emerges from the complex spatial
and temporal interactions involved in the opinion exchange
process among swarm members [3]. In swarm robotics
literature, collective decision-making mechanisms are gen-
erally investigate in a two-options scenarios in which the
robots of the swarm have to find a consensus on the best
option between the two available. This type of scenario
are generally referred to as best-of-n (with n = 2 options)
problems [4], [5]. A specific type of best-of-2 decision
making problem is a perceptual discrimination task in which
the two options are distributed within the environment, with
the better quality option associated to the one that appears
in a larger quantity than the alternative one. Since the
perceptual capabilities of the robots are limited, a consensus
on the best-quality option can be achieved only through a
collective decision process in which robots explore different
area of the environment, and interact in order to “integrate”
their perceptual experiences to converge to a common
opinion on the best option.

One effective method to design individual control mech-
anisms underpinning collective decision-making in percep-
tual discrimination tasks is the hand-coded approach. In this
methodology, designers meticulously craft individual mech-
anisms that drive the collective response to the problem
at hand. The literature has demonstrated the effectiveness
of the hand-coded approach, especially when following the
principles of the Voter model, where agents change their
opinion based on selecting a random neighbour [6], [7],
or the majority model, where the opinion aligns with the
option held by the majority of a group of neighbours [8],
[9]. However, the design of hand-coded controls often relies
on strong assumptions made by designers regarding how the
problem should be addressed. These assumptions can limit
the ability of the swarm to exploit subtle irregularities in
physical and social perceptual cues, which could otherwise
enhance the collective decision-making process [10]. Recent
research has highlighted weaknesses in the hand-coded
approach, particularly its adaptability in dynamic environ-
ments where the optimal option changes over time [11],
[9].

Recently, an alternative design approach based on evo-
lutionary robotics (ER) has been introduced [12]. In this
approach, the decision making unit generating the agents’
opinion is an artificial neural network synthesised using
evolutionary computation techniques [13]. A notable fea-
ture of the ER approach is the automation of the design
process, which significantly reduces the influence of de-
signer assumptions. Recent research work [14] provides
evidence that the ER approach outperformed the hand-
coded approach with respect to the robustness, adaptability,
and scalability of the collective response of the group.

The study illustrated in [15] highlights that the challenge
in perceptual discrimination tasks lies not only in the
magnitude of the difference between the quality of the two

Figure 1. Images of the nine floor patterns used in this experiment.
The Random is the floor pattern experienced by the robots during the
design phase. The other eight floor patterns, originally introduced
in [15], are used to test the robustness of the decision-making
mechanisms used by the robots to perform this binary perceptual
discrimination task.

options, but also in their distribution patterns. This result
has been found in a type of perceptual discrimination task
in which the options are two colours covering the floor of
an arena that the robots explore with a random movement,
and the quality refers to the proportion of floor covered
by each option. In particular, the authors focused on nine
benchmark environments with varying feature distribution
patterns, as shown in Figure 1. The results of this study
indicate that, regardless of the difference in quality, groups
designed to perform optimally in the Random type of envi-
ronments (see Figure 1, Random) experience a performance
drop when they are post-evaluated in the Off-diagonal and
Stripe environment (see Figure 1, Off-diagonal, and Stripe).
This observation has been corroborated by other recent
studies [12], [16], [17] which report the same type of
performance drop in spite of the fact that they employ
artificial neural network as robots controllers to improve
the robustness of the collective response.

