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Abstract: Automating freehand sketches is a complex process due to their diverse and abstract characteristics. Recently, there has been
significant interest among researchers in machine learning algorithms, owing to their emergence. Nevertheless, many utilized models
are either inadequate or overly complex, featuring processes that lack clarity and consistency, which hinders their ability to accurately
depict real-world scenarios. In this study, we introduce an approach that applies deep learning methods involving a combination of
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) to enhance sketch recognition performance. In the
initial phase of our approach, a CNN was employed to extract features that were subsequently forwarded to an LSTM network
for classification. We evaluated the efficacy of our method by utilizing the QuickDraw dataset offered by Google, and the results
demonstrated that our approach outperformed both CNN and LSTM, as well as other state-of-the-art methods. Our method attained an
accuracy of 95%, with precision and recall reaching 95%, while also achieving an F1 score of 94%.
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1. Introduction

Freehand sketching is a prevalent daily practice used to
convey thoughts, record occurrences, and communicate with
others [1]. The increasing use of touch screens in wearable
devices has heightened interest in the ability to recognize
sketches. However, the requirements for automatic inter-
pretation of hand-drawn sketches are substantially higher.
Several factors contribute to this distinction. One notable
contrast lies in the abstract nature of sketches, which
offer minimal information about shapes, whereas natural
images are characterized by their abundance of color and
texture details. The various painting styles employed by
different individuals can make it challenging for computers
to develop accurate representations of objects for tasks such
as sketch recognition. Most existing methods for sketch
recognition follow the traditional approach of extracting
sketch descriptors, such as color, texture, and shape, and
then training a classifier with these descriptors. However,
these features are optimized for natural images and are
not specifically tailored to freehand sketches. Sketches tend
to be highly iconic and abstract, featuring fewer visual
cues than their natural-image counterparts.Deep-learning
(DL) approaches, such as visual recognition on large-scale
challenging datasets, have proven successful in various

areas of computer vision in recent years [2]. DL approaches
have been shown to enhance sketch-based recognition
and generate relevant feature representations by examining
large sketch datasets, including TU-Berlin and QuickDraw
datasets [3][4]. DL can produce more distinct characteristics
from sketch photos and can be used for sketch classifi-
cation or recognition. Deep features were first used for
sketch recognition by [5], who created a unique neural-
network model. However, these methods based on deep
learning outperform the traditional approaches in terms of
efficiency. In this study, we propose an approach to improve
sketch recognition through the utilization of deep learning
methods. More precisely, we applied a CNN to extract
valuable features from the sketches, and an LSTM network
to classify them, which marks a significant retreat from the
conventional feature-based techniques.Our contributions to
the sketch recognition field can be summarized as follows:
- Integration of DL: We harness the power of DL, specifi-
cally a CNN, to extract noteworthy features from freehand
sketches. This enables us to capture the unique and abstract
qualities of sketches, which are markedly different from
conventional natural images.
- Sequential Analysis with LSTM: We utilized an LSTM
network to analyze the sequential nature of the extracted
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sequence and progression of strokes in a sketch, thereby
improving the ability of our model to recognize complex
drawings.
- QuickDraw Dataset Evaluation: We thoroughly evaluated
our proposed approach using the QuickDraw dataset, which
contains a broad range of sketch classes and is one of
the most extensive and comprehensive resources available
for sketch-recognition research. This ensures the robustness
of the proposed approach. By combining the power of
deep learning, CNN, and LSTM, our approach strives to
significantly enhance the accuracy of sketch recognition,
thereby providing a prospective solution for overcoming
the difficulties presented by the abstract and symbolic
qualities of freehand sketches. The results achieved in
this investigation highlight the efficacy of the proposed
approach, underscoring its superior performance compared
to CNN, LSTM, and other state-of-the-art methods. Section
2 provides an overview of the relevant literature, detailing
previous research efforts in the field. Section 3 elaborates on
the approach employed for sketch recognition, outlining the
utilization of CNN and LSTM networks. Section 4 describes
and analyzes the experimental results obtained using the
QuickDraw dataset. Finally, in section 5, we present the
conclusions drawn from this research.

2. Related Work

Several studies have focused on recognizing the sketches.
These inquiries can generally be categorized into two pri-
mary lines of investigation: traditional sketch recognition
[6] and approaches rooted in artificial intelligence [5]. It
is evident that traditional methods, having a longer history,
prove to be less efficient compared to artificial intelligence-
based methods when it comes to addressing this issue. In
Table 1, we present a comprehensive summary of diverse
research efforts within the domain of sketch recognition,
organizing them by publication year, dataset utilized, em-
ployed methodologies, and performance metrics applied.

