
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Load Balancing by Min-conflicts scheduling with Enhanced Eagle Aquila Optimization for Fog

Computing Environment

 V.Gowri

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai,

 gowrivageesan87@ gmail.com

ABSTRACT

Fog Computing" (FC) is a collection of abstracted computer resources. An Internet-based growth where

resources are offered as a service through the Internet which is rapidly scalable and abstracted has grown

to be a serious issue. The Fog server optimization routine becomes a difficult problem in fog computing. It

primarily focuses on Load Balancing (LB) in fog data centers to increase the performance of host and

reduce the number of active host machines. It should use migration strategies to move the Virtual

Machines(VM) from the overloaded host to the lighter host to equalize the load throughout the whole

information center. Min-conflicts scheduling with Enhanced Eagle Aquila Optimization (MCS-EEAO)

approach is proposed to handle a Constraint Satisfaction Problem (CSP) in the fog sever. Dynamic Compare

and Balance Algorithm (DCABA) also reduces the number of host machines that need to be maintained

and the cost of fog services. In contrast to conventional server optimization schemes that only take into

account LB and the allocation of resources based on the consumption of CPU, RAM, and Bandwidth in

physical servers. High latency and safety issues are important challenges for fog computing The proposed

system is based on fog technology which offers safety control, data management, fast response and

processing time. It also reduces the service costs in the fog business while making efficient use of the

resources that are already accessible.

Keywords: Fog Computing; Load balancing; Enhanced Eagle Aquila Optimization; Migration Techniques;

LB; Resource Management

IJCDS 1571002957

1

1. Introduction

FC a developing novel computing mechanism has become a hot topic in industry and research as a result

of the rapid growth and widespread usage of Internet technology. It is intended to offer computing as a

service to meet the basic needs of the community. Businesses and individuals access software services

anywhere in the world on request using its facilities [1]. As a result, it provides a novel approach for the

dynamic delivery of computing services, which is frequently supported by ensembles of networked Virtual

Machine (VM) located in cutting-edge data centers. It is a method of spreading computing that transfers

tasks from individual PCs to distant computer clusters for data analysis at fast internet speeds.

LB traffic monitoring control system that tracks user requests and server traffic. It will send incoming

requests to the alternative available servers whenever a server goes offline. The LB will automatically

redirect requests to a new server [2-3]. Both static and dynamic LB approaches are possible. The static LB

technique is successful by gathering fundamental information about each server. Since there is less

communication when using a static LB technique, execution time is reduced [4]. Unsupervised learning,

supervised learning, and Reinforcement learning (RL) are the three categories used to categorize ML

methods [5,6]. Unsupervised learning has issues with similarity-based grouping and labeling. An agent

develops to engage with the surroundings to obtain a reward in RL [7].

FC is viewed as an infrastructure that brings cloud computing services very closer to the end people.

Surprisingly, FC utilizes this idea when the virtual fog infrastructure is situated closer to the end individuals,

only among end-user devices and the cloud [8]. A fog is closer to the earth and the clouds are higher in the

sky. Similar definitions claim that fog computing will enable computation at the network edge and would

enable the delivery of new services and applications designed expressly for the Internet's future. For the

first time, researchers can define fog computing more accurately by stating that it is not only used at the

network edge [9] and also offers storage, networking, and computation services among the endpoints and

data centers of traditional cloud computing [10].

2

2. Related works

Applications for FC are executed in a multi-layer framework that interconnects software and hardware

activities, enabling dynamic reconfigurations for a variety of applications while operating transmission

services and intelligent systems [11–12]. On the other side, the edge server develops a direct transmission

service and controls unique applications in a set logic location. Edge computing is restricted to a few

auxiliary devices, whereas FC is hierarchical [13]. In addition to network and computing, FC also addresses

the speed, storage, and management of information [14]. The following features must be used by an IoT

consumer or smart end device when using a FC service to distinguish fog computing from other computing

standards [15].

