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Abstract: Epileptic seizure, a severe neurological condition, profoundly impacts patient's social lives, necessitating precise 

diagnosis for classification and prediction. This research addresses the critical gap in automated seizure detection for 

epilepsy patients, aiming to improve diagnostic accuracy and prediction capabilities through Artificial Intelligence driven 

analysis of Electroencephalography (EEG) signals. The system employs innovative feature combination such as spectral 

and temporal features, combining Uniform Manifold Approximation and Projection (UMAP) with Fast Fourier 

Transformation (FFT), and a classification technique called Sequential Boosting Network (SeqBoostNet). SeqBoostNet 

is a groundbreaking stacked model that integrates machine learning (ML) and deep learning (DL) approaches, leveraging 

the strengths of both methodologies to swiftly differentiate seizure onsets, events, and healthy brain activity. The method's 

efficacy is validated on benchmark datasets such as BONN from the UCI repository and real-time data BEED from the 

Bangalore EEG Epilepsy Dataset, achieving remarkable accuracy rates of 98.40% for BONN and 99.66% for BEED 

datasets. The practical significance of this study lies in its potential to transform epilepsy care by providing a precise 

automated seizure detection system, ultimately enhancing diagnostic accuracy and patient outcomes. Furthermore, it 

underscores the importance of integrating advanced AI techniques with EEG analysis for more effective neurological 

diagnostics and treatment strategies.  
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1. INTRODUCTION 

In recent years, epilepsy has become a focal point of 

research due to its lack of cure. Researchers are leveraging 

Artificial Intelligence to predict seizures more accurately 

by refining data collection methods and utilizing past and 

present data for predictive modeling [43]. Seizures 

represent a common occurrence in individuals with 

epilepsy, a neurological disorder characterized by bursts of 

uncontrolled electrical activity among nerve cells. This 

phenomenon leads to temporary abnormalities and 

alterations in behavior. Patients afflicted by this condition 

have access to both medical and surgical treatments.  

 

Unfortunately, for significant portion of individuals 

experiencing recurring seizures, traditional medical and 

surgical interventions are insufficient to manage their 

condition, even when they have already experienced 

seizures. Consequently, accurately predicting future 

seizures becomes of paramount significance, enabling 

timely preventive medication to avert their occurrence [1].  

 

Epileptic seizures result from disruptions in the brain’s 

electrical activity, which are categorized as Focal, 

Generalized, or of Unknown, which affects around 1% of 

the global population [2] [3]. Focal seizures initiate on one 

side of the brain and are further classified based on the 

patient’s level of awareness during the seizure, 

distinguishing between simple partial and complex partial 

seizures [4][5].  

 

Generalized seizure takes place when the irregular 

electrical activity triggering a seizure initiates 

simultaneously in both hemispheres of the brain [6]. 

Generalized seizures are further categorized by motor and 

non-motor symptoms that involve movement [7]. 

Unknown seizures occur when the onset and origin of the 

seizure are unclear [8][9]. Individuals living with epilepsy 

experience the profound personal burden of recurrent 

seizures, affecting their ability to lead a normal social life 

[10].  

 

Uncontrolled seizures can even result in sudden 

unexpected death, making epilepsy diagnosis a significant 

challenge [11]. EEG involves the recording of electrical 

brain activity, a valuable tool in the diagnosis of brain 

seizure disorders [12] [13]. During an EEG examination, a 

computer screen visualizes these electrical signals as wavy 

lines, which represent a record of brain activity. Electrodes 

are positioned on various regions of the brain to capture 

signals, and each channel corresponds to a pair of 

electrodes, with a signal being the data obtained from that 

channel. The 10-20 International System is a standardized 

method for electrode placement in EEG [14].  

 

Neurologists still rely on manual analysis of EEG 

signals and lengthy video monitoring, which requires 

multi-day recordings, posing a laborious task. EEG signals 

resulting from seizures exhibit distinctive patterns that 

differentiate them from signals caused by other factors. 

These patterns often include high amplitude repetitive 

activities characterized by a combination of slow and spike 
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waves [15]. Hence, recognizing these attributes poses a 

demanding task, and the observation of each EEG signal is 

both laborious and time consuming [16]. Automatic 

detection methods are vital for helping neurologists 

diagnose accurately. These systems could save 

neurologists from spending hours reviewing EEG records 

manually. Despite ongoing research efforts, many 

neurologists continue to rely on manual diagnosis, 

reflecting their lack of confidence in computerized 

methods. While achieving perfect seizure detection, 

prediction may remain an aspiration. Hence, the primary 

objective of this research work is to develop the most 

accurate and an efficient model possible.  

 

This research study strives to create a method that 

ensures an accurate seizure detection and prediction by 

utilizing the spectral and temporal features and 

classification technique. In this research we have 

introduces feature engineering such as combination of 

spectral and temporal features of EEG signals and stacked 

classification model for an accurate seizure detection and 

prediction. The first approach addresses the challenges of 

intricate features and information preservation by 

employing both spectral and temporal data 

transformations, integrating FFT for spectral features and 

applying UMAP on time series data for temporal features 

to enhance feature learning and prediction efficiency. In the 

second approach, a Stacked model called SeqBoostNet is 

employed, combining ML and DL techniques to overcome 

diminished accuracy issues in multivariate data and to 

support binary and multiclass classification for accurate 

seizure detection. Epileptic Seizure detection and 

prediction are persistently challenging research domains, 

and this work represents a dedicated effort to advance the 

current boundaries of knowledge in this field. The research 

conducted in this study significantly contributes to several 

key areas.  Firstly, it advances EEG based seizure 

classification through the introduction of an innovative 

features, integrating spectral and temporal nothing but time 

and frequency domain features. This comprehensive 

approach provides a deeper understanding of brain activity, 

crucial for accurate seizure detection and prediction. 

Secondly, the study optimizes classification efficiency and 

accuracy with a sophisticated stacking model, combining 

LSTM and gradient boosting models.  

 

This tailored model not only improves computational 

method’s performance but also sets a new standard in 

seizure classification. Lastly, by offering innovative 

methods, the research broadens the horizons of 

computational neuroscience. These methods, adaptable 

beyond epilepsy research, hold promise for diverse 

neurological data analysis tasks, potentially revolutionizing 

our understanding of the brain and related disorders. 

 

Key Significance of the proposed work are as follows:  

 

 The research offers concrete advantages to 

individuals with epilepsy by providing more 

dependable seizure detection and prediction. This 

has the potential to substantially improve the quality 

of life for epilepsy patients, alleviating daily 

challenges and anxieties through reduced 

uncertainty and better preparedness for seizures.  

 The innovative approach of this study is combining 

spectral and temporal domain features with stacking 

model, has broader implications beyond epilepsy. It 

catalyzes advancements in EEG analysis techniques 

applicable to various neurological and medical 

applications, representing a paradigm shift in 

approaching the analysis of complex biological data. 

