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Abstract  

Energy consumption analysis and resource allocation (RA) for mobile devices need the 

efficient distribution of computational resources and the detailed analysis of power usage 

patterns among devices. Using techniques such as predictive modelling, monitoring, energy 

consumption patterns, and data collection are examined, enabling informed decisions based on 

the RA namely network bandwidth, CPU, and memory. By enhancing RA techniques based on 

device workload and real-time energy demands, this method focuses on enhancing energy 

effectiveness, extending battery lifetime, and improving overall system performance in mobile 

computing environment. This study introduces an innovative approach to monitoring the 

energy consumption of mobile devices interconnected to the Raspberry Pi via the web 

application interface. Particularly, the focus is on Android mobiles that are wirelessly 

connected to the Raspberry Pi through the WiFi network connection. This allows real-time 

monitoring of key energy metrics, such as overall energy consumption, CPU usage, and battery 

levels, which facilitates informed decision-making based on the RA. Moreover, the Raspberry 

Pi applies an XGBoost classifier to efficiently define allocate resources and the idle state of 

connected devices based on their usage patterns. The integrated system optimizes energy 

efficacy and improves resource utilization, thus contributing to the performance and 

sustainability of mobile devices. The system can intelligently allocate resources and predict 

device usage based on real-time energy demands through data collection and analysis, 

combined with machine learning techniques like XGBoost. The architecture intends to improve 

energy efficacy, extend battery lifetime, and improve overall system performance by enhancing 

RA, thus contributing to resilient and sustainable mobile computing environments. 

Keywords: Energy Consumption; Raspberry Pi; Machine Learning; Resource Allocation; 

XGBoost; Internet of Things 
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Recent developments in mobile technology have aided novel smart-city classes and 

applications of 5G networks like smart households and real condition examines [1]. This kind 

of application contains assorted desires like high data rates, lower potentials, substantial 

quantities of calculating and storage resources, and acquiring Internet of Things (IoT) devices 

[2]. The rate of electrical bills is increasing, which causes the users with low profits to struggle 

to create these expenses [3]. The varying weather situations and the assumption of novel 

domestic devices are dual main causes of increasing electricity bills. The IoT is one of the novel 

and effective technologies which authorizes consumers with intellect [4]. The IoT has massive 

possibility for usage in an extensive variety of states such as agriculture, healthcare, and 

industry, among others. Many researchers have performed in the energy sector [5]. Recently, 

study has been directed on the features of observing power consumption utilizing IoT. Due to 

the reduction of IoT actuators and sensors, IoT methods can be inserted in a diversity of 

modules that relate to networks of energy like domestic electricity meters, home electronic 

applications, power value service wires, etc [6]. The deliberated IoT method permits remote 

observation of power utilization in households.  

Massive amounts of data are being taken to attain a superior vision of commercial methods, 

processes, products, consumers, etc [7]. The evolution of technologies and the constant group 

of data have presented special tasks, particularly to the data mining (DM) community. These 

tasks have inspired business analysts and researchers to frequently progress novel tools and 

models for enhancing the use of numerous machine learning (ML) methods [8]. The foremost 

objective is to recognize patterns, construct recommendations methods and, predictive 

techniques which will finally support the decision-making procedure within a group [9]. The 

ML methods application is wide and extends across dissimilar research fields [10]. 

The power consumption of mobile device offers the quality parameter to achieve effective 

functioning of mobile apps [11]. These quality parameter of the mobile applications and 

devices ensure process at both hardware and software levels. Quality parameters are power 

consumption and cost that enhance task scheduling (TS) with ML [12]. The TS processing of 

data permits mobile apps to enhance processing power and quality parameters [13]. Several 

recent research studies define the constraints of ML solution, for sample, certain application 

condition for mobile devices and offline model alteration for the system design [14]. 

Eventually, the power utilized by the mobile devices could not in agreement with provided case 

scenarios and improved the learning knowledge. The basic method was implemented utilizing 
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these preceding systems, allowing the functionality of only a some solutions across all mobile 

applications. Dynamic adaptation and completely optimized solution are presented [15]. 

Enabling mobile data mining is an important benefit for nomadic users and organizations that 

essential to execute analysis of data created both mobile device and remote sources [16]. 

Mobile data mining may contain distinct conditions in which a mobile device can role the play 

of data producer, client of remote data miners, data analyzer, or combination of them. 

