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Abstract: The rapid development of transmissions media in computer networks has set optical fiber at the very front because of their 
high data transmission abilities and low constriction. However, guaranteeing the dependability and usefulness of optical fiber 
networks stays a critical test, particularly in recognizing and tending to issues expeditiously. This paper gives a careful examination 
of shortcoming discovery strategies in optical fiber networks, beginning with an investigation of issue types in view of the 
information from a neighborhood stations which are called Network Operations Centers, NOCs. It examines the meaning of issue 
identification, order, and their effect on network execution. Moreover, the paper investigates conventional shortcoming recognition 
techniques like Optical Time Area Reflectometer (OTDR) and their restrictions in pinpointing issue areas precisely. To overcome 
these difficulties, the paper investigates the coordination of AI (ML) procedures for issue of fault location and expectation in optical 
networks. Different utilizations of ML in issue discovery, including shortcoming area, prescient upkeep, oddity location, and 
enhancement of sign quality, are examined exhaustively. Also, late examination endeavors and their commitments to the field of 
issue location and characterization in optical networks are dissected. The paper finishes up by underscoring the capability of ML-
based ways to deal with improve issue discovery effectiveness, further develop network dependability, and decrease margin time in 
optical fiber networks 
 
Keywords: Optical fiber networks, Fault detection, Machine Learning, Optical Time Domain Reflectometer (OTDR), Predictive 
maintenance. 

 

1. INTRODUCTION  

The quick improvement of communication 
networks has moved optical fiber to the very front as the 
essential part, on account of their low lessening and high 
transmission capacity abilities. Optical fiber networks, 
presented in the mid-1970s, are essential for fast, 
dependable, and secure information transmission over 
significant distances, making them ideal for gigabit and 
past transmission [1]. 

However, there are decisive challenges facing 
optical fiber networks represented in the reliable 
detection of malfunctions and location, as any 
malfunction can lead to service interruption and data loss, 
in addition to possible social effects[2]. Shortcomings 
can arise from different sources, such as the improper 
installation of cables, poor quality cables, signal 
inactivity, or due to external factors such as marine 

activities that cause damage to the under the sea or 
ground accidents, such as construction work or storms 
that cause damage to the cables Along the actual 
infrastructure such as roads and electricity lines.[3]. 

To address these challenges, an effective 
supervision system is essential to detect and identify 
faults with the aim of minimizing service interruptions. 
Most optical networks are designed with protection 
systems that can quickly switch data to backup fiber 
paths within 50 milliseconds to ensure uninterrupted 
service. [4]. 

One strategy for fault recognition in fiber optic 
networks is through Rayleigh scattering-based control 
networks, where the Optical Time Domain Reflectometer 
(OTDR) is a prominent procedure. OTDR allows the 
measurement of test pulses scattered along the fiber, 
providing an understanding of the integrity of the fiber 
without the need for controllers at each node of the 
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network. [5]. High-quality OTDRs offer superior spatial 
resolution (less than 20 meters) and long-range 
capabilities (more than 200 km), enabling efficient 
monitoring of entire fiber networks. [6]. 

However; using the ODTR device has a number of 
drawbacks, such as its inability to locate faults precisely 
and notice them, particularly within the restricted range 
of distance measurement. In other words, its accuracy in 
measuring distances is limited to a specific threshold. 
Because of the nature of the technology employed in 
OTDRs, measurements lose precision with increasing 
distance, and eventually the reflections become too faint 
to be reliably detected and processed. This implies that 
OTDRs might not be the best tool for testing and 
debugging long-haul fiber optic networks that cover 
hundreds or thousands of kilometers. 

Another disadvantage of using an OTDR tool is 
the high cost and complexity of the equipment. The high 
cost of OTDR equipment can be a major drawback for 
small businesses or individuals who need to perform fiber 
optic testing. The price of an OTDR can range from 
several thousand to tens of thousands of dollars, 
depending on the features and capabilities of the device. 
In addition, novice users may find it difficult to handle 
the intricacy of using an OTDR. To acquire reliable 
readings, OTDRs require proper configuration of a wide 
variety of settings and parameters. For individuals who 
are unfamiliar with fiber optic testing, it might be 
intimidating to interpret the findings and comprehend the 
numerous factors. 