 Stacking amalgamates predictions from various 

base models using a meta model, capitalizing on 

diverse algorithm strengths to boost overall 

performance, crucially optimizing classification 

tasks such as EEG data analysis for enhanced 

insights and diagnostic accuracy through aggregated 

modeling.  

 This research establishes a new standard for seizure 

classification accuracy, offering a reliable reference 

for researchers, practitioners, and clinicians, 

potentially reshaping seizure detection and 

prediction methods. 

 Furthermore, it advances computational 

neuroscience by expanding the possibilities in 

understanding and diagnosing neurological 

disorders, potentially inspiring future research and 

innovation in unraveling the complexities of the 

brain.  

 

The manuscript's organization is structured as follows: 

In Section 2, related work is presented, focusing on the 

utilization of EEG data for classifying epileptic seizures. 

Section 3 offers a comprehensive overview of dataset 

preparation and discusses the proposed methodology. 

Section 4 presents the proposed method results and 

discussions. Lastly, Section 5 concludes with final remarks 

and outlines the future scope of the research. 

2. RELATED WORK 

Various machine learning and deep learning methods 
have been applied to automatize the diagnosis of epilepsy. 
Below, we provide a few instances of relevant studies in 
this field.  

Tzimourta et al. [17] presents a method for automated 
seizure detection in EEG signals, using the Discrete 
Wavelet Transform (DWT) and the Random Forest 
classifier to achieve a classification accuracy exceeding 
95%. Nevertheless, the method’s dependence on this 
specific DWT and Random Forest combination could limit 
its adaptability to different classification algorithms or 
signal processing methods. Furthermore, characteristics of 
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the data and computational time for processing is not 
provided in the study. 

 Gao et al. [18] presents a method for distinguishing 
multichannel EEG’s for health control and identifying 
interictal and ictal EEG’s in epileptic patients. The 
approach relies on five features Variance, Pearson 
correlation coefficient, Hoeffding's D measure, Shannon 
entropy, and inter-quartile range, all derived from the 
maximal overlap discrete wavelet transform, are calculated 
and employed in linear discriminant analysis for the 
purpose of classification, achieving a high accuracy of 
94.33% in distinguishing interictal EEG data from normal 
EEG recordings, underscoring its efficacy in EEG signal 
differentiation. However, the study has limitations, as it 
was tested on a single clinical dataset, and its 
generalizability to larger databases is unverified. 

Mardini et al. [19] suggests a framework to detects 
epileptic seizures in EEG signals using 54-DWT wavelets 
and machine learning (SVM, KNN, ANN, NB). The ANN 
classifier achieves a high 97.82% accuracy across diverse 
datasets. The process includes EEG preprocessing, DWT-
based feature extraction, genetic algorithm feature 
selection, and classification. However, limitations involve 
dataset diversity, sensitivity in feature selection, and the 
absence of deep learning exploration for complex EEG 
signal analysis.  

Kumar et al. [20] conducted research focused on 
automating the detection of epileptic seizures in EEG 
signals. Their approach integrates the fractional S-
transform (FST) and entropic features with deep 
convolutional neural networks (CNN) for classification. 
They first preprocess the EEG signals using discrete 
wavelet transform (DWT) with Db4 wavelets. The 
outcomes indicate strong performance, achieving a 
specificity of 98.70%, sensitivity of 97.71%, and an 
accuracy of 99.70% for multichannel EEG segments. 
However, the study's reliance on the Bonn EEG dataset 
from 21 patients raises questions about its applicability to 
a broader range of epilepsy cases. The model's adaptability 
to larger and more diverse EEG datasets remains untested.  

Islam et al. [21] presented a study “Epileptic-Net”, a 
deep learning model created to identify epileptic seizures 
using EEG data. The model incorporates elements like 
dense convolutional blocks (DCB), feature attention 
modules (FAM), residual blocks (RB), and the hyper 
column technique (HT) to efficiently extract crucial 
information from EEG samples. In evaluations conducted 
on the University of Bonn EEG dataset, Epileptic-Net 
exhibits remarkable accuracy, outperforming existing 
seizure detection models. This innovation is anticipated to 
enhance diagnostic precision, support medical 
professionals, and reduce misdiagnosis rates. Nonetheless, 
the research acknowledges certain limitations related to 
data augmentation, indicating a marginal reduction in 
performance when not employed.  

Hassan et al. [22] presented a study that integrates 
convolutional neural networks (CNN) with machine 
learning classifiers to automatically detect epileptic 
seizures using EEG data. This approach aims to efficiently 
and effectively analyze complex EEG signals by pre-
processing the data and extracting features with CNN. The 
use of mutual information based estimators helps improve 
classification accuracy. The results indicate high accuracy 
across various classification scenarios, showcasing the 
model’s promise for seizure prediction. However, the study 
does not investigate the adaptability of the approach to 
diverse EEG datasets from different sources and patient 
groups, which may constrain its broader applicability. 

In contrast to certain previously discussed research 
studies, our proposed work effectively addresses their 
limitations by incorporating a comprehensive multivariate 
dataset, thus mitigating issues like the absence of real-time 
data and small sample sizes. Our research systematically 
tackles gaps in the domains of spectral-temporal analysis, 
computational efficiency, multivariate data handling, and 
robust feature selection. This multifaceted approach yields 
substantial advantages, including enhanced support for 
clinical decision-making, real-time seizure prediction, and 
increased applicability to a wide array of EEG datasets, 
consequently amplifying its significance within the realm 
of epilepsy diagnosis and treatment.  

The research serves as a noteworthy contribution to the 
field of epileptic seizure classification. It introduces 
innovative feature combination techniques, notably the 
integration of the UMAP and FFT method, which 
significantly improves spectral and temporal analysis, 
resulting in a more effective capture of dynamic seizure 
aspects. Efficiency and generalization are key focuses of 
the study, addressing common computational challenges 
that frequently hinder the performance of existing models, 
ultimately facilitating robust classification suitable for real-
time applications. Furthermore, the research extends its 
influence by accommodating diverse types of seizure data, 
thus ensuring its suitability for a broad spectrum of epilepsy 
cases. Additionally, the model employs advanced feature 
engineering methodologies grounded in mutual 
information, consequently leading to heightened 
classification accuracy and the successful mitigation of 
limitations previously encountered in similar studies. 

3. METHODOLOGY 

This section outlines our research framework for EEG 
signal analysis, focusing on seizure classification (Focal, 
Generalized, and healthy episodes). The framework 
consists of three stages: Data Acquisition, Preprocessing, 
Spectral and Temporal features and Classification 
illustrated in Figure 1.  
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Figure 1. Proposed Framework 

After acquiring data, we perform data preprocessing to 
enhance signal quality. Next, we use FFT and UMAP for 
extracting spectral and temporal features, respectively. 
These extracted features are then amalgamated into a 
feature set, which is subsequently fed into the classification 
model for further analysis. For classification, we introduce 
SeqBoostNet, a novel stacked learning model. Further 
details on these techniques are provided in subsequent 
sections. 