The primary objective of this study is to overcome the
limitations illustrated in [15], [12], [16], [17] by develop-
ing individual decision-making mechanisms underpinning a
collective response that allow a swarm of robots to perform
sufficiently well in all the nine types of floor distribution
patters illustrated in Figure 1. In order to achieved this
objective, We focus on multiple elements such as the type
of individual random walk used by the robots to explore
the arena, the structure of the neuro-controller, as well as
on the characteristics of the communication strategy used to
exchange individual opinions. We found out that, this latter
element is the one that allowed us to achieve an impor-
tant improvement in terms of robustness of the collective
decision with respect to the floor patterns. In particular,
we found out that only when the communication events
happens between a robot receiver and a randomly chosen
(rather than the closest as in [15], [12], [16], [17]) emitter
among those within communication range, no performance
drop is observed while moving from Random to all the other
nine floor patterns. We show that the superior robustness
observed in group in which the communication happens
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between a robot receiver and a randomly chosen emitter
can be attributed to a more effective circulation of opinions
among both the spatially close and distant robots, thereby
maintaining a high accuracy rate in the decision process
throughout the eight floor patterns not experienced by the
robots during the design phase. We would like to bring
to the reader’s attention that this study is an extension of
our previous study in [18], where we developed an effective
collective decision-making strategy for a group of 20 e-puck
robots. However, this research extends [18] by focusing
on enhancing communications strategies to improve group
performance that generalised better to environments with
patchy, clustered feature distribution.

2. METHODS
The task the robots are required to perform in this

experiment is a binary perceptual discrimination problem.
The robots have to collectively choose which colour covers
the largest proportion of a closed square arena (200×200
cm), tiled with black and white 10×10 cm tiles. We consider
two scenarios: i) a simple scenario (hereafter, referred to
as S-env), in which the difference in the proportion of black
and white tiles is relatively large, since one colour (the
dominant one) covers 66% of the arena floor, while the
other colour covers the remaining 34% of the arena floor;
ii) the hard scenario (hereafter, referred to as H-env), in
which the difference in the proportion of black and white
tiles is smaller than in S-env, since one colour (the dominant
one) covers 55% of the arena floor, while the other colour
covers the remaining 45% of the arena floor. For both the
S-env and the H-env scenario, the robots experience both
environments in which black is dominant (hereafter, referred
to as BD-env), and environments in which white is dominant
(hereafter, referred to as WD-env).

A swarm of 20 robots is initially placed in the arena with
randomly chosen positions and orientations (see Figure 2a).
The robots have to explore the arena and reach consensus
on the best quality option (i.e., choosing which colour is the
currently dominant colour) over a period of 400 seconds.
While exploring the arena, the robots can communicate
with spatially proximal neighbours their current opinion.
Consensus to the correct option is attained whenever all
the 20 robots shared the same correct opinion about which
colour is currently dominant for at least 10 s.

Our simulation model the e-puck robot [19], a popular
miniature robot commonly utilised in swarm robotic. The
simulated robot is equipped with a floor sensor for binary
colour detection (0 for black and 1 for white) and eight
infrared sensors for obstacle detection. The robots commu-
nicate using Range and Bearing sensors, with the commu-
nication range limited to 50 cm. To bridge the simulation-
reality gap, a uniform noise of 10% is added to all sensor
readings, motor outputs, robot positions, and orientations.

The robot’s exploration of the environment is based on
ballistic motion [20], a variant of random walk used in
robotic swarm mapping. This movement pattern involves
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Figure 2. (a) The simulation environment. (b) The finite-state
machine controlling the robots’ movements. (c) Continuous-Time
Recurrent Neural Network (CTRNN) generating the robots’ opinion.

the robot travelling in a straight line (ballistic trajectory)
until encountering an obstacle (other robots or the arena
wall), at which point it randomly changes direction. Ballistic
motion has proven to be effective in exploring enclosed
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environments [21]. Figure 2b illustrates the finite state
machine controlling the robot’s movement.