FC uses a layered paradigm that allows for unrestricted access to a large pool of adaptable computer

resources. This paradigm, which is made up of fog nodes that are situated between centralized services and

intelligent endpoints, aids in the arrangement of dispersed, delay-aware services and applications [16]. The

context-aware fog nodes support a regular data management and communication mechanism. These nodes

would be grouped vertically, horizontally, or according to the fog node delay distance from the intelligent

user devices [17]. The focal point of the fog structure is the fog node. Fog nodes can be actual components

including switches or gateways or virtual components including VM or virtualized switches. They could be

tightly paired with connectivity networks or smart-end devices and have the ability to provide

computational resources to the aforementioned devices [18].

A mathematical model that concurrently investigates and addresses response time to the end user is

proposed [19]. By using max-min cloud technique, the load is distributed and server routine is maximized

through LB of VMs based on their capabilities [20]. In a virtual structure, heterogeneous VMs are used,

each of which has a varied number of virtual CPUs allotted to various subtasks. The cloud computing

services are implemented by the proposed probability architecture [21]. An approach built on architecture

identifies key characteristics and allays worries in cloud environments, including multi-tenancy [22].

3

Heterogeneous VMs and stochastic response times that fulfill requests according to broad likelihood

distributions are features of multi-tenant models.

The method is put into practice via LB and each sub-tasks execution time is predetermined [23]. In Mobile

Cloud Computing (MCC), the authors of [24] introduce cloudlets. Smart mobile devices and the cloud

interact more fluidly when they are close to one another. Clients receive high-quality services via cloudlets.

The Auction method is a new Incentive-based method that is used to encourage the cloudlet to share

resources [25]. In this paradigm, buyers place bids on resources, sellers make a resource pool available for

a specific task, and auctioneers act as middlemen in the resource auctioning process. The Incentive-

Compatible-Auctions-Mechanism (ICAM) method, developed by the researchers depends on the auction

method and is intended to service neighboring smartphones. The workload on the centralized cloud is

balanced, latency is decreased, and resources are used effectively [26]. Truthfulness, budgetary harmony,

effective resource management, computational effectiveness, and payment and clearance prices in

polynomial time are all provided by ICAM.

3. Problem Description

In theory, Fog computing is a dispersed system where resources are disseminated across the network. The

entire system resources must work together to fulfill a client request, which requires interaction between

different system components to create an element or subset of elements that can handle the request. This

may result in network bottlenecks and an uneven charge in a distributed system, where certain elements

receive an excessive amount of power while others receive little to no power. LB is one of the difficult

problems that fog computing systems must deal with and is crucial to the success of the technology. LB

scheduling method called the MCS-EEAO approach is proposed to handle a CSP.

The primary factors to be taken into account while constructing an LB method are load calculation, load

comparison, system stability, system performance, the connection among nodes, the type of work to be

transferred, and node selection [27]. An efficient solution needs to be created to address the issues with LB

4

in the fog network. The proposed method's main goal is to use the DCABA methodology to create a LB

framework used to achieve a proper balance of load across all the resources of fog servers while maximizing

resource utilization.

Once the load indexes for all the resources have been calculated, an LB procedure can be started to utilize

the resources efficiently while allocating resources to the appropriate node to lower the load value.

Therefore, allocating resources to appropriate nodes is an optimal distribution problem, or LB relies on a

variety of optimization techniques, including the genetic algorithm and enhanced genetic algorithm.

Although these approaches do not address the exploration and exploration issue, they are very effective in

supplying neighbor solutions. Therefore, while the genetic algorithm is a conventional and established

method, using the efficient optimization process instead can result in improved LB. To carry out the LB

operation in our proposed study, therefore intended to use a recent optimization method called DCABA.

First, the order of requests and the accessibility of virtual servers would be taken into account when

maintaining the index table.

4. Proposed System

This section introduces a three-layer design for the Fog system architecture. The three layers of the proposed

model are the user-end layer, Fog layer, and core-cloud layer, which are shown in Figure 1. Core fog is a

centralized network that is made up of distant computers for information processing, management, and

storage. At the network's edge, FC is an extension of core fog. To minimize the delay, fog and end users

communicate within one hop of each other. Fog has a finite number of VM that process, store, and handle

information for end users.