A. Data Acquisition  

EEG data acquisition involves collecting electrical 
brain activity using electrodes placed on the scalp. During 
EEG data acquisition, electrodes are positioned on the scalp 
following a standardized system like the International 10-
20 placement, secured with a conductive gel for optimal 
electrical connectivity. The EEG signals are then recorded 
over varying time spans, from minutes to days, depending 
on research or clinical goals. The collected EEG data is 
digitally stored for subsequent analysis, leveraging modern 
digital storage systems for more efficient processing and 
examination. In this study, two distinct datasets were 
employed. The first dataset comprises the benchmark 
dataset BONN data obtained from the UCI repository, 
while the second dataset consists of real-time data obtained 
from BEED.  

1) BEED EEG Dataset: The Bangalore EEG Epilepsy 

Dataset (BEED) was collected from an EEG clinic in 

Bangalore. 

 

TABLE I. BEED DATASET DESCRIPTION 

 
Dataset Description 

Seizure Events Seizure recording during physical movement 

Healthy subject Recordings from seizure free participants 

Generalized  Seizure recording in both brain hemisphere  

Focal Seizure recording in specific brain area 

Which containing raw waveform signals from 16 EEG 

channels with a sampling rate of 256 Hz. The dataset is 

categorized into four distinct types, detailed in Table I, 

each lasting 20 seconds. These recordings adhere to the 

internationally recognized 10–20 electrode placement 

method and encompass EEG data of seizure onsets, 

seizure events, and data from healthy individuals for 

comparison. 
 

2) BONN EEG Dataset: The BONN dataset, sourced 

from BONN University in Germany and archived in the 

UCI repository, comprises five subsets, each containing 

100 individual channel recordings from 500 subjects. 

These recordings, lasting 23.6 seconds each, were sampled 

at 173.61 Hz, enabling frequency analysis spanning 0.53 

to 40 Hz. Collected via the international 10-20 electrode 

placement technique, the dataset comprises 11,500 rows 

and 179 columns. The final column serves as class labels, 

categorized into five distinct groups: 1 denotes seizure 

activity recordings, 2 indicates tumor location recordings, 

3 represents healthy brain recordings, while 4 and 5 signify 

recordings with eyes closed and opened, respectively [44]. 

B. Data Preprocessing 

The proposed model aims to distinguish epileptic 

seizure onsets, seizure events, and healthy states 

through innovative features and classification 

techniques tailored for EEG signals. Initial 

preprocessing involves Exploratory Data Analysis 

(EDA) and data standardization, pivotal for 

understanding EEG data attributes, identifying 

anomalies, and enhancing data quality. EDA facilitates 

informed decisions on feature extraction and model 

selection, enhancing overall model performance [25]. 

Data standardization ensures consistent scales across 

EEG channels and subjects, aiding in clearer 

interpretation of features and model coefficients [26]. 

This preprocessing approach is crucial for constructing 

a precise and resilient EEG data classification model. 

C. Temporal Features using UMAP 

Temporal features extracted from time series EEG 

data, particularly by applying UMAP, are pivotal for 

comprehending brain activity’s dynamic nature. These 

features reveal patterns and variations in brain signals 

across different time points, encompassing crucial aspects 

such as temporal dynamics, and temporal connectivity 

patterns. They illuminate how brain activity evolves over 

time, offering insights into cognitive processes like 

attention, memory, and perception, while also aiding in the 

identification of neurological disorders, monitoring 

disease progression, and enhancing Brain-Computer 

Interfaces (BCI’s). Overall, these temporal features 

provide a comprehensive understanding of brain function 

and dysfunction, driving advancements in neuroscience 

research and clinical applications. 
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UMAP is a powerful technique that reduces data 

dimensionality while maintaining its structural integrity, 

making it ideal for tasks like visualization and clustering. 

It combines manifold learning and topological data 

analysis methods to capture intricate patterns in complex 

datasets. The process involves constructing a nearest 

neighbor graph, computing fuzzy set memberships, 

optimizing the UMAP objective function through gradient 

descent, and generating low-dimensional embeddings for 

visualization and analysis [27]. UMAP is a method used 

to simplify complex data so we can understand it better. It 

does this through four main steps. First, it looks at each 

data point’s closest neighbors to see how they relate 

locally. Then, it determines how each point is connected 

to others in the data using a fuzzy set. After that, it adjusts 

the data to create a clearer picture called gradient descent. 

Finally, it puts all this together to show the data in a 

simpler way that we can easily visualize and analyze. The 

equations (1), (2), and (3) provides the mathematical 

details for each step, helping us understand how UMAP 

works. 

 

Fuzzy Set Membership Function (Fuzzifier) 

𝝓(𝒅𝒊𝒋, 𝝈𝒊) = 𝒆𝒙𝒑 (−
𝒅𝒊𝒋

𝟐

(𝟐 ∗ 𝝈𝒊
𝟐)

)                                (1) 

 

Fuzzy Simplicial Set 

𝑺𝒊𝒋 = 𝝓(𝒅𝒊𝒋, 𝝈𝒊) ∗ 𝝓(𝒅𝒊𝒋, 𝝈𝒋) ∗ 𝑴𝒖𝒕𝒖𝒂𝒍_𝒌𝒏𝒏(𝒊, 𝒋)  (2) 

 

Objective Function 

𝑳 =  ∑(𝒊) ∑(𝒋)𝑺𝒊𝒋 ∗ 𝒍𝒐𝒈(𝑺𝒊𝒋 \𝑸𝒊𝒋)                        (3) 

 

Where; Equation (1) computes the similarity between 

two data points, where ‘i’ and ‘j’ represent the row indices 

in the input EEG data, and ‘dij’ signifies the Euclidean 

distance between these data points. Equation (2) constructs 

a fuzzy simplicial set and Equation (3) defines objective 

function, with the following key parameters. Where, ‘σi’ A 

scaling parameter determining the influence of distance on 

the similarity for data point, ‘i’. Notably, smaller distances 

and larger ‘σi’ values yield higher similarity, ‘Sij’ is the 

pairwise similarity between data points ‘i’ and ‘j’ in the 

high-dimensional space incorporating the fuzzy set 

membership function, distance, and mutual k-nearest 

neighbors, ‘Mutual_knn (i, j)’ is a function checking 

whether ‘i’ and ‘j’ are mutual k-nearest neighbors 

considering their proximity in the EEG data and ‘Qij’ is the 

pairwise similarity in the low-dimensional space, 

representing the optimization target sought by UMAP 

during the dimensionality reduction process. ‘Sij’ is the 

value in a specific position (i, j) in a matrix, often 

representing a probability or frequency and ‘Qij’ is the 

corresponding value in a specific position (i, j) in another 

matrix, used for comparison with ‘Sij’. 

 

The Fuzzy Set Membership Function helps to find 

similarities between data points, the Fuzzy Simplicial Set 

creates a graph, and the Objective Function guides the 

optimization process for effective simplification. UMAP 

reduces the dimensions of EEG data while keeping its 

essential relationships intact. Figures [2] and [3] shows 

visual representations of the transformed BEED and 

BONN data, illustrating the outcomes for three embedding 

dimensions, respectively. 