Therefore, an enhancing the count of smartphone and PDA-based data intensive applications 

are recently established [17]. Instances comprise smartphone-based systems for body-health 

monitoring, wireless security systems, and vehicle monitoring. New support for data analysis 

and mining was essential for these applications [18]. A basic feature that needs attention to 

allow effectual and reliable data mining under mobile devices is guaranteeing energy 

efficiency, as most commercially accessible mobile devices are battery power that would last 

only a few hours. Then, the next generation of mobile apps for such mobile devices are design 

to diminish the energy consumption. Therefore, an enhancing need to recognize the bottlenecks 

connected with the implementation of these applications in recent mobile-based structural 

design [19]. In recent years, there has been notable research focused on decreasing the 

computational complexity of data mining algorithms. Unfortunately, very little was done to 

ensure that data mining methods are complete functioning in mobile environment. According 

to our perception only inadequate studies are devoted to examine energy characterization of 

data mining methods on mobile devices [20]. 

This study introduces an innovative approach to monitoring the energy consumption of mobile 

devices interconnected to the Raspberry Pi via the web application interface. Particularly, the 

focus is on Android mobiles that are wirelessly connected to the Raspberry Pi through the WiFi 

network connection. This allows real-time monitoring of key energy metrics, such as overall 

energy consumption, CPU usage, and battery levels, which facilitates informed decision-

making based on the RA. Moreover, the Raspberry Pi applies an XGBoost classifier to define 

and efficiently allocate resources and the idle state of connected devices based on their usage 

patterns. The architecture intends to improve energy efficacy, extend battery lifetime, and 

improve overall system performance by enhancing RA, thus contributing to resilient and 

sustainable mobile computing environments. 

2. Related Works 
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Szabó and Pető [21] developed an advanced model for substituting wired communication in an 

effective agile manufacturing cell with wireless communication. The technique 

uses Reinforcement Learning (RL) to enhance the plan and decrease the vital amount of access 

points. The technique also projected an AI that simplifies supportive communication among 

access points and cameras, enhancing camera stream operation and radio convergence. Singh 

et al. [22] presented a resource distribution model for SDN-enabled fog calculating with 

Collaborative ML (CML) technique. This method was combined with the resource distribution 

method for the SDN-enabled fog-calculating atmosphere. The iFogSim and FogBus were used 

to assess the outcomes of the developed model utilizing numerous performance assessment 

metrics. In [23], a deadline-aware data offload system is presented utilizing DRL and dynamic 

voltage and frequency scaling (DVFS) in an EC atmosphere to decrease the energy utilization 

of IoT devices. The projected system absorbs the optimum data spreading strategies and local 

calculation DVFS frequency scaling by relating with the method atmosphere and learning the 

conduct of the edge servers, network and device. 

Rahman et al. [24] presented a process management structure which is construed as an ML and 

cloud-based data-driven numeral for smart greenhouses. The developed structure contains 3 

layers such as fog, cloud and physical. The physical greenery house dimensions were observed 

utilizing an extremely real 3D environment and immersive cloud-based. An instance structure 

has been projected utilizing business-related cloud and open-source devices to prove the 

evidence of model. Moreover, dissimilar ML methods are exploited to forecast the functioning 

necessities for smart greenhouses. Wu et al. [25] proposed a method separating and resource 

allocation technique to define the enhanced task of computing resources for DNN tasks 

unloaded from manifold devices against the edge server. The projected method initially uses 

the separating instructions to get an initial decision on model partitioning and presents a 

greedy-based approach to define the absolute decision on the partitioning facts of DNN 

frameworks and the quantity of computing resources allocated for task implementation. 

Li et al. [26] merge graded federated learning (FL) with UAV-aided mobile edge 

computing (MEC) atmosphere to construct a UAV-aided MEC method structure for FL. This 

research paper presented incentive devices and Stackelberg game in FL. The communication 

among UAV, consumer devices, and the base station was demonstrated as a Stackelberg 

game  to define the highest quantity of data needed for training. In [27], a containerized edge 

intelligence framework (CEIF) is proposed for a mobile-wearable IoT method. CEIF allows 

dynamic cause of the inference services of AI techniques and contains edge computing device 
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(ECD) to run the container abstraction model. Then, the model suggests a DL technique, where 

the container group plan absorbs the fluctuating user workload at the position of every ECD. 