In traditional sketch recognition, the user draws a re-
quest. The request sketch is described by a set of features in-
cluding color, texture, and shape [8]. The similarity between
image sketches was calculated using distance or similarity
measures. Eitz et al. [9] introduced the BOW representation
for freehand sketches and subsequently applied multiclass
SVMs to to recognize input samples. In [7][10], the concept
of local features was explored by researchers who employed
a comprehensive structure, known as a star graph, is used
to depict a sketch. In a different study, Schneide et al.
[11] employed the Fisher vector as a sketch descriptor,
which resulted in significant improvements in classification
outcomes. Li et al. [12] introduced a novel approach in
their research by proposing a criterion that aimed to en-
hance the average value of trace ratios through the use of
linear discriminant analysis in a manner that maximized
the harmonic weighted mean, this method demonstrates
versatility and can be applied to various classification
problems. Chang et al. [13] introduced an innovative se-

mantic pooling strategy that excelled in addressing complex
analytical tasks, specifically in the realms of case detection,
recognition, and event recounting. One of the disadvantages
of conventional approaches is the decline in performance as
the size of the dataset grows [14]. In recent years, inspired
by the accomplishments of deep learning in elevating the
capabilities of computer vision, many researchers have
worked towards enhancing specialized deep models for
the recognition of sketches. Zhang et al. [15] presented a
hybrid CNN architecture that combines two components:
A-Net, which is dedicated to capturing appearance details,
and S-Net, which focuses on the shape characteristics.
The researchers evaluated the performance of this hybrid
CNN model for several tasks, including image classification
and sketch retrieval, utilizing multiple datasets: TU-Berlin,
Flickr15k, and Sketchy. The results were remarkable, as
The model achieved an accuracy of 80% on the Sketchy
dataset and 83.5% on the TU-Berlin dataset. Zhang [16]
introduced a technique that employs a convolutional dual
channel neural network. The approach started with the
refinement of the sketch to give it a sleek and polished
appearance. Subsequently, contours were extracted using
a dedicated contour extraction algorithm. The CNN then
processes the input by integrating the refined sketch with
the extracted contours through a fully connected layer,
enabling feature fusion. The recognition rate achieved using
a softmax classifier to generate classification results was
73.24%. Zhu et al. [17] introduced a network, combining
both attention and dense elements, with a specific focus
on optimizing sketch classification. This network handles
the unique sparse characteristics of sketches by incorpo-
rating large-scale overlapping pooling. Dense blocks were
strategically integrated into the central convolutional layer
to foster feature reuse, and these blocks leveraged mixed
attention mechanisms to effectively capture both localized
and intricate details. Furthermore, the inclusion of center
loss in combination with softmax cross-entropy loss was
employed to enhance the overall classification performance.
Li et al.[18] introduced a novel network architecture called
Sketch-R2CNN, with a focus on optimizing vector sketch
recognition. This unique architecture leverages a rasterized
one-branch RNN to effectively harness vector sketches.
The network analyzes a vector-based sketch and uses an
RNN to detect the important feature points in the vector
space.Subsequently, a neural module equipped with a line
network is employed to transform the vector features and
points into a multichannel point feature map. This map is
then fed into a CNN to extract convolutional features within
the pixel space. A line-network neural module was designed
to facilitate end-to-end learning. To evaluate the efficacy
of their approach, the authors conducted experiments on
two datasets: the TU Berlin dataset and QuickDraw. Wu et
al.[19] proposed a solution for the problem of segmenting
sketches at the stroke level. Their strategy views this issue
as an assignment involving the generation of one sequence
to another. employing a method called SketchSegNet that
relies on an RNN. This method was used to transform stroke
sequences into the corresponding semantic labels of the in-
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TABLE I. Machine Learning Methods and Performance Metrics