 

In this study, UMAP uses equations (1), (2), and (3) to 

simplify and condense high-dimensional EEG data. The 

original data, with dimensions 4000*16 for BEED and 

4600*178 for BONN, gets transformed into lower-

dimensional representations and forms temporal features, 

4000*3 for BEED and 4600*3 for BONN in time domain. 

This transformation maintains the important structures in 

the data. 

 

 

 
Figure 2. UMAP Visualization for BEED Data 

 

 
Figure 3. UMAP Visualization for BONN Data 

 

D. Spectral Features using FFT 

Spectral features extracted using Fast Fourier 

Transform (FFT) from EEG data plays a crucial role in 

understanding brain activity’s frequency components. 
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FFT analyzes EEG signals in the frequency domain, 

revealing important information about brain rhythms such 

as delta, theta, alpha, beta, and gamma waves. These 

spectral features provide insights into various cognitive 

processes, neurological conditions, and states of 

consciousness. The FFT is a computational method widely 

used in signal processing to analyze the frequency 

components present in a time-domain signal. It effectively 

calculates the Discrete Fourier Transform (DFT) of a 

signal, allowing for the transformation of the signal from 

the time domain to the frequency domain [28].  

 

In the realm of EEG data analysis, the FFT is notably 

beneficial, assisting in understanding the temporal 

evolution of the frequency distribution of brainwave 

activity [29]. The initial data from BEED, sized 4000*16, 

and BONN, sized 4600*178, undergo transformation 

through FFT into spectral features, maintaining the 

dimensions of 4000*16 for BEED and 4600*178 for 

BONN in the frequency domain. This process integrates 

the spectral features with the existing temporal features, 

resulting in combined features known as spectral and 

temporal features, with dimensions of 4000*19 for BEED 

and 4600*181 for BONN, respectively. Figure [4] and [5] 

depicts the frequency response spectrum representation of 

Generalized and Focal seizure signals using BEED data, 

seizure and healthy signals for BONN and data. Equation 

(4) provides the mathematical expression for the FFT.  

𝑋𝐾 ∑ 𝑥𝑗𝑒
−2𝜋�̇�𝑗𝑘

𝑁

𝑛−1

𝜂=0

                   (4) 

 

Where; 𝑋𝐾 —represent input signal in frequency 

domain, n represents the number of samples in the input 

signal, j represents the value of the signal at specific 

feature index, N represents the total number of samples in 

the input signal, I represents the imaginary unit, which is 

√ (-1), k—represents the index for the frequency bins 

ranges from 0 to N-1 and 𝑒
−2𝜋�̇�𝑗𝑘

𝑁 --represents the phase 

shift introduced by K and j. 

 

 
Figure 4. Frequency Response Spectrum for BEED Data 

 

 
Figure 5. Frequency Response Spectrum for BONN Data 

 

E. Sequential Boosting Network (SeqBoostNet) 

Classification 

After assembling the spectral and temporal feature 

sets, the data proceeds to the classification stage. EEG 

classification entails sorting EEG signals according to 

their distinctive features, encompassing the identification 

of neurological events (e.g., seizures), cognitive states 

(e.g., attention or drowsiness), and patterns associated 

with mental and neurological conditions. Traditional 

machine learning (ML) approaches for binary and 

multiclass classification didn't yield significant accuracy. 

Therefore, we propose a novel classification method 

employing a stacking model, which combines ML and 

deep learning (DL) approaches for more robust 

classification results. 

 

 
Figure 6. Sequential Boosting Network Architecture 

 

SeqBoostNet is a classification model that employs 

stacking ensemble learning to improve predictive 

performance by combining multiple base models. This 

method involves training a meta learner, also known as a 

blender, to effectively merge predictions from these base 

models. The Stacking algorithm consists of two stages: in 

the first stage (level 0), base models like LSTM, XGB, and 

GB are trained individually to predict target class labels. 

In the second stage (level 1), the meta model synthesizes 

these predictions to generate the final prediction. 

SeqBoostNet combines predictions from diverse machine 

learning models using AdaBoost to construct a meta-

model, thus leveraging the strengths of different base 

models to enhance predictive accuracy. This technique 

effectively captures complex patterns and improves 
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performance across various classification scenarios. 

Figure 6, illustrates the SeqBoostNet architecture used in 

this research study. 

 

1) LSTM (Long Short-Term Memory): A type of 

recurrent neural network known for handling sequential 

data, advantageous for capturing long-term dependencies, 

but computationally intensive and prone to vanishing 

gradient problems [31]. The LSTM network processes 

EEG data as sequential input, analyzing time series data 

from EEG recordings. The data contains 19 columns per 

row in BEED and 181 columns per row in BONN, with 

each row representing a sequence of readings over time. 

The LSTM architecture includes a forget gate, input gate, 

candidate cell state, and an output gate. 

 

𝒇𝒕 = 𝝈(𝒘𝒇 .  [𝒉𝒕−𝟏 , 𝒙𝒕] + 𝒃𝒇)         (5) 

 

Equation (5) provides the mathematical expression for 

forget gate. 

 

Forget Gate calculates a decision on which 

information to retain or forget from the previous cell state 

using the sigmoid activation function. This gate decides 

how much information from the previous state should be 

kept.  Where; ft is the output of the forget gate at time step 

t, σ is the sigmoid function mapping input values to a range 

of 0-1, Wf
 is the weight matrix for the forget gate, ht-1, xt 

represents concatenation of previous hidden state and 

current input.  

 

𝒊𝒕 = 𝝈(𝒘𝒊 .  [𝒉𝒕−𝟏 , 𝒙𝒕] + 𝒃𝒊)         (6) 

 

Input Gate determines what new information 

should be added to the cell state using the sigmoid 

function. Equation (6) represents expression for input gate. 

It controls how much new information from the current 

input is allowed into the cell state. Where; it is the output 

of the input gate at time step t, Wi is the weight matrix for 

the input gate and bi is Bias term for the input gate. 

𝑪𝒕 = 𝒕𝒂𝒏𝒉(𝒘𝒄 .  [𝒉𝒕−𝟏 , 𝒙𝒕] + 𝒃𝒄)     (7) 

 

Candidate Cell State helps to updates the cell 

state in an LSTM network using the hyperbolic tangent 

function, which maps input values to a range between -1 

and 1. Equation (7) represents candidate cell state. It 

allows the model to consider both past and present 

information. Where; Ct is candidate cell state at time step, 

tanh is hyperbolic tangent function mapping input values 

to a range of -1 to 1, Wc is the weight matrix for the 

candidate cell state and bc is the bias term for the candidate 

cell state.  

 

𝑪𝒕 = (𝒇𝒕 .  𝑪𝒕−𝟏 + 𝒊𝒕 . ̃𝑪𝒕)        (8) 

 

Updating cell state combines the previous cell 

state and new information from the input gate and 

candidate cell state to update the current cell state. 