The two regions in this model are Europe and Asia. Due to the high population density in these two regions,

Europe and Asia are selected as region 1 and region 2, correspondingly. Each region features three groups

of buildings and one fog. On these fogs, there are anything between 30 and 45 VMs. During off-peak hours,

5

each cluster's typical user count can reach 50, but during peak hours, it can exceed 200. Clusters are linked

to the macro grid and the fog. Fog responds to the client's request by allocating resources to the end user.

Figure 1: System Architecture

3.1 DCABA algorithm for LB

Cloud

Fog 2

Data
Centre

 Server

Load
ancer

Server

VMn VM2 VM1 VMn VM2 VM1

Load
Balancer

Server

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Region 1 Region 2

Fog 1

C
o

re C
lo

u
d

Fo

g Layer
En

d
 U

se
r

6

To solve an optimization issue, there are two primary families of techniques. Complete procedures that

promise to either discover a legitimate allocation of values to parameters or demonstrate the absence of

such an assignment. These techniques typically function well and ensure a precise and advantageous

response for all inputs. However, in the worst scenario, they need exponential time, which is unacceptable

in the fog computing field. The other incomplete approaches might not ensure accurate results for every

input. Instead, these strategies find assignments that are satisfying for problems that are likely to be solved.

Due to their efficiency in tackling specific sorts of issues, simplicity, and speed, these methods have grown

in prominence in recent years. DCABA, a Hill Climbing method version, is one of the unfinished solutions

to such optimization issues. Simply said, a stochastic and local optimization method is a loop that iteratively

travels uphill in the direction of increasing quality. When it hits a "peak" where no neighbor's score is

greater, it pauses.

This variation picks an uphill move at random, and the likelihood of selection varies with the uphill move's

steepness. Therefore, by making slight adjustments to the original assignment, it maps responsibilities to a

collection of assignments. Each component of the set is assessed in accordance with a set of standards

intended to bring the state's assessment score nearer to that of a valid allocation. The next assignment is

given to the group's top-performing component. Until a solution is discovered or a stopping criterion is met,

this fundamental procedure was continued. Therefore, it consists of two key parts: a candidate creator that

links a candidate solution to a set of potential replacements, and an assessment procedure that evaluates

each viable solution so that improving the evaluation results in better solutions. The following is an

algorithmic description of the proposed technique:

Algorithm 1: DCABA

Step 1: Keep track of the busy/available status of the VM and its index table. All VMs are accessible right

away.

Step 2: In the mist, a new job appears.

7

Step 3: Produce a query for the following assignment.

Step 4: arbitrarily create a VM id.

Step 5: Evaluation the allocation table to determine the current status of the specific VM. If the VM is

discovered to be vacant:

1. Provide the VM id.

2. Deliver the message to the VM indicated by that id.

3. Adjust the allocation table as necessary. After discovering that the VM is allocated:

4. Create an arbitrary VM using an arbitrary method.

1. A VM should be chosen for the job with an increased likelihood that it will be able to do it

successfully.

2. Keep track of the VM's effectiveness; if it doesn't perform as expected, reduce the

likelihood that it will be assigned in the following round.

3. Adjust the choice table as necessary.

Step 6: When the reply foglet is received and the VM has finished evaluating the request. Create a VM de-

allocation alert.

Step 7: Proceed to Step 2 for the following allotment.

3.2 Problem Formulation

Our method is for a mobile-edge-fog system with multiple users, multiple tasks, and multiple tiers, to reduce

the system's total power consumption and computation time. Consequently, the following is the formulation

of our optimization issue:

min
𝛼

[∑ ∑ 𝐻𝑥,𝑦
𝑀
𝑦=1

𝑁
𝑥=1] (1)

8

𝑠. 𝑡
[𝑒𝑥,𝑦−𝑒𝑥,𝑦

𝑙]≤0 ∀𝑘∈[1…𝑘] 𝑐1

[𝑡𝑥,𝑦−𝑡𝑥,𝑦
𝑙]≤0 ∀𝑘∈[1…𝑘] 𝑐2

 (2)