Minhaj et al. [28] present a novel model of utilizing 2 independent learning systems to allocate 

spreading factor (SF) and transmission power to devices utilizing a group of decentralized and 

centralized system. Lin et al. [29] proposal a distributed deep RL (DRL) based solution to 

enhance the task satisfaction ratio through equally optimizing the task offloading decision and 

the sub-channel transfer to assist the binary computing offloading strategy. In [30], a DL 

structure for optimize of the RA in multi-channel cellular methods with device-to-device 

(D2D) communication was presented. So, the channel assignment and discrete transfer power 

levels of D2D users are both integer variables, can optimized for growth of entire spectral 

efficacy whilst preserving the QoS of cellular users.  

3. The Proposed Model 

This study introduces an innovative approach to monitoring the energy consumption of mobile 

devices interconnected to the Raspberry Pi via the web application interface. Fig. 1 

demonstrates the entire procedure of the proposed methodology. 

3.1. Integration with Raspberry Pi 

In this work, the Android devices are connected to the Raspberry Pi module. The devices are 

connected via Wifi links. Besides, the Raspberry Pi is integrated into web link for analysis.  

Raspberry Pi Foundation in UK in 2012 introduced Raspberry Pi, a reasonable, credit card-

sized single-board computer to encourage teaching of basic computer skills in schools [31]. 

RPi became the fast-selling British computer around 5 million devices were vended within 3 

years. RPi derives in Models A and B that vary with respect to technical specifications such as 

network connection, RAM and USB ports. Like desktop computer, it is a computer designed 

that do almost everything including video streaming, web surfing, computer programming, 

playing games and word processing. The RPi derives the energy it needs for the operation from 

three dissimilar sources. Initially, the device is interconnected through the 5V micro USB 

mains adaptor with the 1200mA current. Likewise, the Raspberry Pi is power-driven through 

USB-based portable battery compatible with smartphones. Another technique is to apply the 

Mobile Pi Power (MoPi) - a power regulator that provides the capability to switch electricity 

supply without interruption and provides various inputs (viz., standard battery, solar cells or 

car power sockets). Similarly, users can power the RPi through the battery box that runs with 
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more the six AA batteries. RPi consumes power during its operation like other varieties of 

computers. It includes power necessary to run software or perform tasks on the platform and 

to function the hardware component. After calculating the power states, a power consumption 

system of Raspberry Pi, called PowerPi, was recommended in recent times. The diverse 

functionalities of power consumption existing within the platform weren’t examined even 

though the PowerPi models and measures RPi power consumption from different elements 

such as USB WiFi dongle, CPU and Ethernet mainly.  
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Fig. 1. Overall process of proposed model  

3.2. Energy Consumption Monitoring and Analysis  

The Raspberry Pi acts as a central monitoring hub for connected mobile devices, which 

oversees different metrics crucial for RA and energy consumption analysis. It continuously 
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tracks the idle and active states of the mobile devices, which discerns whether they are dormant 

or used, which is essential for improving RA. Furthermore, the Raspberry Pi is used to monitor 

the usage of CPU, which provides insight into the computation workload of all the devices. 

This data assists in dynamically allocating CPU resources based on the demand, which ensures 

effective use. Additionally, the Raspberry Pi monitors on battery level, allowing proactive 

management of power resources to avoid early device shutdown. Additionally, energy 

consumption is accurately traced, permitting energy-intensive tasks or application detection for 

optimization. Finally, resource monitoring includes storage usage and monitoring CPU through 

connected devices, empowering effective storage capacity and computational resource 

distribution to meet different requirements. This wide-ranging monitoring scheme assisted by 

the Raspberry Pi allows dynamic RA and energy consumption analysis for enriched efficiency 

and performance in mobile computing environment. 

• Idle or Active State: The Raspberry Pi continuously track the connected mobile devices 

that are in idle or active state. This is critical for RA decision, as active device might 

need more resources than idle one. For example, an active device may be performing 

tasks or running applications that demand higher usage of CPU, while idle device 

requires less resources. 

• CPU Usage: Monitoring CPU usage offers insights into the computation job of the 

connected mobile device. The Raspberry Pi can dynamically adjust RA to ensure 

optimum performance by constantly tracing CPU usage. For instance, if the device's 

CPU usage spikes, representing heavy computation task, the Raspberry Pi could assign 

further CPU resources to that device to delay processing or avoid slowdown. 