Equation (8) provides the expression for candidate cell 

state update. Where; Ct is the updated cell state at time step 

t, Ct-1 Previous cell state at time step t-1, ~ct candidate cell 

state at time step t.  

 

𝑶𝒕 = 𝝈(𝒘𝟎 .  [𝒉𝒕−𝟏 , 𝒙𝒕] + 𝒃𝟎)   (9) 

 

Output Gate Regulates the amount of current cell 

state used to calculate the current hidden state and output. 

It uses the sigmoid function to map the input values to a 

range between 0 and 1. Equation (9) represents the 

expression for output gate. Where; Ot is the output gate 

value at time step t, W0 is the weight matrix for the output 

gate, b0 is the bias term for the output gate.  

 

𝒉𝒕 = 𝑶𝒕 . 𝒕𝒂𝒏𝒉(𝑪𝒕)          (10) 

 

Hidden state Calculated by multiplying the 

output gate value by the hyperbolic tangent of the current 

cell state. This determines how much information from the 

current cell state should pass to the hidden state. Equation 

(10) represents hidden state computation. Where; ht is the 

hidden state at time step t, tanh(Ct) is the hyperbolic 

tangent of the current cell state and Ot is the output gate 

value at time step t.  

 

In this way, the LSTM processes the input 

sequentially, incorporating new information and retaining 

useful past information to manage and predict time series 

data effectively. 

 

2) XGBoost (Extreme Gradient Boosting): A 

powerful gradient boosting algorithm with regularization, 

advantageous for high predictive accuracy, but may 

require tuning of hyperparameters and can be sensitive to 

overfitting [32]. XGBoost is an ensemble learning method 

that uses gradient boosting to build a strong predictive 

model by combining multiple weak models. It constructs 

a series of decision trees to model non-linear relationships 

in the input data. It consists of loss function and 

regularization. Equation (11) and (12) represents the 

mathematical expression for loss function and 

regularization.  

 

𝑳 = ∑ 𝒍(𝒚𝒊, �̂�𝒊)
𝒏
𝒊=𝟏 + ∑ 𝜴(𝒇𝒌)𝒌

𝒌=𝟏    (11) 

 

The loss function minimizes the error between actual and 

predicted labels. Where; yi is the actual label of the ith 

sample, �̂�𝒊 is the predicted label for the ith sample, 

𝒍(𝒚𝒊, �̂�𝒊)  is the loss function that measures the difference 

between actual and predicted labels, Ω(fk) is the 
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regularization term that controls the complexity of the 

decision trees.  

𝜴(𝒇) = 𝜸𝑻 +
𝟏

𝟐
𝝀 ∑ 𝝎𝒋

𝟐
𝑻

𝒋=𝟏
                               (12) 

 

Regularization helps to controls model complexity and 

overfitting. Where; T is the tree, wj is the leaf weights and 

γ and  λ are regularization parameters. 

 

3) Gradient Boosting (GradientBoost): An ensemble 

learning technique that builds trees sequentially, 

advantageous for handling heterogeneous data and 

robustness to outliers, but slower training time compared 

to other algorithms [33]. Gradient boosting is similar to 

XGBoost in that it builds a strong predictive model by 

combining weak models (typically decision trees). The 

model iteratively refines it’s predictions based on the 

residual errors from the previous models. The model is 

updated iteratively by adding new decision trees to correct 

the errors from the previous iteration and α is the learning 

rate, controlling how much each tree influences the final 

prediction. Equation (13) and (14) represents 

mathematical expressions for loss functionand 

regularization. 

 

𝑭𝒎 (𝒙) = 𝑭𝒎−𝟏 (𝒙) + 𝜶𝒉𝒎(𝒙)  (13) 

 

Loss Function measures the loss or error of the model’s 

predictions and adjusts the model based on the residuals. 

 

𝒍(𝒚, �̂�) = 𝒍(𝒚, 𝑭𝒎−𝟏 (𝒙) +  𝜶𝒉𝒎(𝒙)) (14) 

 

In both XGBoost and gradient boosting, the model 

leverage the input data and iteratively improve predictions 

through adjustments based on errors. Regularization 

controls complexity to avoid overfitting. 

 

4) AdaBoost (Adaptive Boosting): AdaBoost offers a 

multitude of advantages and tends to achieve higher 

accuracy compared to alternative supervised machine 

learning algorithms [42]. An ensemble learning method 

that combines weak learners to create a strong learner, 

advantageous for reducing bias and variance, but sensitive 

to noisy data and outliers [34]. AdaBoost takes the 

predictions from the three base models (LSTM, XGBoost, 

and Gradient Boosting) as input. It is computed using 

weigthed loss, classifier weight, weight update and final 

prediction represented in Equation [15-18] . Where; 𝜔𝑖
𝑡−1 

is the weight assigned to the ith sample in the previous 

iteration, 𝑙(𝑦𝑖 , ℎ𝑡(𝑥𝑖)) is the  loss function (e.g., log loss) 

for the ith sample, given its actual label yi and ℎ𝑡(𝑥𝑖), 𝑒𝑟𝑟𝑡 

is the weighted error rate of the base model at iteration t, 

𝑤𝑖
𝑡  is the updated weight of the ith sample for the next 

iteration and H(x) is the final prediction, which is the 

weighted sum of the base model predictions across 

iterations. In each of the models, the equations process the 

input data (features and labels) to calculate the loss 

function and adjust the model’s parameters accordingly. 

 

Weighted loss 

𝑳𝒕 = ∑ 𝝎𝒊
𝒕−𝟏𝒍(𝒚𝒊, 𝒉𝒕(𝒙𝒊))

𝒏

𝒊=𝟏
 (15) 

 

Classifier Weight 

𝜶𝒕 =
𝟏

𝟐
𝒍𝒐𝒈 (

𝟏−𝒆𝒓𝒓𝒕

𝒆𝒓𝒓𝒕
)                        (16) 

 

Weight Update 

𝒘𝒊
𝒕 =   𝒘𝒊

𝒕 − 𝟏. 𝒆𝒙𝒑 (−𝜶𝒕 . 𝒚𝒊 . 𝒉𝒕(𝒙𝒊))  (17) 

 

Final Prediction 

𝑯(𝒙) = 𝒔𝒊𝒈𝒏 (∑ 𝜶𝒕
𝑻
𝒕=𝟏 𝒉𝒕(𝒙) )         (18) 

 

In the stacking classification framework, the base 

models LSTM, XGB, and GB are utilized. The input 

feature set, comprising spectral and temporal features, is 

fed into the SeqBoostNet classification model. Here, 

LSTM, XGB, and Gradient Boost generate their respective 

predictions, which are subsequently forwarded to the meta 

model AdaBoost for the final prediction process. In this 

stacking model LSTM is recognized for its ability to 

capture temporal dependencies within sequential data like 

EEG signals, which aids in achieving accurate 

classification results. XGBoost, on the other hand, 

provides robustness and high predictive accuracy 

specifically tailored for EEG data classification tasks, 

making it well suited for handling intricate and diverse 

feature sets. Gradient Boosting showcases resilience to 

outliers and noise present in EEG data, contributing to 

consistent classification performance. Lastly, AdaBoost 

proves effective in enhancing the classification 

performance of EEG data by amalgamating multiple weak 

learners, thereby mitigating bias and variance in the 

predictions. 