∑ ∑ ∑ 𝛼𝑥,𝑦,𝜑𝑓𝑥
𝑒 ≤ 𝐹𝑘 ∀𝑘∈ [1 … 𝑘] 𝑐3𝑘+1

𝜑=1
𝑀
𝑦=1

𝑁
𝑥=1 (3)

∑ 𝛼𝑥,𝑦,𝜑 = 1 ∀𝑥,𝑦 𝑐4𝑘+1
𝜑=1 (4)

𝛼𝑥,𝑦,𝜑 ∈ {0,1} ∀𝑥,𝑦 𝑐5 (5)

An issue could be viewed as a single optimization task that attempts to use offloading and safety

implementation to reduce the cost of the system in terms of energy and time. The first two limitations

correspond to the maximum amount of energy and time that could be consumed.

The disparity in the arrangement of stations on stations could be attributed to the fact that certain platforms

are overloaded while others are underloaded. As a result, lengthy delays and poor service quality due to

network congestion reassign the load among the stations by obliging them to transfer to the greatest

available locations. Every station first uploads a summary of its locations, which contains the number of

attached stations, the transmitted information rate, the number of CPU cycles allocated to each MUD job,

or the number of stations that could be reallocated to other locations nearby. The central control manager

then cycles through the stations and forces them to pass off to the best accessible stations depending on the

number of users who are currently available and the calculation time and information rate.

VMs make up fog resources. Requests are distributed VMs to handle. RT, cost, and processing time are the

three primary performance metrics for FC. In allocating VMs appropriately, load scheduling methods are

employed to optimize the workload of fog. Let N be the number of customers per group N = {n1, n2,..., nn}

and C be the number of groups in the framework C = {c1, c2,..., cc}. A client makes R number of requests

every hour, where R = {r1, r2,..., rm}. VM = {vm1, vm2,..., vmy} was a representation of a set of VMs.

Requests are directed to fog, which uses LB to allocate VMs to them. Following are the total requests made

by an N-user group:

9

𝑅𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = ∑ (𝑟𝑥)𝑀
𝑥=1 (6)

And a total request:

𝑅𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟)𝑐
𝑐𝑙𝑢𝑠𝑡𝑒𝑟=1 (7)

Performance metrics are impacted𝑅𝑇𝑜𝑡𝑎𝑙 is mapped to the number of VMs j, where a high volume of

requests causes delays.

Processing Time Start time less the final duration equals the processing period Tp.

Tp = Tstart – Tend (8)

R request's processing time at vmj is the time allocated to assigning R request to j

𝑃𝑟𝑗 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟

𝑣𝑚𝑗
 (9)

In this case, the position of the request r at 𝑣𝑚𝑗 is either provided or not, according to λ𝑦𝑥. When the total

number of allotted VMs is known, the conflict for constraint implies that no VMs will be issued. Conflict

decrease increases our processing speed. The algorithm's goal is to reduce processing time:

𝑀𝑖𝑛𝑇𝑝
= ∑ ∑ (λ𝑦𝑥 ∗ 𝑃𝑦𝑥)𝑟

𝑥=1
𝑗
𝑦=1 (10)

Response Time (RT) was the total latency and demand processing time.

RT = 𝑇𝑝 + 𝑇𝑑 (11)

𝑇𝑑 represents the delay experienced when the request makes it to the fog.

3.3 MCS-EEAO algorithm for LB

10

The proposed MCS-EEAO algorithm is discussed in this section. Aquila is one of the maximum desired

birds in the world because of its hunting bravery. When the male Aquilas hunted alone, they captured a

great deal more target. With their quickness and energetic greenhouses, Aquila chases squirrels, rabbits,

and a variety of other things. It is even identified as a threat to the adult deer. Ground squirrels are reportedly

the second most important species in Aquila's diet. For bird hunting in flight, the first technique, strong

flight with a horizontal person was used in which the Aquila rises above the ground. The Aquila begins a

long flight at a shallow angle after finding prey with speed increasing as the wings close. For that approach

to work, Aquila needs to have a vertical advantage over her target. To simulate thunder, the wings and tail

were deployed just before the confrontation, and the feet were propelled forward to capture the prey. The

second approach, bypass flight with a brief gliding attack, was considered the most common technique used

by Aquila, where the Aquila climbs from the floor at a reduced rate. Whether the prey travels or flies, the

prey is pursued with care. For shooting ground squirrels, breeding grouse, or seagulls, this strategy was

ideal. The procedures for carrying out our proposed LB method are shown in Algorithm 2.