The decision-making process of the robot is con-
trolled by a Continuous-Time Recurrent Neural Network
(CTRNN) [22], synthesised using artificial evolutionary
techniques. The CTRNN comprises 2 sensor neurons, 4
internal neurons, and 1 output neuron representing the
robot’s opinion. The topology of the CTRNN is depicted
in Figure 2c. The network input includes readings from the
floor sensor and a communication signal received from a
randomly selected neighbour chosen from those at less than
50 cm distance from the receiver. The network outputs a
binary value where 1 corresponds to the opinion that the
dominant colour is white, and 0 corresponds to the opinion
that the dominant colour is black. This binary value, cor-
responding to the current robot’s opinion, is communicated
among spatially proximal robots, as mentioned above. If,
for a robot receiver there is no neighbouring robots within
communication distance (i.e., < 50 cm), the reading of the
receivers sensor neuron for communication is set to 0.5.
During communication, only one neighbour’s opinion is
selected from the set of available neighbours.

Equations 1, 2, and 3 illustrates how the sensory, inter-
nal, and opinion neurons are updated at every simulation
cycle.

yi = gIi; i ∈ {1, ...,N}; with N = 2; (1)

τiẏi = −yi +

j=N+4∑
j=1

ω jiσ(yi + β j); i ∈ {N+1, ...,N+4};(2)

yi =

j=N+4∑
j=N+1

ω jiσ(y j + β j); i ∈ {N + 5}; (3)

with σ(x) = (1 + e−x)−1. These equations incorporate
terms reminiscent of real neuron functions: cell potential
is denoted by yi, τi is the decay constant, g represents a
gain factor, and Ii with i = 1, ..,N is the activation of
the ith sensor neuron (refer to Figure. 2c for a mapping
between sensor neurons and their corresponding sensors),
ωi j the strength of the synaptic connection from neuron j
to neuron i, β j the bias term, σ(y j + β j) the firing rate.
All sensory neurons share the same bias (βI), and the same
hold for opinion neuron (βO). τi and βi of internal neurons,
βI , βO , all the network connection weights ωi j, and g
are genetically specified networks’ parameters. When the
network is initiated or reset, the cell potentials reset to 0.
For integrating equation 2, the forward Euler method is
employed with an integration time step of ∆T = 0.1

A simple evolutionary algorithm that uses tournament-
based selection, as illustrated in [12] is used to optimise the
parameters of the networks. This population comprises 64
genotypes. New generations emerge from a mixture of elitist
selection, recombination, and mutation. Each generation
preserves the six best performing individuals (i.e., ‘elite’)
from the preceding generation without any change. The

rest of the new generation is formulated by proportionally
selecting the fittest 40 of the prior generation.

During the evolutionary phase, each group undergoes
eight evaluations in the S-env condition (four in BD-env and
four in WD-env), with each evaluation lasting 400 seconds
(equivalent to 4000 simulation steps). In every evaluation,
the genotype is decoded into a neuro-controller, which is
then replicated in all 20 robots (considering a homogeneous
swarm). The robots are placed randomly in the arena, both
in terms of position and orientation. After the first 2000
simulation steps, the opinion of robot r is evaluated in
every simulation step t (i.e., Or

t ). The average opinion of
the 20 robots R is calculated and fitness assigned to the
group according to Equation 4.

Fe =


T
2
∑T

t= T
2

∑R
r=1 Or

t in WD-env
T
2
∑T

t= T
2

∑R
r=1(1 − Or

t ) in BD-env
(4)

The evaluation of the fitness score in the latter half of
the trial time is deliberate to avoid instability of opinion
state during the initial exploration phase. In this early stage,
robots have not yet accumulated sufficient physical and
social experience of the environment.

Regarding computational complexity, the time required
to complete a single evolutionary run, when executed on a
Dell PowerEdge server equipped with 64 cores and 256 GB
of main memory, is approximately 10 hours.

3. RESULTS
To design the robots’ controller, we run five separate

evolutionary simulations, each one lasting 2000 generations.
We remind the reader that during the evolutionary phase,
the robots experience only the Random floor pattern (see
first image in Figure 1). In order to select the best group
(i.e., the best genotype) The highest-ranked groups from the
1000th to the 2000th generation of each evolutionary run
are re-evaluated 50 trials in BD-env and 50 trials in WD-
env environment. The best group out of these re-evaluations
is chosen to demonstrate that the neural-network based
decision-making mechanisms allow a group of simulated
robots to reach consensus in both types of environment
(i.e., the WD-env and the BD-env). Moreover, we show
that the group can adapt to different floor patterns to the
one experienced during the design phase. In particular, we
show the accuracy of the decision-making process on the
best group in eight extra floor patterns shown in Figure 1.