Ref. Year Methods Dataset Performance Metrics

[4] 2020 CNN Quickdraw Accuracy
[5] 2015 DNN TU-Berlin mAP
[7] 2013 Star graph, KNN, SVM TU-Berlin Accuracy
[8] 2009 ECSS map approach SQUID database Precision and recall
[9] 2012 KNN, SVM TU-Berlin Accuracy
[10] 2015 Multiple Kernel Learning (MKL) TU-Berlin Accuracy
[11] 2014 Stargraph, MKL TU-Berlin Accuracy
[12] 2017 Linear discriminant analysis (LDA) Coil20 dataset, Umist, JAFFE, YaleB, FERET, PIE and ORL Average classification error rate and standard deviation
[13] 2016 NI-SVM MED14, MED13, CCVsub datasets mAP
[14] 2016 Shape-similarity-retrieval-method SQUID, MPEG-7, COIL-100 databases Precision and recall
[15] 2020 Hybrid CNN TU-Berlin, Sketchy, Flickr15k Accuracy, MAP
[16] 2021 CNN TU-berlin, COAD dataset Accuracy
[17] 2021 CNN TU-Berlin Accuracy
[18] 2020 Sketch-R2CNN TU-Berlin, QuickDraw datasets Accuracy
[19] 2018 SketchSegNet (RNN) QuickDraw dataset Accuracy
[20] 2021 MGT QuickDraw dataset Accuracy
[21] 2018 CNN, RNN QuickDraw dataset Accuracy, precision, recall, MAP
[22] 2019 LSTM with Attention Mechanism and Minimum Quick Draw Dataset MAP@3, Accuracy
[23] 2018 KNN, CNN Quick Draw Dataset MAP@3, Accuracy
[24] 2022 ResNet Tu-Berlin Accuracy
[25] 2023 Light-SRNet TU-Berlin, Sketchy, QuickDraw datasets Accuracy

dividual components. The authors also presented a full-scale
dataset for the segmentation of sketches at the stroke level
consisting of 57,000 annotated freehand human sketches
obtained from QuickDraw. Their experimental findings
showed that their approach attained an average accuracy
of over 90% for feature labeling on this newly proposed
dataset. Xu et al. [20] presented an innovative multigraph
neural network (GNN) that was designed to explore how
sketches are represented across various graphs, The image
captured both temporal information and the general and
local geometric contours at the same time. To demonstrate
the efficiency of the proposed method, the authors per-
formed comprehensive numerical assessment of the sketch-
recognition challenge. Specifically, MGT was applied to
414k sketches generated from Google QuickDraw. Xu et
al. [21] introduced a deep hashing technique for sketch
retrieval. They investigated sketch features, which have been
under-explored in previous work, by utilizing a large dataset
of human sketches (the QuickDraw dataset[23]) containing
3.8 million samples. They addressed the challenge of ab-
straction by introducing an innovative hashing loss function
based on Hamming space.This loss function was designed
to produce more condensed feature sets for the individual
sketch categories. They also emphasized the investigation
of temporal feature ordering by employing a two-branch
network that combines both a CNN and RNN. Nguyen et
al [22] presented a novel sequential model that incorporates
a combination of CNN and LSTM along with attentional
mechanisms [14]. This model has been applied in the
field of image analysis, where researchers have employed
multiple pretrained models in ImageNet to identify doodles.
Furthermore, they implemented a multimodel integration
strategy employing a minimum-cost flow algorithm. They
then assessed its effectiveness on the QuickDraw dataset,
which comprises millions of sketches organized into 340
distinct categories. The dataset was generated using the
popular online game, QuickDraw! where players are tasked
with sketching objects belonging to specific categories
within a 20-second time frame. The sketches are stored

as time-stamped vectors, with metadata showing the ge-
ographic locations of the cued object and player. Guo et
al.[23] employed CNNs alongside k-nearst neighbors(KNN)
algorithms for the classification of hand drawn sketches.
The CNN architecture features three convolutional layers,
followed by three fully connected layers, ultimately result-
ing in a softmax layer. This CNN model was trained on
a subset of the ”Quick,Draw!” dataset and demonstrated
remarkable performance, obtaining a top-1 accuracy of
76.7% and a top-5 accuracy of 92.9% on an independent test
set demonstrates outstanding performance. Simultaneously,
researchers applied a KNN classifier to the same dataset
subset, utilizing features extracted from the final fully con-
nected layer of the CNN. Interestingly, the KNN classifier
yielded a top-1 accuracy of 64.8% and a top-5 accuracy of
85.1% on the identical test set. These findings underscore
the superiority of CNN over the KNN classifier in terms
of classification accuracy. Nonetheless, it is essential to
acknowledge that the KNN classifier offers the advantage
of interpretability, providing insights into the key features
that influence the classification process [26].Wang et al.[24]
introduced a novel ’hierarchical residual network’ alongside
a concise triplet-center loss mechanism for the identification
of sketches. Their research comprises of three primary con-
tributions. First, they designed a multiscale residual block
that outperformed other residual blocks in capturing multi-
scale information, exceeding the capabilities of traditional
basic residual blocks, while also requiring fewer learning
parameters. Second, they constructed a hierarchical residual
system by stacking these multiscale residual blocks, which
yielded more comprehensive features than a single-level
residual system. Finally, they attended to a concise triplet-
based loss specifically formulated to focus on the sketch
recognition issue, aiming to resolve the problems of lim-
ited interclass distance and excessive intraclass similarity.
Their proposed approach underwent comprehensive testing
using the Tu-Berlin benchmark dataset,which encompasses
20,000 instances distributed across 250 categories represent-
ing daily objects. The experimental outcomes emphasize the
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superiority of their technique over previously established
methods. It is particularly worth noting that their approach
achieved a remarkable accuracy rate of 88.2% and suc-
cessfully demonstrated the effectiveness of their innovative
hierarchical residual network accompanied by the concise
triplet-center loss for the accurate recognition of sketches.
Hou et al. [25] presented Light-SRNet, a convolutional
neural network aimed at achieving precise sketch recog-
nition while retaining its lightweight nature. It incorporates
a mechanism of dual attention, harnessing both spatial and
channel-focused attention mechanisms within the feature-
extraction process to increase the discibing potential of
extracted features. The authors conducted assessments of
Light-SRNet across three datasets– TU Berlin, Sketchy,
and QuickDrawExtended– and reported an experimental
recognition accuracy of 73.14%. In the next section, we
present our method for improving recognition performance
by combining the CNN and LSTM models.