First Method Second Method

Figure 2: Eagle Aquila hunting methods

11

MCS-EEAO the optimization method begins with the generation of a random collection of possible

alternatives, known as the community. Using a recurrence trajectory, the MCS-EEAO search algorithms

analyze eligible investments for an almost optimal response/the best response. The MCS-EEAO

optimization techniques update each optimizer location with the best option. Four separate research tactics

for exploration and exploitation have been proposed to illustrate the balance between MCS-EEAO research

strategies. Once the final criterion is met, the MCS-EEAO search process ends.

Algorithm 2: MCS-EEAO

Input: BS is allocated with MDU

Output: Best available MDU with LB

Step 1: Population P initialized and parameters α, δ

Step 2: do-while

 Determine fitness function values Pbest (r)

Identify the best solution achieved

Step 3: for x ranges from 1 to N

The Average value of the present solution Pm(r) is updated

 Modify the value x, y, H₁, H₂, Levy(R)

if 𝑟 ≤ (
2

3
) then

if random ≤0.5 then

 Expanding (P1)

The Current solution is updated by using Equation 4.

 if Fitness (P1 (r+1)) < Fitness (P(r)) then

P(r) = (P1(r+1))

if Fitness (P₁ (r+1)) < Fitness (Pbest(r)) then

Pbest (r) = P1(r+1)

end

12

end

 else

Step 4: Narrow (P₂))

The Current solution is updated by using Equation 5

 if Fitness (P2(r+1)) < Fitness (P(r)) then

P(r) = (P₂(r+1))

if Fitness (P₂(r+1)) < Fitness (Pbest(r)) then

Pbest(r) = P₂(r+1)

 end

 end

 end

end

Step 5: Start the EEOA Proceduer and set the input (a,P(r), Pbest(r))

Step 6: Set X =0 and Y=0

Step 7: for (a,t) ϵ Pbest(r) union do

set the VECTORIZE (a,t) to X append u(a,b) to Y

 Set the gp= Gaussian Process (X,Y)

 €*, δ* = POSTERIOR(gp,l*)

end for

Step 8: for all BS at time t do

Assign a =Number of MDU to BS.

Assign b = data rate and consumptions uplinked for each MDU at BS

Assign c = reallocated all the MDUs to nearby BS

13

Step 9: Hand over the best available BS to LB based on a,b,c

Step 10: return the value

4. Experimental Results

The proposed planning technique is depending on DCABA and employs it to optimize how requests are

handled in the fog network. Another element of the suggested approach is to balance the load in the fog

system. The proposed methodology is described in the sections above. By using FogSim tool, map the

experimental evaluation of the proposed planning approach.

The time required to run an efficient schedule queue serves as the primary principle for the evaluation of

the planned scheduling approach over a fog network. The CPU utility rate and storage consumption rate

would be the primary deciding criteria that would be taken into account. The performance of the proposed

planning approaches was tested using the simulated database depending on various factors. The amount of

time was determined using the amount of time needed to create an efficient planning method.

4.1 Performance Evaluation

The CPU usage rate and storage utilization rate are the two parameter variables in the recommended

assessment section. Therefore, the aforementioned decision characteristics are regarded as the nodes' load.

As a result, when creating a schedule by balancing the provided loads, we must take performance into

account. They provide two sorts of assessments in performance evaluation. Here, they adjusted the CPU's

maximum utilization to be between 60 and 100, and the analysis's findings are shown in Figure 3. The line

time and the memory utilized for the same in the storage rate line serve as a representation of the time and

memory required for planning for various CPU rates. The use of memory per 100 KB is used to compute

the memory rate. According to the evaluation, scheduling times are consistent throughout a range of CPU

speeds, and memory rates.