As far as it concerns the performances in the Ran-
dom floor pattern, Figure 3 shows the development of the
decision-making process by displaying the opinions of all
the robots of the best group in both the S-env and in the H-
env conditions, respectively. In both graphs, white boxes
refer to the number of robots with the correct opinion in
the WD-env environment, while black boxes refer to the
number of robots with the correct opinion in the BD-env
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Figure 3. Boxs plot showing the number of robots with the correct
opinion in the WD-env environment (see white boxes) and in the BD-
env environment (see grey boxes) at regular time intervals of 20 s
until the trial end (400 s). (a) S-env condition; (b) H-env condition.
Each box is made 50 points (corresponding to 50 differently seeded
trials). Boxes represent the inter-quartile range of the data, while hor-
izontal bars inside the boxes mark the median value. The whiskers
extend to the most extreme data points within 1.5 times the inter-
quartile range from the box.

environment. Each box is made 50 points (corresponding to
50 differently seeded re-evaluation trials). Figure 3a refers
to the robots’ opinion in S-env (i.e., the dominant colour
takes 66% of the arena floor), while Figure 3b to the robots’
opinion in H-env (i.e., the dominant colour takes 55% of
the arena floor).

The graphs indicates that the best group reaches a con-
sensus on the correct option, in both types of environments
and in both the S-env and in the H-env. Moreover, the
consensus is reached more quickly in the S-env than in
the H-env condition. The consensus on the correct option
in the H-env condition is reached in approximately 200
seconds in both types of environments. Note that, the
robots’ control system has been designed in the S-env. Thus,
the H-env represents a rather novel environmental condition
for these robots. It should be noted that in Figures 3a and 3b,
the group converges to the white opinion in WD-env at
time 0. This is due to the genetic basis of the evolved
controller which, even in the absence of any perceptual
evidence—as it happens at the beginning of each trial—
it selects opinion WD-env. The emergence of a genetic bias
in binary collective and individual robot decision scenarios
has been documented in previous research (e.g., see [23]),
where robots are managed by analogous neural network
architectures.

A. Robustness to Different Floor Patterns
To evaluate the robustness of the best group to environ-

ments with floor patterns different from those experienced
during the design phase, we estimated the accuracy in
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Figure 4. Bar plots showing accuracy, that is the number of trials
(over 50 trials) in which the group reached the consensus state to
the correct opinion for at least 10 s, in nine distinct floor patterns
(see [?] and Section ??). The white bars refer to accuracy in the WD-
env environment, while the black bars refer to accuracy in the BD-
env environment. Each trial lasts 1000 s. In (a), the graph shows the
results in S-env (i.e., the proportion of the dominant colour tiles is
%66 ) while in (b), the graph shows the results in H-env (i.e., the
proportion of the dominant colour tiles is %55).