3. Proposed Approach

The proposed model analyzes the combination of a CNN
for the extraction of deep features and an LSTM for sketch
recognition by incorporating the extracted features. We
begin by providing a brief overview of CNN and LSTM.

A. cnn
In the late 1980s, Yann LeCun was the innovator behind

the introduction of Convolutional Neural Networks (CNNs)
[27], representing a specialized class of neural network
architectures renowned for their remarkable effectiveness in
a large variety of computer vision approaches, particularly
in classification and image recognition tasks [28]. CNNs
are widely employed in various applications, including face
recognition [29], video description [16], and 3D object
retrieval through 3D sketching [10]. The CNN architecture
generally comprises three main layers: the input layer,
the hidden layer, and the output layer. The input layer
is typically represented as a three-dimensional array and
forwarded to the convolutional layer for further processing,
in which the array dimensions are defined by the height,
width, and channel count. The input x = (xt)N−1

t=0 is one-
dimensional and without initial zero padding. When it is
fed into a convolutional layer with a collection of M1 three-
dimensional filters (denoted as wh

1 for h = 1, . . . ,M1), it
produces a feature map. These filters are used on all the
input channels [30]:

a1(i, h) = (w1
h × x)(i) =

∞∑
j=−∞

w1
h( j) × (i − j) (1)

Where w1
h ∈ R1×k×1 and a1 ∈ R1×(N−k+1)×M1 . The output of

the first layer is generated by applying a nonlinear activation
function h() to the output of the input channel, yielding
f 1 = h(a1). The hidden layer consists of a convolutional
layer, a pooling layer, and a fully connected layer. Features
from raw or intermediate feature maps are extracted by
the convolutional layer using learnable filters [31]. In the

convolutional layer, neurons initially establish connections
with a reduced set of neurons in the subsequent layer, and
the filter employs a weight matrix divided into segments to
execute a convolution operation. Importantly, the weights
undergo updates throughout the learning procedure [32].
The pooling layer introduces a transformation, in which
all values within the pooling window are consolidated into
a singular value. This operation encompasses maximum
pooling, which involves selecting the highest value from
each subfield within the preceding layer [31]. This layer
not only decreases the size of the input layer but also plays
a significant role in minimizing the computational burden
during the learning phase and countering overfitting issues
[32].

In the hidden layer l = 2, . . . , L, the input feature map
f (l−1) ∈ R1×Nl−1×Ml−1 is denoted, where 1 × Nl−1 × Ml−1
represents the dimensions of the output filter map from
the previous convolutional layer. This output filter map has
dimensions Nl−1 = Nl−2−k+1. It undergoes convolution with
a collection of M1 filters, represented as w1

h ∈ R
1×k×Ml−1 , for

h = 1, . . . ,M1. This convolution results in the creation of
a feature map designated as a1 ∈ R1×Nl×Ml , following the
process outlined in [30].

a1(i, h) = (wl
h × f (l−1))(i) =

∞∑
j=−∞

M(l−1)∑
m=1

wl
h( j,m) f (l−1)(i − j,m)

(2)
The final layer of a CNN is a fully connected layer that
compresses the high-level features extracted by the convo-
lutional layers into a single vector and generates the output.
The feature values generated in the previous steps are then
subjected to nonlinear activation functions to yield the final
output, represented as f 1 = h(a1). The dimensions of the
output matrix, f L, are determined by both the filter size and
the number of filters used in the final layer [30]. In Figure 3,
we can observe the basic structure of a CNN, which mainly
consists of a convolutional layer, a max pooling layer, and
a fully connected layer.