Machine Learning (ML) is progressively used in 
optical correspondences and systems administration, 
especially in nonlinear transmission networks, optical 
transmission enhancement, uninvolved optical execution 
observing, and cross-layer network advancements for 
programming characterized networks [7]. ML methods 
have been used to address different difficulties in optical 
correspondences foundation, empowering exact 
expectation of networks execution and improving 
complex networks the board, shortcoming recognition, 
recognizable proof of Bit Error Rate (BER), transmission 
of transmission (QoT), and signal enhancement [8]. 

Nonetheless, while critical headway has been 
made in using ML strategies for shortcoming location in 
optical networks, especially in long stretch underground 
optical networks, challenges continue following hard 
disappointments in underground optical links [9]. 
Customary techniques like optical time-domain 
reflectometer (OTDR) estimations give the distance of 
the fiber link covered in the earth yet miss the mark in 
pinpointing the specific spot of a link cut [10]. 

The profundity of the channels where fiber optic 
cables (FOCs) are laid presents a critical obstruction in 
issue following, prompting postponements and income 
misfortune for media transmission networks. Regardless 

of the accuracy of OTDR in assessing shortcoming 
distances, its failure to precisely find fiber cuts on the 
world's surface outcomes in extra expenses and asset 
assignment [11]. 

To address these difficulties, research proposes 
utilizing ML displaying to foresee the genuine issue area 
when a fiber link cut happens in underground optical 
foundation. By consolidating ML methods, irregularities 
between OTDR estimations and genuine issue distances 
can be alleviated, lessening delays, asset wastage, and 
financial misfortunes for telecom networks [12]. 

Past exploration endeavors have zeroed in on 
shortcoming following utilizing OTDR and different 
strategies yet have not completely settled the issue of 
precisely pinpointing shortcoming areas. By taking into 
account the distance of the FOC as well as the Euclidean 
distance on the world's surface, ML-based approaches 
mean to give more exact shortcoming area forecasts, 
limiting misfortunes in the FOC networks [13]. 

In rundown, the combination of ML strategies 
offers a promising answer for the difficulties of issue 
following in underground optical networks, possibly 
diminishing expenses and further developing 
effectiveness for telecom networks [14]. 

The paper investigates fault discovery procedures for 
optical strands, starting with a conversation on issue types 
in view of a difficult situation ticket information from 
neighborhood networks in the earlier year. This 
investigation includes characterizing deficiencies as per 
type, main driver, and their effect on administrations. 

 

2. OPTICAL FIBER CABLE 

Optical fiber cable can be defined as the backbone 
that is constitutive of the fiber optic communication 
system where it encompasses a very thin, extended 
structure that strictly transports light signals produced by 
the transmitter in tremendous efficiency. These can be of 
diverse types, with either glass or plastic and are 
designed to transmit light signals up to certain distance 
with least attenuation. There are two primary types of 
optical fibers used in communication systems, each with 
unique properties that determine their suitability for 
different applications: There are two primary types of 
optical fibers used in communication systems, each with 
unique properties that determine their suitability for 
different applications [15]: 

A. Single-mode Fiber 

1. Core Size: Single-mode fibers have quite a small 
core diameter, around 9 micrometers (μm) 
depending on the type. This results in the core being 
unusually narrow and the fiber only allowing for 
one type of light wave transmission, in other words, 
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light within the fiber merely travels through a 
singular pathway in the fiber core [16]. 

2. Light Propagation and Signal Distortion: This 
makes it possible for the narrow core to contain the 
light in an upright column along a straight-line 
keeping signal distortion as resulting from multiple 
reflections of light at different angles (as which is 
the case in multi-mode fibers). This leads to better 
quality of signal transmission and for SMFs they 
can transmit signals and data over long distances 
more than the MMFs can [17]. 