• Battery Monitor: Battery monitoring includes trailing the battery level of connected 

mobile devices in real time. These metrics are crucial to prevent unexpected shutdowns 

and effectively manage power resources owing to low battery levels. The Raspberry Pi 

can alert users or implement power-saving measures when batteries need charging by 

monitoring battery levels. 

• Energy Consumption: The Raspberry Pi is used to measure the energy consumption of 

connected mobile device, which provide insight into power usage patterns. This assists 

in identifying energy-intensive applications or tasks that might quickly drain battery 

lifetime. The Raspberry Pi can implement energy-saving strategies or optimizations by 

analyzing energy consumption patterns, to enhance overall efficiency and extend 

battery life. 
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• Resource Monitoring (CPU, Storage): Resource monitoring involves tracing storage 

utilization and CPU usage through connected mobile devices. Monitoring CPU usage 

aids in effectively allocating computation resources, while monitoring storage usage 

ensures optimum use of storage capacity. For example, if the device is running lower 

on storage space, the Raspberry Pi prompts user to perform storage management 

techniques or offload data to prevent degradation performance and free up space. 

The Raspberry Pi can effectively analyze energy consumption patterns and dynamically 

allocate resources to connected mobile gadgets by monitoring the metrics in detail, thus 

enhancing efficiency and performance in mobile computing environment. 

3.3. Machine Learning-based Resource Allocation of Idle Devices 

Implementing ML-based RA for idle mobile devices is critical for maximizing efficiency and 

enhancing energy consumption. By leveraging complex techniques, namely neural networks 

or reinforcement learning, on platforms such as Raspberry Pi, idle mobile device is intelligently 

identified and assigned resources according to the predicted usage pattern. This technique 

ensures that resource is efficiently distributed, minimalizing energy consumption while 

concurrently improving the responsiveness and system performance. In this work, the 

XGBoost model is applied for the allocation of resources to idle devices. The XGBoost 

technique is an effectual gradient boosting decision tree (GBDT) method that is enhanced from 

the GBDT [32]. However, the forward additional process is most common approach to boosting 

processes. This method iteratively creates a novel tree by fitting residuals and developing a 

classifier with superior accuracy and stronger generalization proficiency. The fundamental 

regression tree (RT) method employed from the XGBoost approach is defined as: 

𝑦𝑖 = ∑ 𝑓𝑘

𝐾

𝑡=1

(𝑥𝑖), 𝑓𝑘(𝑥𝑖) ∈ 𝑅                                                (1) 

whereas 𝐾 represents the tree counts; 𝑓𝑘 denotes the function under the function space 𝑅, 𝑦𝑖 

implies the predicting rate of the RT; 𝑥𝑖 stands for the 𝑖𝑡ℎ data input and 𝑅 indicates the set of 

every probable RT method. The main function of the XGBoost technique can expressed in Eq. 

(2). 

𝑋𝑜𝑏𝑗 = ∑ 𝑙

𝑛

𝑖=1

(𝑦, 𝑦) + ∑ 𝛺

𝐾

𝑘=1

(𝑓𝑘)                                          (2) 

9



In which, 𝑙(𝑦, �̂�) denotes the difference between the predicting rate of the model and actual 

rate, and 𝛺(𝑓𝑘) represents the regular term of the scalar function. Fig. 2 illustrates the 

infrastructure of XGBoost model. 

 

Fig. 2. Structure of XGBoost Model 

The regularized penalty function has been employed to avoid overfitting the model, as defined 

in Eq. (3). 

𝛺(𝑓𝑘) = 𝛾𝑇 + 𝜆
1

2
∑ 𝜔𝑗

2

𝑇

𝑗=1

                                          (3) 

whereas 𝑇 stands for the amount of leaf nodes; 𝛾 represents the penalty function coefficient; 𝜔 

refers to the score of leaf nodes, and 𝜆 implies the regularized penalty coefficient. 

4. Result analysis  

This section inspects the performance of the proposed technique under distinct measures. The 

proposed model is simulated using Raspberry Pi 3 with Android Debugging Tool, React JS 

Device Monitoring, and Python JSON Server. 