Figure 1. Basic structure of the convolutional network [2]

B. lstm
LSTM neural networks [20] represent a specific variant

of recurrent neural networks (RNNs). These networks ex-
cel at understanding long-term dependencies by utilizing
feedforward connections. While conventional RNNs aim
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to address the deficiency in memory found in typical
feedforward neural networks—a shortcoming responsible
for lackluster outcomes in tasks involving sequences and
time series—they implement cyclic connections within their
hidden layers. This architecture allows them to retain short-
term memory, enabling the assimilation of information from
sequential and time-based data.However, RNNs are plagued
by the widely recognized issue of vanishing gradient, a
predicament that curtails the model’s capability to learn dis-
tant relationships within the data. LSTMs have been devised
to overcome this challenge. They achieve this by conserving
pertinent information within memory cells while purging
extraneous data. This fundamental modification generally
leads to enhanced performance compared with traditional
RNNs. An LSTM unit consists of essential components: a
memory cell, input gate, output gate, and forget gate (refer
to Figure 2 for an illustration).

Figure 2. The anatomy of an LSTM cell [33]

Through this architecture, the LSTM achieves the
ability to manage the flow of information in a deliberate
manner, determining what should be ”forgotten” and what
should be ”remembered.” This capability enables LSTMs
to grasp long-term relationships. Specifically, the input
gate, denoted as it, and the subsequent gate c∗t , regulate the
introduction of fresh information into the memory state
ct at time t. Mean while, the forget gate ft governs the
treatment of past data in the memory cell at time t, deciding
whether it should be retained or discarded. Simultaneously,
the output gate σt directs the utilization of information for
the memory cell’s output. In summary, Equations (2)–(5)
concisely describe the operations executed by the LSTM
unit.

it = σ(Uixt +Wiht−1 + bi) (3)

ft = σ(U f xt +W f ht−1 + b f ) (4)

c∗t = tanh(Ucxt +Wcht−1 + bc) (5)

ct = ft ⊙ ct−1 + it ⊙ c∗t (6)

σt = σ(Uoxt +Woht−1 + bo) (7)

where xt represents the input, W and U are the weight
matrices, and b∗ denotes the bias term vectors. The sigmoid
function is denoted as σ, and the ⊙ operator represents
element-wise multiplication. Finally, the hidden state ht,
which captures the memory cell output, is derived as

follows:
ht = σt ⊙ tanh(ct) (8)

When multiple LSTM layers are organized in a sequence,
the memory state ct and hidden state ht from each LSTM
layer are transmitted as inputs to the subsequent LSTM
layer in the stack.

C. cnn-lstm combination
CNN exhibit strong capabilities in intelligently extract-

ing features from data, while remaining unaffected by fre-
quency variations within the data. However, it is constrained
by the presumption of input-output independence during
processing. This disregard for inherent interfeature infor-
mation leads to performance deterioration when handling
time series data. On the other hand, LSTM demonstrated
superiority in handling time-series data, particularly in cap-
turing long-term dependencies within data sequences, which
improved recognition accuracy. This advantage comes at
the cost of a longer learning period compared to CNN,
as LSTM must grasp the nonlinear relationships present
in the data. To harness the strengths of both algorithms,
we introduced an innovative approach that combines two
models: a CNN is utilized for feature extraction from
sketches, whereas an LSTM network serves as a classifier.
Our study is distinguished as a pioneer in the field of
sketch recognition by introducing a CNN-LSTM combi-
nation. Prior studies on sketch recognition have mainly
relied on either CNNs or LSTMs individually, or alterna-
tive deep learning models [34][35] . Notably, no previous
study has employed a CNN-LSTM combination for sketch
recognition. We introduce a novel integration method in
which the flattened output of the CNN serves as the input
sequence for LSTM. This innovative approach enables the
capture of both spatial and temporal information inherent
in sketches, including the stroke sequence and progression.
Our approach contrasts with existing approaches that utilize
the CNN-LSTM combination, where the CNN functions
as a feature extractor and the LSTM acts as a classifier
for each time step. Our approach streamlines the process,
reducing parameters and computations while avoiding re-
dundancy and inconsistency in classification. Furthermore,
our study presents an efficient fusion process that enhances
the effectiveness of our approach compared with previous
studies. Figure 3 illustrates the visual representation of
the combined network proposed for sketch recognition. It
showcases the integration of CNN for feature extraction and
LSTM for classification in the context of sketch recognition.
In the section dedicated to Convolutional Neural Networks
(CNNs), the architecture begins with a convolutional layer
consisting of 16 filters of size 3x3 and a rectified linear
unit (ReLU) activation function. This is followed by a max-
pooling layer with a 2x2 pool size to reduce the spatial
dimensions. Next, a second convolutional layer is intro-
duced with 32 filters of size 3x3 and ReLU activation. The
second max-pooling layer further reduces the feature maps.
Continuing the architecture, two additional convolutional
layers are added, each containing 128 filters of size 3x3
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Figure 3. Visual representation of the combined network proposed
for sketch recognition