the decision-making process of this group in eight extra
floor patterns shown in Figure 1. The results are shown in
Figure 4. The graphs show accuracy, that is the number
of trials (over 50 trials) in which the group reached the
consensus state to the correct opinion for at least 10 s, in
nine distinct floor patterns. That is the Random pattern,
already experienced during the evolutionary design phase,
and eight extra patterns never experienced before. In this
post-evaluation test, each trial lasts 1000 s. Figure 4a shows
the results in S-env (i.e., the proportion of dominant colour
tiles is 66%). The graph demonstrates good performances
with a relatively high success rate in all the floor patterns.
In particular, its is worth noticing the accuracy in the Off-
diagonal and Stripe, which remains above 80% in both floor
patterns and for both the WD-env (see Figure 4a, white bars
for Off-diagonal and Stripe) and the BD-env (see Figure 4a,
black bars for Off-diagonal and Stripe). This is a significant
performance improvement with respect to previous related
works [16], [17], in which the authors report a significant
performance drop, in term of accuracy, of robots required
to operate in those patchy floor patters (i.e., the Off-
diagonal and the Stripe) without having experienced them
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Figure 5. Box plots showing time to converge to consensus calcu-
lated over successful trials only (out of 50 post-evaluation trials), in
nine distinct floor patterns (see [?] and Section ??). The white boxes
refer to time to convergence in the WD-env environment, while the
black boxes refer to time to convergence in the BD-env environment.
Each trial lasts 1000 s. In (a), the graph shows the results in S-env
(i.e., the proportion of the dominant colour tiles is %66 ) while in
(b), the graph shows the results in H-env (i.e., the proportion of the
dominant colour tiles is %55).

during the design phase. In the next Section, we provide
further evidence which illustrates the significance of the
communication strategy in allowing the best group to extend
its good accuracy rate to those eight floor patterns not
experienced during the design phase. Figure 4b presents
the results in H-env (i.e., the proportion of dominant colour
tiles is 55%). When the difference in the proportion of floor
covered by the two colour reduces, a slight performance
degradation is observed across all the environment patterns,
particularly in the Stripe environment. This accuracy drop
can be, in large parts, accounted for by considering that the
criteria for defining success in our experiment setup (i.e.,
all 20 robots must agree on the correct option for at least
10 s) is very stringent. It is worth mentioning that in many
unsuccessful trials in the H-env, the majority of the robots
(e.g., 18 or 19 robots) shared the same opinion about the
correct option. However, in spite of the large convergence
of the robots to the correct opinion, given our definition
of consensus, those trials are not considered successful.
Generally speaking, the performance shown in Figure 4a
and 4b represent a significant improvement compared to the
results reported in recent research works [16], [17], where
poor performance was reported even in S-env condition,
particularly in patchy environments (e.g., Off-diagonal and
Stripe).

Figure 5 shows the time to converge to consensus calcu-
lated over successful trials only (out of 50 post-evaluation
trials), in nine distinct floor patterns. The white boxes refer
to time to convergence in the WD-env, while the black
boxes refer to time to convergence in the BD-env. Each
trial lasts 1000 s. In Figure 5a, the graph shows the results
in S-env (i.e., the proportion of the dominant colour tiles
is %66 ) while in Figure 5b, the graph shows the results
in H-env (i.e., the proportion of the dominant colour tiles
is %55). Similar trends are observed in both graphs, with
slightly longer time to convergence to consensus in H-env.
An obvious increase in the time to convergence is observed
in the Stripe environment in both graphs. This explains why
the trial duration was increased from 400 s during the design
phase, to 1000 s for this post-evaluation tests.

B. Further Investigation On the Communication Strategies
In the previous Section, we have shown that our ex-

perimental setup allowed us to design decision-making
mechanisms using evolutionary-designed neuro-controllers,
that allow a group of robots to accurately choose the correct
options between two alternatives in a perceptual discrim-
ination task. More importantly, we have shown that our
best group manages to generalise its performance to floor
patterns not experienced during the design phase. This result
is particularly relevant because it represents a step forward
compared to the results of previous research works [16],
[17], which all reported a large drop in decision accuracy in
patchy distributed floor patterns (i.e., the Off-diagonal and
the Stripe). In order to achieve the good accuracy rate at
the robustness test shown above, we have modified several
elements of the original experimental setup as illustrated
in [16], [17]. In particular, we have modified the type of
random walk with which the robots explore the arena, the
structures of the neuro-controller by increasing the number
of neurons in the hidden layers, and the communication
strategy allowing a robot receiver to receive communication
signals from a randomly chosen robots among those in the
communication range. These three modifications have been
introduced progressively, one after the other with the intent
to improve the accuracy at the Robustness test. However,
a significant improvement in accuracy performance in the
patchy distributed floor patterns has been observed only
after having introduced the modification concerning the
communication strategy. Thus, this indicates that the new
communication strategy has the largest merit in improving
the accuracy rate.