 

The SeqBoostNet model, tailored for seizure detection 

using BEED and BONN datasets, capitalizes on the 

amalgamation of LSTM, XGBoost, and Gradient Boost as 

base models, augmented by AdaBoost as the meta model. 

The BEED dataset encompasses 4000 samples 

characterized by 19 features, while the BONN dataset 

comprises 4600 samples with 181 features. Both datasets 

exhibit classification, distinguishing between seizures (1) 

and healthy instances (0) and other case scenarios as well. 

 

Initiating with data normalization and partitioning into 

training and testing sets. Subsequently, individual base 

model LSTM, XGBoost, and Gradient Boost are trained 
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independently on the training data. Through this process, 

each base model generates probabilistic predictions 

(YLSTM
, YXGB and YGB) for the target classes. 

 

The next phase involves constructing the input matrix 

for the meta-model AdaBoost. By concatenating the 

predictions from the base models, SMETA is formed, where 

each row represents a sample, and each column signifies 

the predicted probabilities for each class. Hence, SMETA 

assumes dimensions (4000*(3*2) for the BEED data and 

(4600*(3*2) for the BONN data, owing to the binary 

classification nature (2 classes). 

 

Following this, the AdaBoost meta-model is trained and 

the corresponding target labels y. AdaBoost iteratively 

amalgamates predictions from the base models, refining its 

ensemble to enhance classification accuracy. Once the 

training concludes, the SeqBoostNet model is fully primed 

for inference. 

 

During prediction, new input data undergoes processing 

by the base models to yield predictions, which are 

subsequently concatenated to form meta model features. 

The AdaBoost meta model then employs this meta features 

to predict the final class labels Ypred. 

 

In essence, SeqBoostNet leverages an ensemble of 

diverse base models to discern intricate patterns in BEED 

and BONN datasets, culminating in robust seizure 

detection capabilities. By harnessing the collective 

intelligence of individual models through meta model, 

SeqBoostNet delivers heightened accuracy and reliability 

in classifying seizures against healthy instances, thereby 

fostering advancements in epilepsy diagnosis and 

treatment. 

 

The hyperparameter configurations plays a crucial role 

in shaping the behavior and efficacy of the SeqBoostNet 

model in this research study. Specifically, for the LSTM 

model, 128 LSTM cells are employed with ReLU 

activation, accompanied by a dropout rate of 0.5 to 

mitigate overfitting. The output layer utilizes Sigmoid 

activation, Adam optimization, Sparse Categorical Cross-

Entropy loss, and is trained over 100 epochs with a batch 

size of 32. In the case of the XGBoost model, 300 

estimators are utilized with a maximum depth of 6 and a 

learning rate of 0.05, while employing the Multi-Softmax 

objective. The Gradient Boosting model is configured 

with 100 estimators, a learning rate of 0.1, and a maximum 

tree depth of 3. Additionally, the AdaBoost meta-model 

integrates 50 weak learners with a learning rate of 1.0, 

dynamically adjusting based on the performance of the 

LSTM, XGBoost, and Gradient Boosting models. These 

Hyperparameters govern the learning and prediction 

processes of each model, collectively influencing their 

individual and collaborative performance within this 

research context. 

 

Inferences of SeqBoostNet are as follows:  

 

 Combining different models can improve overall 
prediction accuracy. 

 Each base model offers a different approach, 
providing varied insights. 

 Mixing models can help avoid overfitting and 
improve generalization. 

 The meta-model integrates predictions to create a 
more reliable final outcome. 

 Allows easy inclusion of additional models or 
modifications to existing ones. 

 The meta-model weighs the base model 
predictions for better accuracy. 

 Different models capture unique aspects of the 
data, such as temporal patterns and feature 
relationships. 

 The stacked approach leverages complementary 

strengths for comprehensive learning.  

 

F. Performance Evaluation Measures 

TABLE II.PERFORMANCE EVALUATION METRICS FORMULA 

 

Performance evaluation measures assess model’s 

effectiveness in various fields like machine learning, 

statistics, and information technology. These metrics 

gauge how well a model accomplishes its objectives [35].  

Various performance evaluation metrics are  

essential for assessing the effectiveness of classification 

models in handling both seizure and healthy subjects.  

Sl.NO Metric Formula 

1 Accuracy 

(A) 

𝑇𝑆 + 𝑇𝐻

𝑇𝑃
 

2 Precision 

(P) 

𝑇𝑆

𝑇𝑆 + 𝐹𝑆
 

 

3 Recall (R) 𝑇𝑆

𝑇𝑆 + 𝐹𝐻
 

4 F1-Score 

(F1) 

2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

5 Kappa (K) 𝐴 − 𝐶𝐴

1 − 𝐶𝐴
 

6 Chance 

agreement 

(CA) 

 
𝑇𝑆(TS +  FS) ∗ (TS + FH)  + (TH + FS) ∗ (TH + FH)

𝑇𝑃²
 

 

7 MCC (𝑇𝑆 ∗ 𝑇𝐻 − 𝐹𝑆 ∗ 𝐹𝐻)

√((TS +  FS)  ∗  (TS +  FH)  ∗  (TH +  FS)  ∗  (TH +  FH))𝑁
 

8 F2-Score 

(F2) 

5 ∗ 𝑃 ∗ 𝑅

4 ∗ 𝑃 ∗ 𝑅
 

9 Sensitivity 𝑇𝑆

𝑇𝑆 + 𝐹𝐻
 

 

10 Specificity 𝑇𝐻

𝑇𝐻 + 𝐹𝑆
 

 

11 Log loss 

− [
1

𝑁
] ∑(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖))

𝑁

𝐼=1
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Table II provides the formulae used in this study. 

The acronyms used in the table are as follows; TS-True 

Seizures, TH-True Healthy, TP-True positives, FS- False 

Seizures, FH-False Healthy and A- Agreement. 

4. RESULTS AND DISCUSSION 

This section interprets the results of the proposed 

feature engineering approach such as spectral and 

temporal features, which utilizes techniques like UMAP 

and FFT. It includes an analysis showcasing the efficacy 

of the SeqBoostNet classifier in epileptic seizure 

classification.  

 

The analysis carried out using a Python tool on a 

Windows 10 operating system with a 64-bit 

architecture and 8 GB of RAM. The system was 

equipped with an Intel(R) Core(TM) i3- 6006U CPU 

operating at 2.00 GHz. The study introduces a model 

combining different features from time and frequency 

domain with SeqBoostNet for an automatic epileptic 

seizure classification, utilizing BEED and BONN 

datasets with different case scenarios is provided in 

Table III and IV respectively. 