and ReLU activation, to extract more complex features
from the input sketches.After each of these convolutional
layers, a max-pooling layer with a 2x2 pool size is applied
to further down-sample the feature maps. Subsequently, a
Long Short-Term Memory (LSTM) network is employed,
where the flattened and expanded feature map from the
CNN is fed into an LSTM layer comprising 32 units. This
layer utilizes a hyperbolic tangent (tanh) activation function,
which is critical for learning the long-term dependencies
and sequential patterns in the data. Following LSTM, the
architecture incorporates a fully connected layer comprising
128 units with a tanh activation function, further refining
the extracted features for classification tasks. Finally, the
model concludes with an output layer featuring a Softmax
activation function. This layer is essential for transforming
the feature representations into a probabilistic distribution
across various sketch classes.The softmax function ensures
that the sum of the probabilities is equal to one, with
each probability representing the likelihood of the input
sketch belonging to a specific class. The softmax function
is defined as [36].

so f tmax(zi) =
ezi∑K

j=1 ez j
(9)

Where zi represents the output score for the i-th class, and
K is the total number of classes. This function calculates
the probability of each class based on the scores in the
output vector z. It exponentiates each score and divides it
by the sum of all exponentiated scores to normalize the
probabilities, ensuring they sum up to one. This normaliza-
tion process transforms the output scores into a probability
distribution across all classes. In the following section, we
present and detail the experimental results, providing a

comprehensive analysis of the effectiveness of our proposed
approach in sketch recognition tasks.

4. Experiment Results

In this section, we describe our dataset, explain our imple-
mentation protocol, and present the experimental results.

A. data
The QuickDraw dataset, introduced by Dey et al. [37], is

a substantial collection comprising over 50 million drawings
grouped into 345 distinct categories. It consists of doodles
created by millions of people worldwide as part of an
online game developed by Google. In the game, users are
prompted to draw a specific object or concept within a
20-second time limit, and these doodles are then used to
train machine learning models. To evaluate our models, we
selected 10 categories (cloud, sun, pants, umbrella, table,
ladder, eyeglasses, clock, scissors, and cup) and randomly
chose 10,000 sketches for each category. Figure 4 shows
examples from the QuickDraw dataset.

Figure 4. Sample sketches from the QuickDraw dataset

The decision to use the QuickDraw dataset was driven
by several factors specific to our research objectives and
methodology. First, the QuickDraw dataset provides a di-
verse and extensive collection of sketches that encompass
a wide range of object categories and drawing styles. This
breadth aligns well with the aims of our study, which sought
to develop a robust and generalizable sketch recognition
model that is capable of handling various sketch types and
complexities. Moreover, the QuickDraw dataset is much
larger and more diverse than other datasets, containing
50 million sketches across 345 categories. This exten-
sive dataset offers a more comprehensive and challenging
resource for sketch-recognition research. In addition, the
QuickDraw dataset covers a broader range of sketch classes
and styles drawn by millions of people from various coun-
tries and cultures. This diversity enhances the realism and
variability of the sketches, contributing to the robustness
and generalizability of our proposed approach. Furthermore,
the availability of such a large-scale dataset enables us
to train our model comprehensively, ensuring its efficacy
across diverse sketch categories.

B. implementation details
We evaluated the performance of three models - a simple

CNN, LSTM models, and our proposed CNN-LSTM model
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- using four performance metrics (Accuracy, Precision,
Recall, and F1 Score) on the QuickDraw dataset, which
was split into 80% for training and 20% for testing. We
set the learning rate to 0.001 and trained the models for 50
epochs using Python and the Keras package in TensorFlow
within the Google Colab environment

C. evaluation metric
We used four metrics to evaluate our models, which

are defined by the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives
(FN) in the predictions of the categorical model. Accuracy
was calculated to evaluate the performance of the proposed
approach, representing the degree to which the classifier can
accurately categorize the data. The calculation is as follows:

Accuracy =
T P + T N

FP + FN + T P + T N
(10)

Recall measures the ability of the model to identify all
positive instances.