Table 1 and Fig. 3 show the total energy consumption (TEC) results of the proposed system 

[33, 34]. The results reported that the proposed approach reached effective results with least 

TEC values. With 200kHz bandwidth, the proposed model gains decreased TEC value of 
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0.8216J while LC, MC, BHGC, and JTOREAH approaches attain increased TEC values of 

1.8305J, 1.3565J, 1.0782J, and 0.9390J, correspondingly. Besides, with 400kHz bandwidth, 

the proposed model acquires reduced TEC value of 0.4867J while LC, MC, BHGC, and 

JTOREAH techniques achieve enlarged TEC values of 1.8653J, 0.8738J, 0.6737J, and 0.5737J, 

respectively. Also, with 600kHz bandwidth, the proposed system gains reduced TEC value of 

0.4171J whereas LC, MC, BHGC, and JTOREAH methodologies get enlarged TEC values of 

1.8740J, 0.7650J, 0.5606J, and 0.4736J, respectively.   

Table 1 TEC analysis of proposed model with recent approaches under various bandwidth 

Total Energy Consumption (J) 

Bandwidth (KHz) 
LC 

Algorithm 

MC 

Algorithm 

BHGC 

Algorithm 

JTORAEH 

Algorithm 
Proposed Method 

200 1.8305 1.3565 1.0782 0.9390 0.8216 

300 1.8784 0.9868 0.7911 0.6694 0.5476 

400 1.8653 0.8738 0.6737 0.5737 0.4867 

500 1.8784 0.8216 0.6346 0.5171 0.4476 

600 1.8740 0.7650 0.5606 0.4736 0.4171 

a

 

Fig. 3. TEC analysis of proposed model under various bandwidth 
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Table 2 and Fig. 4 show the TEC outcomes of the proposed technique below numerous CPU-

cycle frequencies. The results stated that the proposed methodology got effectual outcomes 

with minimum TEC values. With 200GHz CPU-cycle frequency, the proposed approach gains 

declined TEC value of 0.7329J while LC, MC, BHGC, and JTOREAH methods attain enlarged 

TEC values of 1.8691J, 1.3501J, 1.0789J, and 0.9433J, respectively.  

Table 2 TEC analysis of proposed model with recent approaches under various CPU-cycle 

frequency 

Total Energy Consumption (J) 

CPU-cycle 

Frequency (GHz) 

LC 

Algorithm 

MC 

Algorithm 

BHGC 

Algorithm 

JTORAEH 

Algorithm 
Proposed Method 

200 1.8691 1.3501 1.0789 0.9433 0.7329 

300 1.8551 0.9106 0.7236 0.5973 0.4150 

400 1.8925 0.7142 0.5506 0.4570 0.3261 

500 1.8598 0.5693 0.4103 0.3308 0.2513 

600 1.8644 0.5038 0.3682 0.2934 0.2420 

 

Fig. 4. TEC analysis of proposed model under various CPU-cycle frequency 
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Besides, with 400GHz CPU-cycle frequency, the proposed system gets reduced TEC value of 

0.3261J whereas LC, MC, BHGC, and JTOREAH techniques achieve enlarged TEC values 

of 1.8925J, 0.7142J, 0.5506J, and 0.4570J, respectively. Also, with 600GHz CPU-cycle 

frequency, the proposed method obtains diminished TEC value of 0.2420J while LC, MC, 

BHGC, and JTOREAH models attain increased TEC values of 1.8644J, 0.5038J, 0.3682J, 

and 0.2934J, respectively.   

Table 3 and Fig. 5 show the TEC results of the proposed model under numerous input data. 

The results described that the proposed system got effectual outcomes with minimum TEC 

values. With 200Mbits input data, the proposed technique gains declined TEC value of 0.9151J 

while LC, MC, BHGC, and JTOREAH methods achieve enlarged TEC values of 1.8572J, 

1.3509J, 1.0814J, and 0.9327J, respectively. Moreover, with 400Mbits input data, the proposed 

model obtains decreased TEC value of 0.9781J while LC, MC, BHGC, and JTOREAH 

approaches attain amplified TEC values of 1.8799J, 1.4718J, 1.1821J, and 1.0335J, 

correspondingly. Also, with 600Mbits input data, the proposed model gains decreased TEC 

value of 1.1015J while LC, MC, BHGC, and JTOREAH methodologies reach enlarged TEC 

values of 1.8698J, 1.6758J, 1.4113J, and 1.2526J, respectively.   