14

Figure 3: CPU rate-based assessment

Researchers chose a memory rate range of 60 to 100, and the evaluation's findings are displayed in Figure

4. The time and CPU rate, correspondingly indicate the time and CPU consumption for planning for various

memory rates. The utilization of the CPU divided by the CPU's 100% utilization yields the CPU utilization

rate. An investigation demonstrated that the planning period is consistent for varying memory and CPU

rates.

0

0.5

1

1.5

2

2.5

60 70 80 90 100

Ti
m

e
 &

 M
e

m
o

ry
 R

at
e

CPU utility rate

Times (ms)

Memory rate

15

Figure 4: Memory rate based on assessment

4.2 Comparative Analysis

The contrast evaluation of the proposed method with the current methodology is shown in Figures 5 and 6.

The findings of the LB planning approaches were used to determine the values of the current approach.

According to the analysis of Figure 5, the proposed strategy uses the CPU rate more effectively than the

current approach does during LB. The memory graph evaluation reveals that the average memory utilization

for the technique is lower than the proposed strategy. Therefore, the proposed method is more efficient than

the current method while taking into account a load-balanced condition and the CPU usage rate.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

60 70 80 90 100

Ti
m

e
 &

 C
P

U
 R

at
e

Memory rate

Times (ms)

Memory rate

16

Figure 5: CPU usage rate contrast

Figure 6: Memory size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N1 N2 N3 N4 N5

C
P

U
 u

ti
lit

y
ra

te

Set of nodes

DCABA

Ant colony

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N1 N2 N3 N4 N5

M
e

m
o

ry
 r

at
e

Set of nodes

DCABA

 Blind Load-Balancing Algorithm

17

4.3 Load Balance

The number of Stations assigned at each Station is shown in Figure 7 for both situations with and without

the integration of LB. As can be seen from that, in the latter case, or without LB, stations 2 and 3 are

overloaded while stations 1 and 4 are underloaded. As it is, our proposed method maintains a balance to the

number of stations provided by each station, resulting in a more balanced load distribution and enhancing

the system's efficiency.

Figure 7: The locations of the users with and without LB

4.4 Simulation Results

This section presents the simulation and its outcomes. The performance variables used in the simulations

are computed using formulas. Fog-analyst, which simulates the real-world environment, is used for these

variable calculations. From there, they analyze a large number of tests to obtain and optimize findings for

a actual-world scenario. The charts for the techniques with Min-conflicts illustrate the cost, response time,

and processing time.

0

5

10

15

20

25

30

0 1 2 3 4 5

N
o

. o
f

u
se

rs
 e

ac
h

 b
as

e
 s

ta
ti

o
n

Availabl Base Stations

Without Load Balancing

Load Balancing

18

The total Response Time(RT) of each method is displayed in Figure 8. The overall response time in the

case is 65.25 ms, round robin is 78.95 ms, and the overall RT of the proposed technique MCS-EEAO is

64.74 ms. Min-conflicts outperform the other two methods in fog computing by providing a lower RT and

greater effectiveness. The performance of the MCS-EEAO technique is shown in Figure 9 for RT to each

of the six fog groups.

Figure 8: Overall Response Time of Fogs

0

10

20

30

40

50

60

70

80

90

Throttled Round robin MCS-EEAO

O
vr

al
l r

e
sp

o
n

se
 t

im
e

Algorithm

19

Figure 9: Average RT of Fogs

The processing times for throttled, RR, and min-conflicts are 15.60 ms, 28.24 ms, and 15.14 ms,

correspondingly, in Figure 10. MCS-EEAO operates better than the other two methods since they demand

less processing time. The processing time of fogs is shown in Figure 11.

0

20

40

60

80

100

120

140

C1 C2 C3 C4 C5 C6

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e

Clusters

Throttled

Round Robin

MCS-EEAO

20

Figure 10: Overall Processing Time

Figure 11: Fogs' processing time

 In the described situation, a cloud-fog based technology can be utilized. The cloud, fog, and end-user

levels make up the three tiers of the recommended framework. For the simulation, which takes into account

0

5

10

15

20

25

30

Throttled Round robin MCS-EEAO

A
ve

ra
ge

 p
ro

ce
ss

in
g

ti
m

e

Algorithm

0

5

10

15

20

25

30

35

40

Fog 1

Fog 2

P
ro

ce
ss

in
g

ti
m

e

Fog

Throttled

Round Robin

MCS-EEAO

21

the two areas of Asia and Europe, the fig sim tool is used. In this case, three building groups are linked to

one fog that is put in one area. With cloud and energy provider infrastructure, the fog communicates.