B. Multi-mode Fiber 

1. Core Size: Multi-mode fibers have a relatively large 
core diameter, which is normally in the range of 50 
– 100 m. This is because the larger core diameter 
allows the fiber to have multiple modes of 
transporting the light [18]. 

2. Light Propagation and Signal Distortion: Multi-
mode fibers allow the propagation of light rays in 
different ways, or modes and exist in two types 
close and long. Some rays go through the core at 
once not reflecting off the interface of the cladding 
and core at various angles of incidence. This feature 
in turn has the potential of distorting the received 
signal especially when the transmission path is long 
since it takes light beams with different numbers of 
reflections to get to the receiver at a given time [19]. 

3. Advantages and Trade-offs: Even though the signal 
might be affected by the reflections, multi-mode 
fibers can have several benefits, including easier 
coupling with the light source and detector chips; 
this makes the installation easier and possibly less 
costly. However, their signal vulnerable to 
distortion results in the smaller transmission range 
compared to the single-mode fibers [20]. 

3. OPTICAL FIBER CHARACTERISTICS 

A. Attenuation 

Signal power in optical fiber line decreases over 
distance due to attenuation, it is the weakening of the 
light signal. Attenuation is important as it set the level of 
signal strength seen by the receiver so that it is able to 
correctly distinguish the sent signal. Therefore, it 
becomes essential to determine the maximum distance up 
which the signal can propagate given the sensitivity of 
the recipient and the strength of the source. Absorption, 
scattering and geometric losses take a part in decrease of 
signal next to attenuation. Expressed commonly in 
decibels per unit length (dB/km), attenuation is 
determined by the following [21]. 

𝑎 =                                                               (1)                                                                                                                             

Where:  represents the signal attenuation, stands 
for the input optical power inserted to a fiber, refers to 
the output optical power which is received from the fiber, 
and stands symbolically for the length of the fiber [22]. 
This logarithmic unit has the advantage of solving such 
equations in terms of addition and subtraction or 
multiplication and division as well as powers and roots 
(Figure 1).  

 
However, addition and subtraction require a 

conversion to numerical values, which may be 
accomplished using the following relationship: However, 
addition and subtraction require a conversion to 
numerical values, which may be accomplished using the 
following relationship: Where:  is for the attenuation of 
signal, is for the input optical power that is launched into 
the fiber, and is for the output optical power that is 
received from the fiber; stands for the fiber length [23]. 

This logarithmic unit has the advantage of 
bringing into equation the multiplication and division 
operations and also the powers and root of the numbers 
by the use of addition and subtraction. However, addition 
and subtraction require a conversion to numerical values, 
which may be accomplished using the following 
relationship [23]. 

B. Chromatic Dispersion 

The last thing is chromatic dispersion which is one 
of the greatest problems towards longer distances and 
accurate representation of single signals. In optic fiber 
communications, chromatic dispersion occurs due to the 
difference in the velocity with which the light signal 
travels through the fiber at different frequencies. There is 
accumulation within the optical network that leads to 
pulse widening and ultimately increased interference 
between symbols for this reason, the SNR will also 
reduce at the judgment circuit. As a result, in order to 
maintain the operational functionality of the system, 

Figure 1: Attenuation Profile for Single Model Fiber 
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more power must be provided at the receiver as is 
illustrated in figure (2)[24]. 

It is the product of two factors: MD (material 
dispersion) and Waveguide dispersion (WD). Since each 
source of light has a particular spectral band, a laser or 
LED source expands as it passes through the form of an 
optical waveguide- fiber.  In the same shown waveguide, 
every dispersed spectral request propagates at unique 
band velocity. This is so because phase velocity changes 
with the material and the wavelength of the wave. 

The first source is nuclear energy, while 
the other five are renewable energies. This is because, by 
the time the pulse reaches the receiver, the spectral 
components have separated from each other due to the 
different travel times and hence the pulse broadens. This 
is known as material dispersion Material dispersion 
occurs when the material through which the wave is 
travelling affects the relationships between the 
wavelengths of the outgoing waves, particularly when the 
frequency is being altered. Using incident wavelength λ0, 
the dispersion coefficient for MD using the following 
equation (1). Using incident wavelength λ0, the 
dispersion coefficient for MD using the following 
equation (2) [25]. 
 