Recall =
T P

T P + FN
(11)

Precision refers to the ability of the classifier to correctly
identify positive instances without labeling negative in-
stances as positive.

Precision =
T P

T P + FP
(12)

The F1 score, which quantifies the balanced combination
of precision and recall, yields results within the range of
[0,1].

F1score =
2 × Precision × Recall

Precision + Recall
(13)

D. results analysis
cnn results

The results of the performance evaluation of the CNN
model are depicted in Figure 5. The evaluation process
involved a comprehensive examination of the accuracy and
cross-entropy (loss) metrics during both the training and
validation stages. At the 50th epoch, the CNN achieved
notable results, with training and validation accuracy rates
of 90.6% and 90.5%, respectively. Impressively, the CNN
architecture also yielded matching training and validation
loss values of 0.3.

lstm results
Figure 6 illustrates the evaluation of LSTM performance

during 50 epochs of training and testing. At epoch 50, the
training accuracy was 92%, and the validation accuracy was
90%. Additionally, the training loss was 0.24, while the
validation loss was 0.29.

cnn-lstm results
The performance of CNN-LSTM in sketch recognition

is depicted in Figure 7, where the accuracy and loss (cross-
entropy) curves for the training and test datasets are plotted.

Figure 5. Performance curve on training and validation datasets of
CNN model

The model demonstrated remarkable accuracy, achieving
scores of 99% for the training set and 94% for the validation
set after 50 epochs. The corresponding losses were 0.02 and
0.27, respectively. The experiment’s findings unequivocally
demonstrate the significant benefits of combining these
two models to improve sketch recognition accuracy. The
CNN-LSTM model, which integrates CNN and LSTM,
outperforms either model individually in terms of training
and validation accuracy.

The experimental results illustrated in the three figures
(Figures 8, 9, and 10) provide insightful comparisons be-
tween the CNN, LSTM, and combined CNN-LSTM models
regarding their responses to increasing training set sizes
in terms of sketch classification accuracy. As depicted in
Figure 8, the CNN model demonstrates a typical learning
curve of machine learning models, with a sharp increase in
accuracy initially, which then tapers off, showing diminish-
ing returns on accuracy as the dataset size increases beyond
10K. The accuracy levels off after reaching approximately
40K, indicating that further data addition yields minimal
improvement, reflecting a saturation point in learning from
additional data. The LSTM model, shown in Figure 9,
exhibits a gentler slope in accuracy improvement with
increasing data size, suggesting that it may not leverage
additional data as efficiently as the CNN model to en-
hance its predictive accuracy. The plateauing of accuracy
starts earlier, at approximately 20K, indicating a potentially
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Figure 6. Performance curve on training and validation datasets of
LSTM model

quicker reach to its capacity limit for learning from more
data compared to the CNN model. In contrast, the CNN-
LSTM model, presented in Figure 10, illustrates an initial
sharp rise in accuracy, similar to the CNN model, but
begins to plateau at approximately 20K, akin to that of the
LSTM model. This pattern suggests that while the combined
model efficiently capitalizes on smaller datasets, akin to the
CNN, its capacity to continuously learn from added data is
more in line with LSTM’s performance, reaching a plateau
relatively early. These comparative insights highlight the
importance of choosing the appropriate model based on
the available training data size and the inherent capacity
of the model to benefit from additional data. Although
CNNs exhibit robustness in learning from larger datasets,
LSTMs, and by extension, CNN-LSTMs may offer optimal
performance with smaller to medium datasets, informing
strategic decisions on model selection and data utilization
to maximize sketch recognition accuracy.

Table 2 summarizes the results obtained by the different
models on the QuickDraw dataset, and we found that the
CNN-LSTM combination performs better than simple CNN
and LSTM, which elucidates the impact of the combination
on the results.

Table 3 presents the classification accuracy, precision,
recall, and F1 score of the CNN-LSTM model in compari-
son with the CNN and LSTM models for each class, namely

Figure 7. Performance curve on training and validation datasets of
CNN-LSTM combination

Figure 8. Training Set Size vs. Accuracy for the CNN model

TABLE II. Results of different models on QuickDraw dataset

Model Accuracy Precision Recall F1 score

CNN 90.56% 90.49% 90.44% 90.44%
LSTM 90.90% 90.94% 90.90% 90.90%
CNN-LSTM 94.94% 95.02% 94.99% 94.99%

cloud, sun, pants, umbrella, table, ladder, eyeglasses, clock,
scissors, and cup. We note that the performance of the CNN-
LSTM model on the test set is superior to that of the CNN
and LSTM models for all classes.