In this section, we show the results of further post-
evaluation tests which aim to provide elements to explain
why the new communication strategy proven more effective
than the previous strategy in making the collective decision
process robust enough to deal with all different floor pat-
terns shown in Figure 1.

To understand how effective communication contributes
to collective performance, we studied communication strate-
gies focusing on the distance between signal sender and
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Figure 6. Heatmaps showing the frequency of communication events,
over 50 trials, between two robots located at progressively longer
distances. In particular, communication events are categorised into
four categories (i.e., <= 20 cm, (20 cm, 30 cm], (30 cm, 40 cm],
(40 cm, 50 cm]) based on the distance between the robot emitter and
the robot receiver. In (a), the graph refers to the condition in which
communication events are possible only between a robot receiver
and a robot emitter located at the shortest distance to the receiver
among those within the receiver communication range. In (b), the
graph refers to the condition in which communication events are
possible between a robot receiver and a randomly chosen robot
emitter among those within the receiver communication range. In (c),
the graph refers to the condition in which communication events are
possible only between a robot receiver and a robot emitter located at
the longest distance to the receiver among those within the receiver
communication range.

receiver. In particular, we investigated three types of com-
munication strategies: i) a strategy called close-neighbour
in which the communication events are possible only be-
tween a robot receiver and a robot emitter located at the
shortest distance to the receiver among those within the
receiver communication range (i.e., 50 cm); ii) a strategy
called rand-neighbour in which communication events are
possible between a robot receiver and a randomly chosen
robot emitter among those within the receiver communi-
cation range; iii) a strategy called far-neighbour in which
communication events are possible only between a robot
receiver and a robot emitter located at the longest distance to
the receiver among those within the receiver communication
range.

In this post-evaluation tests, we run 50 trials in which
we recorded, for each type of communication strategy
employed by the robots (i.e., the close-neighbour, the
rand-neighbour, and the far-neighbour), the number of
communication events falling in each of the following
distance category: i) <= 20 cm, ii) (20 cm, 30 cm], iii)
(30 cm, 40 cm], and iv) (40 cm, 50 cm]. This post-evaluation
test is meant to provided better insights into how opinions
are communicated within the group.

Figure 6 shows heatmaps of the communication fre-
quency between the robots during 50 trials, with the
communication frequency sampled every 10 s over a trial
duration of 400 s. The darker the cell colour in the map,
the higher the frequency of communication. Figures 6a, 6b,
and 6c represent the frequency of communication in the
close-neighbour, rand-neighbour and far-neighbour strate-
gies, respectively. As expected, when the robots employ
the close-neighbour strategy (Figure 6a), the most frequent
interactions are those falling in to the category < 20 cm.
On the contrary, when the robots employ the far-neighbour
strategy, the most frequent interactions are those falling in to
the category (40 cm, 50 cm]. This demonstrates that in close-
neighbour and far-neighbour strategies, opinion exchange
is spatially restricted to robots within a specific range of
distances. That is, communication tends to concerns either
spatially close robots (when the group employs the close-
neighbour strategy) or the spatially distant robots (when
the group employs the far-neighbour strategy). This bias
affects the way in which opinions flows within the group,
with a clear negative consequence on the accuracy in the
patchy distributed floor patterns. Note that, those works
that reported a significance performance drop in the patchy
floor patterns (i.e., [16], [17]), the robots employ the close-
neighbour strategy. When the robots employ the rand-
neighbour strategy, we notice a frequency distribution sim-
ilar to the far-neighbour strategy but definitely less biased
towards the category (40 cm, 50 cm] (see Figure 6b). This
indicates that, when the robots employ the rand-neighbour
strategy, as in our experimental setup, opinions circulates
more frequently than in the close-neighbour strategy among
distant robots, and also more frequently than in the far-
neighbour strategy among the nearest robots. This is an
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Figure 7. Bar plots showing the number of communication events be-
tween a receiver and senders, within communication range, ordered
from closest to farthest. The x-axis refers to the ordinal number of
the senders, while the y-axis refers to the number of communication
events. These events are computed over 50 trials in post-evaluation
tests in which the robots employ (a) the close-neighbour strategy,
(b) the rand-neighbour strategy, (c) the far-neighbour strategy.