TABLE III. BEED CASES 

 

 

 

 

 

 

TABLE IV. BONN CASES 

 

 

 

 

 
 

 

A. Performance analysis of BEED Data 

The results displayed in the table exhibit the 

performance metrics of six distinct models (A1 to A6) 

applied in the classification of EEG data. Models A2, A3, 

and A6 emerge as the top performers, showcasing 

exceptional accuracy, precision, recall, F1-score, ROC-

AUC, Kappa, MCC, sensitivity, specificity, and F2-score, 

with values consistently exceeding 99%.  

These models demonstrate near-perfect classification 

capabilities, achieving perfect sensitivity and high 

specificity, indicating their proficiency in accurately 

identifying both positive and negative cases. Moreover, 

they yield low log loss values, suggesting high confidence 

and calibration in their predictions. While models A1, A4, 

and A5 also exhibit commendable performance, they 

present slightly lower values across most metrics, 

hovering around the mid to high 90% range. Notably, 

models A4, A5, and A6 require marginally more 

processing time compared to A1, A2, and A3, which may 

be a consideration for real-time applications. Overall, the 

findings underscore the effectiveness of models A2, A3, 

and A6 in accurately classifying EEG data, making them 

highly suitable candidates for practical implementation in 

neuroscience and clinical settings. The detailed 

performance metrics for BEED data are presented in Table 

V. 

 

TABLE V. PERFORMANCE ANALYSIS OF BEED 

 

The performance metrics for classifying EEG data in the 

table V indicate exceptional results across different tasks. 

Notably, models that differentiate between Generalized vs. 

Healthy (Case A2), Focal vs. Healthy (Case A3), and 

Seizure Events vs. Healthy (Case A6) achieve outstanding 

classification performance, with accuracy, precision, 

recall, and F1-scores consistently close to or at 99.66% or 

higher. These models also maintain high sensitivity and 

specificity, highlighting their precision in identifying both 

positive and negative cases. In contrast, Generalized vs. 

Focal (Case A1), Generalized vs. Seizure Events (Case 

A5), and Focal vs. Seizure Events (Case A4) offer strong, 

yet slightly lower, accuracy and specificity compared to 

the top-performing models. Although these models remain 

effective for classification tasks, they demonstrate slightly 

longer processing times. Overall, the exceptional 

performance of these models in classifying EEG data 

positions them as highly reliable for use in clinical and 

neuroscience settings, providing significant insights for 

future applications and research advancements. 

 

Figure 7, illustrates the ROC curves for BEED 

cases, the ROC curves illustrate the trade-off between the 

true positive rate (sensitivity) and the false positive rate (1-

specificity) for different models (A1 to A6). Models A3, 

A4, and A6 achieve perfect discrimination (AUC = 1.00), 

indicating excellent performance in distinguishing 

between positive and negative cases. A2 and A5 also 

BEED Cases Description 

A1 Generalized Vs Focal 

A2 Generalized Vs Healthy 

A3 Focal Vs Healthy 

A4 Focal Vs Seizure Events 

A5 Generalized Vs Seizure Events 

A6 Seizure Events Vs Healthy 

BONN Cases Description 

B1 Seizure Vs Tumor 

B2 Seizure Vs Healthy 

B3 Seizure Vs Eye Closed 

B4 Seizure Vs Eye Opened 

B5 Eye Closed Vs Eye Opened 

Metrics A1 A2 A3 A4 A5 A6 

Accuracy 95.91% 99.66% 99.83% 91.16% 94.01% 99.66% 

Precision 96.01% 99.66% 99.83% 91.25% 94.01% 99.66% 

Recall 95.91% 99.66% 99.83% 91.16% 94.01% 99.66% 

F1-score 95.91% 99.66% 99.83% 91.15% 94.01% 99.66% 

Kappa 91.83% 99.33% 99.66% 82.27% 87.98% 99.33% 

MCC 91.91% 99.33% 99.66% 82.38% 87.99% 99.33% 

ROCAUC 95.98% 99.65% 99.82% 91.06% 94.01% 99.65% 

Sensitivity 94.05% 100% 100% 93.89% 93.56% 100% 

Specificity 97.92% 99.30% 99.65% 88.23% 94.46% 99.30% 

F2-score 95.93% 99.66% 99.83% 91.18% 94.01% 99.66% 

Log Loss 1.47 0.12 0.06 0.61 2.16 0.12 

Time 28s 28s 28s 30s 31s 48s 
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demonstrate strong discrimination, with AUC values of 

0.92 and 0.96 respectively, while A1 shows slightly lower 

discrimination with an AUC of 0.94. 

 

  

 

 
Figure. 7. ROC curves for BEED data for different cases 

 

B. Performance analysis of BONN Data 

The table VI presents the comprehensive performance 

metrics of five distinct models (B1 to B5) employed for 

EEG data classification. Notably, models B3 and B4 

consistently exhibit exceptional performance across 

various evaluation criteria, including accuracy, precision, 

recall, F1-score, Kappa, MCC, ROC-AUC, sensitivity, 

specificity, and F2-score, with values consistently 

exceeding 99%. These models demonstrate robust 

agreement between predicted and actual classifications, 

with high sensitivity and specificity, indicating their 

proficiency in correctly identifying both positive and 

negative cases. 

 

Furthermore, B3 and B4 achieve low log loss 

values, reflecting high confidence and calibration in their 

predictions. In contrast, while models B1 and B2 also 

perform well, they exhibit slightly lower metrics compared 

to B3 and B4, while B5 demonstrates relatively lower 

performance across most evaluation criteria. Overall, the 

findings underscore the effectiveness of models B3 and B4 

in accurately classifying EEG data, suggesting their 

suitability for practical applications in neuroscience and 

clinical settings. The detailed performance metrics for 

BONN data are presented in Table VI. 

TABLE VI. PERFORMANCE ANALYSIS OF BONN 

 

The models applied to EEG data for BONN cases 

exhibit excellent performance in classifying various 

conditions. The tasks involving Seizure vs. Eye Closed 

(Case B3) and Seizure vs. Eye Opened (Case B4) excel 

with top-tier accuracy, precision, recall, and F1-scores, 

reaching 99.34% and 99.63% respectively. These models 

also showcase high sensitivity and specificity, effectively 

identifying both positive and negative cases with near-

perfect accuracy. Seizure vs. Healthy (Case B2) also 

performs exceptionally well, maintaining high accuracy 

and strong ROC-AUC, indicating its efficiency in 

distinguishing seizure data from healthy cases. The 

Seizure vs. Tumor (Case B1) classification task exhibits 

strong accuracy and reliability, though slightly lower than 

the top performers. Eye Closed vs. Eye Opened (Case B5) 

has the lowest performance of the set but still delivers 

strong results in distinguishing between these two 

conditions. Overall, these models provide highly reliable 

and accurate classification of EEG data across different 

tasks, making them valuable tools for use in clinical and 

research settings. 