Allocating VMs to the requests uses the MCS-EEAO LB technique. Compared to RR and Throttled, this

approach offers better simulated outcomes for RT and processing time.

5. Conclusion

To achieve demonstrable gains in server workload control and lower the cost of fog services, hence this

work demonstrated the practicality of LB and server consolidation strategies. Fog vendors can benefit from

enhanced cost benefits because of the proposed dynamic criterion dependent on DCABA. Additionally, a

separate portion for server consolidation and LB improves the method's scalability. A proposed strategy is

implemented in three stages: first, an individual’is derived from the fog network, followed by planning

index estimation, and ultimately, the planning list is optimized using the DCABA methodology. The same

generated fog network is used for the experiments, and the efficiency of the proposed strategy is assessed.

The results of the study delivered the projected outcomes, demonstrating the effectiveness of the MCS-

EEAO for optimizing schedules by balancing the loads and reduces the overall response time.

Declaration:

• We confirm that we have read, understand, and agreed to the submission guidelines, policies, and

submission declaration of the journal.

 • We confirm that all authors of the manuscript have no conflict of interests to declare.

Ethical Approval :

 Not applicable for this work.

Competing Interest:

22

We declare that have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Funding:

There is no funding body for this study.

Availability of data and materials:

Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

[1] Kashani, M. H., and Mahdipour, E. (2022). LB algorithms in fog computing: A systematic

review. IEEE Transactions on Services Computing, (01), 1-1.

[2] Batra, S., Anand, D., and Singh, A. (2022, April). A Brief Overview of LB Techniques in Fog

Computing Environment. In 2022 6th International Conference on Trends in Electronics and

Informatics (ICOEI) (pp. 886-891). IEEE.

[3] Albalawi, M., Alkayal, E., Barnawi, A., and Boulares, M. (2022). LB Based on Many-objective

Particle Swarm Optimization Algorithm with Support Vector Regression in Fog Computing. Journal

of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.

org/10.47363/JEAST/2022 (4), 138.

[4] Potu, N., Bhukya, S., Jatoth, C., and Parvataneni, P. (2022). Quality-aware energy efficient

scheduling model for fog computing comprised IoT network. Computers and Electrical

Engineering, 97, 107603.

23

[5] Gupta, S., and Singh, N. (2023, January). Resource Management with LB Strategies in Fog-IoT

Computing Environment: Trends, Challenges and Future directions. In 2023 International

Conference on Artificial Intelligence and Smart Communication (AISC) (pp. 1358-1359). IEEE.

[6] Malik, S., Gupta, K., Gupta, D., Singh, A., Ibrahim, M., Ortega-Mansilla, A., ... and Hamam, H.

(2022). Intelligent load-balancing framework for fog-enabled communication in

healthcare. Electronics, 11(4), 566.

[7] Abohamama, A. S., El-Ghamry, A., and Hamouda, E. (2022). Real-time task scheduling algorithm

for iot-based applications in the cloud–fog environment. Journal of Network and Systems

Management, 30(4), 54.

[8] Mirtaheri, S. L., Azari, M., Greco, S., and Arianian, E. (2023). An Ant-colony Based Model for LB

in Fog Environments. Supercomputing Frontiers and Innovations, 10(1), 4-20.

[9] Verma, R., and Chandra, S. (2023). HBI-LB: A Dependable Fault-Tolerant LB Approach for Fog

based Internet-of-Things Environment. The Journal of Supercomputing, 79(4), 3731-3749.

[10] Malik, S., Gupta, K., Gupta, D., Singh, A., Ibrahim, M., Ortega-Mansilla, A., ... and Hamam, H.

(2022). Intelligent Load-Balancing Framework for Fog-Enabled Communication in Healthcare.

Electronics 2022, 11, 566.