element that favours an opinion exchange process that
turns out to generate decision-making strategies capable
of dealing with the patchy floor distributions without a
significant accuracy drop in the group performance (see
Figure 4).

A final series of post-evaluation tests is run to further
investigate how the opinions flow within the group for the
three different communication strategies. In particular, we
run 50 trials in which, for each type of communication
strategy, we recorded the number of communication events
between a receiver and senders, within communication
range, ordered from closest to farthest. For example, the

closest sender is considered the first 1, the second closest
to second 2, and so forth. The primary focus of this test is
to correlate the communication strategies with the number
of available robots within communication range, aiming to
understand how this number affects the performance of
opinions exchanged between robots. Figure 7 shows the
number of communication events between a receiver and
senders, within communication range, ordered from closest
to farthest. These events are computed over 50 trials in
post-evaluation tests in which the robots employ the close-
neighbour strategy (see Figure 7a), the rand-neighbour
strategy (see Figure 7b), and the far-neighbour strategy
(see Figure 7c). The number of communication events is
sampled every 10 s over a 400 s trial. It is worth noticing
that, as for the previous test, the rand-neighbour strategy
generates distributions of events more similar to the far-
neighbour strategy, while recording the highest number of
communication events for the first robot.

Generally speaking, the rand-neighbour strategy seems
to generate a circulation of opinions between both closest
and farthest robots, while the close-neighbour strategy al-
lows only communication between the closest robots among
those within communication range, and the far-neighbour
strategy only between the farthest robots among those
within communication range. Thanks to this property, the
rand-neighbour strategy, contrary to the other two, allows
the group to maintain a high accuracy rate even in the
patchy floor patterns.

4. Conclusions and FutureWork
This study describes a series of experiments designed

to develop effective and robust swarm robotics control
mechanisms to allow the robots to perform a binary col-
lective perceptual discrimination task, in which we vary
not only the options’ quality but also the way in which
the perceptual cues are distributed within the environment.
Our primary objective was to overcomes certain limitations
observed in similar recent studies [15], [12], [16], [17],
concerning the robustness of the collective decision making
process. In particular, we focus on a task in which individual
decision making mechanisms are first optimised to allow
a swarm of robots to achieve a high accuracy rate in the
collective decision in a type of environment in which cues
are distributed randomly, and subsequently tested for their
robustness in eight different environments where cues are
distributed differently.

In order to improve the robustness, we modified three
elements compared to [12], [16], [17]: the way in which
the robots explore the arenas, the structure of the neuro-
controller, and the communication strategy among the
robots. In this paper, we illustrate the important improve-
ments, in terms of robustness of the collective response with
respect to [15], [12], [16], [17] emerged thanks to the intro-
duction of an alternative communication strategy, in which
the opinion are exchanged between a robot receiver and a
randomly chosen (instead from the closest as in [15], [12],
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[16], [17]) robot sender among those within communication
range.

Our findings indicate that the control mechanism follow-
ing the the new communication strategy significantly en-
hances performance, particularly in unseen patchy patterns
of option distribution in the environment. The superiority
of the random strategy over the previously used solutions
is due to its more efficient circulation of opinions among
both the spatially close and distant robots, thus ensuring
high accuracy of opinion even in environments with patchy
distributed features.

In the future, we plan to investigate the impact of com-
munication strategies on the performance of larger swarm
size. We also intend to transfer the developed controller to
physical e-puck robots to validate our findings in a physical
system.
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