 

Figure 8, illustrates the ROC curves for BONN 

cases The ROC curves illustrate the classification 

performance of models A1 to A5, with AUC values 

indicating the ability to distinguish between true positive 

and false positive rates. Model A1 achieves perfect 

discrimination (AUC = 1.00), signifying excellent 

classification accuracy. A2 closely follows with a high 

AUC of 0.99, while A3 and A4 exhibit slightly lower 

discrimination with AUCs of 0.98 and 0.97 respectively. 

Model A5 demonstrates the lowest discrimination among 

the models, with an AUC of 0.91, indicating relatively 

weaker classification performance. 

 

Metrics B1 B2 B3 B4 B5 

Accuracy 97.39% 98.40% 99.34% 99.63% 90.79% 

Precision 97.40% 98.40% 99.35% 99.63% 90.85% 

Recall 97.39% 98.40% 99.34% 99.63% 90.79% 

F1-score 97.39% 98.40% 99.34% 99.63% 90.79% 

Kappa 94.77% 96.80% 98.69% 99.27% 81.59% 

MCC 94.78% 96.81% 98.69% 99.27% 81.63% 

ROCAUC 97.41% 98.38% 98.69% 99.64% 90.84% 

Sensitivity 96.77% 98.87% 99.01% 99.43% 89.49% 

Specificity 98.04% 97.89% 99.69% 99.84% 92.19% 

F2-score 97.39% 98.40% 99.34% 99.63% 90.80% 

Log Loss 0.94 0.57 0.23 0.13 3.31 

Time 2m 58s 2m 19s 2m 53s 2m 56s 2m 32s 
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Figure. 8. ROC curves for BONN data for different cases 

 

TABLE VII. COMPARISION OF THE RESULTS OF PROPOSED MODEL WITH 

THE RELEVANT LITERATURE 

 

Table VII provides a comparison of the results obtained by 

the proposed system in the study with the findings from 

previous relevant research. The proposed model 

demonstrated outstanding performance with an accuracy 

of 98.40%, surpassing the accuracy levels achieved by 

previous studies on the same BONN dataset. This 

remarkable accuracy highlights the effectiveness and 

superiority of the proposed model in EEG signal 

classification. This study offers valuable insights into the 

early diagnosis of epileptic seizures through the 

application of artificial intelligence and classification 

algorithms. It underscores the importance of timely seizure 

diagnosis, considering the global prevalence of this health 

issue, and the positive impact it can have on patient 

outcomes. 

TABLE VIII. TIME COMPLEXITY DETAILS 

Technique Time Complexity 

FFT O (N log N) 

UMAP O (N * D) 

LSTM O (N²) 

XGB O (M*T) 

GB O (M*T) 

Ada O (M*T) 

SeqBoostNet O (N log N)+ O(N²) 

 

The time complexity details in Table VIII outline the 

computational efficiency of various techniques used in the 

proposed model and existing models for EEG data 

analysis. Fast Fourier Transform (FFT) offers the most 

efficient time complexity ideal for processing large 

datasets quickly. UMAP's complexity depends on the 

number of data points (N) and dimensions (D), indicating 

scalability in high-dimensional data analysis. Recurrent 

neural networks, such as LSTM, have a quadratic time 

complexity of which may lead to higher processing times 

with larger datasets. XGBoost, Gradient Boosting (GB), 

and AdaBoost all share a linear complexity dependent on 

the number of data points (M) and iterations (T), 

suggesting moderate efficiency for boosting algorithms. 

 

The proposed model combines the strengths of feature 

engineering such as UMAP and FFT with SeqBoostNet, 

with an overall time complexity of O(N log N) + O(N²). 

This hybrid approach balances efficiency and deep 

learning capabilities, offering a powerful yet scalable 

solution for EEG data analysis. Overall, it highlights a 

variety of methods with trade-offs between speed and 

complexity, guiding the selection of appropriate 

techniques for specific tasks and datasets. 

Previous 

studies 

Dataset Technique Accuracy 

Hernández et al. 

[36] 

BONN Time frequency 

feature extraction and 

Relief feature selection 
method 

94.25% 

Tsipouras et al. 

[37] 

BONN Spectral feature 

extraction 

91.20% 

Akyol et al.[38] BONN Stacking ensemble 
based Deep Neural 

Network 

97.17% 

Rabby et al. [39] BONN Wavelet  
Transformation, 

Petrosian Fractal 

Dimension, Higuchi 
Fractal Dimension and 

Singular Value 

Decomposition 
Entropy. 

95.20% 

Jing et al.[40] BONN Sliding window 

weighting with 
discrete wavelet 

transformation 

96.59% 

Mishra et al.[41] BONN Discrete Wavelet 

Transform and Moth 
Flame Optimization-

based Extreme 

Learning Machine  

96.00% 

Proposed 

Model 

BONN Spectral and 

temporal with 

stacked ML and DL 

model 

98.40% 

12



 

5. CONCLUSION AND FUTURE SCOPE 

In this study, we conducted a comprehensive analysis 

focusing on two main areas: the efficacy of spectral and 

temporal features and the performance of the SeqBoostNet 

stacking model in EEG data classification. By integrating 

spectral and temporal features, which combines UMAP 

and FFT data, we observed a significant enhancement in 

classification model’s capabilities. This combined method 

effectively captured both temporal and spectral 

characteristics of EEG data, leading to improved 

classification accuracy and precision. Moreover, the 

SeqBoostNet model demonstrated remarkable 

effectiveness by leveraging outputs from UMAP and FFT, 

resulting in superior classification performance across 

various metrics.  

 
The models evaluated for classifying EEG data across 

various tasks demonstrate remarkable performance and 
reliability, particularly in distinguishing between different 
types of brain activity such as generalized, focal, and 
seizure events in the BEED cases and seizure, tumor, and 
eye state distinctions in the BONN cases. The top-
performing models, especially those differentiating 
between generalized, focal, and seizure events from 
healthy states, consistently achieve near-perfect accuracy, 
precision, and recall. This outstanding performance 
highlights the model’s potential for application in clinical 
and research environments, aiding in the early detection 
and diagnosis of neurological disorders. 

Despite these successes, future work could focus on 
refining model processing times and optimizing specificity 
metrics. For example, improving distinctions between eye 
closed and eye opened conditions could enhance overall 
classification accuracy. The integration of these models 
into clinical practice promises to transform EEG analysis, 
providing faster and more precise diagnostics.  

Looking ahead, future research avenues could explore 
feature engineering techniques, alternative dimensionality 
reduction methods, real-world applications, interpretable 
model development, efficient handling of large-scale 
datasets, and detailed case studies on waveband 
computation for seizure data. These potential areas offer 
exciting prospects for further advancement in EEG data 
analysis and classification.  

In addition, by incorporating advanced data fusion 
techniques and real-time processing, these models could 
pave the way for novel applications in personalized 
medicine and brain-computer interface development. 
Collaborations between clinicians and data scientists will 
be essential to fine-tune these models for specific medical 
challenges and maximize their impact. Further research can 
explore alternative feature engineering, dimensionality 
reduction methods, and handling large datasets to elevate 
EEG data analysis and classification even further. 
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