[11] Kanellopoulos, D., and Sharma, V. K. (2022). Dynamic LB Techniques in the IoT: A

Review. Symmetry, 14(12), 2554.

[12] Kesavan, R., Loganathan, V., Shankar, T., and Periasamy, J. K. (2022). Fog-computing: a novel

approach for cloud-based devices using perceptual cloning manifestation-PerColNif taxonomy by

energy optimization. Energy conservation solutions for fog-edge computing paradigms, 107-128.

24

[13] Kesavan, R., Poorani, S., Iyswarya, R., Muthunagai, S. U., Anitha, R., and Vijayaraja, L. (2023).

Convergence Perceptual Model for Computing Time Series Data on Fog Environment. In Computer

Vision and Machine Intelligence Paradigms for SDGs: Select Proceedings of ICRTAC-CVMIP

2021 (pp. 15-23). Singapore: Springer Nature Singapore.

[14] Liu, S., Yang, S., Zhang, H., and Wu, W. (2023). A Federated Learning and Deep Reinforcement

Learning-Based Method with Two Types of Agents for Computation Offload. Sensors, 23(4), 2243.

[15] Songhorabadi, M., Rahimi, M., MoghadamFarid, A., and Kashani, M. H. (2023). Fog computing

approaches in IoT-enabled smart cities. Journal of Network and Computer Applications, 211,

103557.

[16] Gowri, V., and B. Baranidharan.(2022)."Dynamic Energy Efficient Load Balancing Approach in Fog

Computing Environment." In Intelligent Communication Technologies and Virtual Mobile

Networks: Proceedings of ICICV pp. 145-160. Springer Nature Singapore, 2022.

[17] Wen, W., Demirbaga, U., Singh, A., Jindal, A., Batth, R. S., Zhang, P., and Aujla, G. S. (2023).

Health Monitoring and Diagnosis for Geo-Distributed Edge Ecosystem in Smart City. IEEE Internet

of Things Journal.

[18] Abkenar, S. B., Kashani, M. H., Akbari, M., and Mahdipour, E. (2023). Learning textual features for

Twitter spam detection: A systematic literature review. Expert Systems with Applications, 120366.

[19] Tahmasebi-Pouya, N., Sarram, M. A., and Mostafavi, S. (2022). A Blind Load-Balancing Algorithm

(BLBA) for Distributing Tasks in Fog Nodes. Wireless Communications and Mobile

Computing, 2022.

[20] Arefian, Z., Khayyambashi, M. R., and Movahhedinia, N. (2023). Delay reduction in MTC using

SDN based offloading in Fog computing. Plos one, 18(5), e0286483.

25

[21] Janakiraman, S., and Priya, M. D. (2023). Hybrid grey wolf and improved particle swarm

optimization with adaptive intertial weight-based multi-dimensional learning strategy for LB in cloud

environments. Sustainable Computing: Informatics and Systems, 38, 100875.

[22] Kanellopoulos, D., and Sharma, V. K. (2022). Dynamic LB Techniques in the IoT: A

Review. Symmetry, 14(12), 2554.

[23] Fahimullah, M., Ahvar, S., and Trocan, M. (2022). A Review of Resource Management in Fog

Computing: Machine Learning Perspective. arXiv preprint arXiv:2209.03066.

[24] Ezhilarasi, T. P., Dilip, G., Latchoumi, T. P., and Balamurugan, K. (2020). UIP—a smart web

application to manage network environments. In Proceedings of the Third International Conference

on Computational Intelligence and Informatics: ICCII 2018 (pp. 97-108). Springer Singapore.

[25] Alirezazadeh, S., and Alexandre, L. A. (2023). Ordered balancing: LB for redundant task scheduling

in robotic network cloud systems. Cluster Computing, 1-16.

[26] Mattia, G. P., Pietrabissa, A., and Beraldi, R. (2023). A LB Algorithm for Equalising Latency across

Fog or Edge Computing Nodes. IEEE Transactions on Services Computing.

[27] Tripathi, G., Singh, V. K., and Chaurasia, B. K. (2023). An energy-efficient heterogeneous data

gathering for sensor-based internet of things. Multimedia Tools and Applications, 1-24.

26