Table 3 TEC analysis of proposed model with recent approaches under various input data 

Total Energy Consumption (J) 

Input Data (Mbits) 
LC 

Algorithm 

MC 

Algorithm 

BHGC 

Algorithm 

JTORAEH 

Algorithm 
Proposed Method 

200 1.8572 1.3509 1.0814 0.9327 0.9151 

300 1.8496 1.3962 1.1015 0.9680 0.9302 

400 1.8799 1.4718 1.1821 1.0335 0.9781 

500 1.8496 1.5700 1.2829 1.1267 1.0310 

600 1.8698 1.6758 1.4113 1.2526 1.1015 
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Fig. 5. TEC analysis of proposed model under various input data 

Table 4 and Fig. 6 display the average service time (AST) outcomes of the proposed model 

under different computing requirements of applications (CROA). The results described that the 

proposed method got effective outcomes with least AST values. With 50 megacycles of CROA, 

the proposed model gets reduced AST value of 38.74ms whereas OSPF and DRLRA 

techniques get enlarged AST values of 68.12ms and 58.77ms, correspondingly. Also, with 250 

megacycles of CROA, the proposed technique gains reduced AST value of 149.60ms while 

OSPF and DRLRA methods reach enlarged AST values of 252.44ms and 207.03ms, 

respectively. Also, with 400 megacycles of CROA, the proposed model gains declined AST 

value of 272.48ms whereas OSPF and DRLRA methods achieve improved AST values of 

410.05ms and 336.59ms, respectively.   

Table 4 AST analysis of proposed model with recent approaches under various CROA 

Average Service Time (ms) 

Computing Requirement of 

Applications (Megacycles) 
OSPF DRLRA Proposed Method 

50 68.12 58.77 38.74 
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100 136.24 102.85 60.11 

150 156.28 117.54 78.81 

200 221.72 193.68 137.58 

250 252.44 207.03 149.60 

300 273.82 220.39 185.66 

350 352.62 247.10 200.35 

400 410.05 336.59 272.48 

 

Fig. 6. Computing Requirement of applications on average service time 

Table 5 and Fig. 7 demonstrate the AST results of the proposed method below several data 

routing capacity (DRC). The outcomes described that the proposed technique grabbed effectual 

outcomes with least AST values. With 250Mbps DRC, the proposed system acquires decreased 

AST value of 100.85ms whereas OSPF and DRLRA models collect increased AST values of 

142.14ms and 128.84ms, respectively. Besides, with 750Mbps DRC, the proposed model gains 

diminished AST value of 81.06ms while OSPF and DRLRA methodologies attain amplified 

AST values of 114.84ms and 95.74ms, correspondingly. Also, with 1000Mbps DRC, the 

proposed approach obtains reduced AST value of 64.00ms while OSPF and DRLRA systems 

get increased AST values of 91.30ms and 73.21ms, respectively.   
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Table 5 AST analysis of proposed model with recent approaches under various DRC 

Average Service Time (ms) 

Data Routing Capacity (Mbps) OSPF DRLRA Proposed Method 

250 142.14 128.84 100.85 

500 130.20 103.58 87.20 

750 114.84 95.74 81.06 

1000 91.30 73.21 64.00 

 

Fig. 7. AST analysis of proposed model under different data routing capacities 

5. Conclusion  

In this study, we have introduced an innovative approach to monitoring the energy 

consumption of mobile devices interconnected to the Raspberry Pi via the web application 

interface. Particularly, the focus is on Android mobiles that are wirelessly connected to the 

Raspberry Pi through the WiFi network connection. This allows real-time monitoring of key 

energy metrics, such as overall energy consumption, CPU usage, and battery levels, which 

facilitates informed decision-making based on the RA. Moreover, the Raspberry Pi applies an 

XGBoost classifier to define and efficiently allocate resources and the idle state of connected 
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devices based on their usage patterns. The system can intelligently allocate resources and 

predict device usage based on real-time energy demands through data collection and analysis, 

combined with ML techniques like XGBoost. The architecture intends to improve energy 

efficacy, extend battery lifetime, and improve overall system performance by enhancing RA, 

thus contributing to resilient and sustainable mobile computing environments. 
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