The CNN-LSTM model achieved the highest result of
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Figure 9. Training Set Size vs. Accuracy for the LSTM model

Figure 10. Training Set Size vs. Accuracy for the CNN-LSTM model

97.74% for the clock class. For the CNN model, the highest
result was 94.64% in the umbrella class, whereas for the
LSTM model, it was 94.82% in the same class.

The lowest results for CNN and CNN-LSTM were found
in the cup class, at 83.70% and 91%, respectively, while for
the LSTM model, it was 84.61% in the cloud class.

We compared our methods with the most recent and
advanced methods on the QuickDraw database to evaluate
their performances, as presented in Table 4. These ap-
proaches encompass a range of sketch recognition methods,
which are extensively discussed in the second section of
this article, titled ”Related Works.” Our methods, including
CNN, LSTM, and the combined CNN-LSTM model, out-
performed all other methods, exhibiting accuracy rates of
90.56%, 90.90%, and 94.94%, respectively.

TABLE III. Performance metrics of different models for each class
with model comparison

Class Metric CNN Model LSTM Model CNN-LSTM Model

Cloud

Accuracy 86.63% 84.61% 93.31%
Precision 87.51% 90.57% 96.01%

Recall 86.62% 84.60% 93.30%
F1 score 87.07% 87.49% 94.64%

Sun

Accuracy 93.49% 92.54% 97.63%
Precision 88.83% 91.42% 94.98%

Recall 93.48% 92.53% 97.63%
F1 score 91.10% 91.97% 96.29%

Pants

Accuracy 93.85% 90.92% 94.39%
Precision 93.98% 93.51% 96.35%

Recall 93.84% 90.91% 94.38%
F1 score 93.91% 92.19% 95.35%

Umbrella

Accuracy 94.64% 94.82% 96.77%
Precision 92.90% 94.44% 96.18%

Recall 94.63% 94.81% 96.76%
F1 score 93.76% 94.63% 96.47%

Table

Accuracy 91.11% 92.30% 94.07%
Precision 92.35% 89.95% 97.34%

Recall 91.10% 92.29% 94.07%
F1 score 91.72% 91.11% 95.68%

Ladder

Accuracy 89.85% 92.98% 96.23%
Precision 91.75% 91.48% 95.10%

Recall 89.84% 92.97% 96.23%
F1 score 90.79% 92.22% 95.66%

Eyeglasses

Accuracy 89.04% 90.87% 92.22%
Precision 83.63% 86.01% 90.85%

Recall 89.04% 90.87% 92.21%
F1 score 86.25% 88.37% 91.53%

Clock

Accuracy 94.18% 93.49% 97.74%
Precision 94.82% 95.57% 98.17%

Recall 94.17% 93.48% 97.73%
F1 score 94.50% 94.51% 97.95%

Scissors

Accuracy 87.78% 88.27% 95.69%
Precision 88.97% 88.90% 91.56%

Recall 87.78% 88.27% 95.69%
F1 score 88.37% 88.58% 93.58%

Cup

Accuracy 83.70% 88.10% 91.91%
Precision 90.21% 87.52% 93.75%

Recall 83.70% 88.09% 91.91%
F1 score 86.83% 87.81% 92.82%

TABLE IV. Results of the state of the art on the Quickdraw dataset

Method Accuracy

Xu et al [20] 70%
Li et al [18] 84.4%
Xu et al [21] 80.5%
Nguyen-Xuan [22] 90.4%
Kothawade et al [4] 65.57%
Guo et al [23] 60%
Our CNN 90.56%
Our LSTM 90.90%
Our CNN-LSTM 94.94%

5. Conclusions And Future Work

In this study, we proposed a novel approach that combines
CNN and LSTM architectures for sketch recognition. The
architecture employs a CNN to extract features and an
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LSTM network as the classifier. Our constructed CNN-
LSTM model includes several layers of convolution and
max pooling, along with a single LSTM layer. We evaluated
this method on a QuickDraw dataset by selecting ten
categories, each containing 10,000 sketches. Our approach
achieved a 94% accuracy rate for sketch recognition by
leveraging the feature extraction capabilities of the CNN
combined with the classification power of the LSTM. We
also compared our proposed architecture with individual
CNN and LSTM models to demonstrate its superiority.
Additionally, compared with state-of-the-art techniques on
the QuickDraw dataset, our approach outperformed them.
Furthermore, we envision implementing decision-making
systems based on this approach [38] [39]. Moving forward,
we plan to extend this approach to address other sketch-
related tasks, including sketch retrieval, sketch synthesis,
and sketch simplification.
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