 
 
 
 
 
 
 

1) 3.3 Dispersion Compensation Fiber (DCF) 
One of the major advantages of dispersion 

compensating fiber is that it can easily integrate with 
single-mode fiber networks [26]. Dispersion 
compensating fibers or fibers that can compensate the 
dispersion caused by the transmission fiber or the strand 
of fiber-optic cables used are known as DCFs. They 
derive this through a negative dispersion value which is 
expected to range between -300ps/nm/km.  

These actions act as the counteraction mechanisms 
and help in minimizing signal distortion with the 
objective of enhancing system performance. Dispersion, 
Kerr nonlinearity and increased SE noise are the main 
issues that can affect the performance of optical WDM 
systems. But these are problems that can be avoided if 
DCFs are adopted and implemented consistently. It is 
possible to mount it before, after or side by side to the 
transmission fiber and each positioning has its unique 
merits depending on the system requirements. Key to 
enhancing the design of DCF is the need to minimize 
insertion loss, find ways of lowest possible PMD, 
minimize optical nonlinearity, and have ways of 
improving the chromatic dispersion coefficient. Since the 

signal quality is a critical factor in any optical 
communications system, DCF (Dispersion Compensation 
Fiber) is important for achieving reliable systems [27]. 
This is due to the consideration of the Value of 
Discounted Cash Flow in the Dispersions equations as 
displayed in the Figure (3). 

C. Polarization Mode Dispersion 

PMD arises as a result of internal parameters and 
external conditions in fiber. A number of events 
happening through the manufacturing of fibers, the 
presence of flaws in the fibers, variations in the inside 
tensions, and so on, come under intrinsic factors leading 
to birefringence between the fiber and cladding. External 
factors are sources and influences which exert pressure 
and force, and change the shape, curvature, and aging of 
fiber optics. On account of these two factors, the two 
polarization modes travel with different velocities, and 
the transmission time to reach the receiving end is not 
equals [28]. Polarization mode dispersion is actually a 
type of dispersion which relates to the differential group 
delay of two polarization modes. The totally circular 
cross-sectional geometry is the ideal fiber geometry, 
which also has circular symmetric refractive index [28].  

This is in stark contrast to the two quadrature 
polarization modes of a single-mode fiber which are two-
degrees orthogonal. The differential group delay 
distortion between the two polarization modes during 
transmission is basically due to material, geometrical and 
stress anisotropy. This is referred to as polarization mode 
dispersion as shown in Figure (3-9) [28]. 

PMD is caused by the following factors: 
dam fiber, that is the geometric size of the optical fiber 
which is randomly manufactured in its geometry size and 
the residual stress in it; the refractive index distribution 
of an optical fiber is anisotropic; the optical cable, during 
its laying an in use, under external extrusion, torsion or 
changes in the environmental temperature or else, 
polarization mode coupling occurs [29]. 

Figure 2: Chromatic dispersion 

Figure 3: Dispersion compensation by DCF 



 
 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        5 
 

 
http://journals.uob.edu.bh 

 

 

4. FAULTS IN OPTICAL FIBERS 

To detect faults in optical fiber networks, it's 
essential to perceive the likely sorts of deficiencies that 
might happen. In optical fiber networks, two fundamental 
sorts of shortcomings are regularly experienced: fiber 
link property flaws and fiber cuts [30]. Fiber link 
property shortcomings allude to issues with the qualities 
or properties of the fiber link itself, like imperfections in 
the material or assembling process. Then again, fiber cuts 
happen when the actual progression of the fiber is 
disturbed, frequently because of outside factors like 
unplanned harm or conscious damage. Distinguishing 
and tending to these flaws are fundamental for keeping 
up with the respectability and usefulness of optical fiber 
networks [31]. 

A. 4.1 Fiber cable attribute faults 

While evaluating the suitability of optical fibers 
for communications networks, the disadvantages of fiber 
cable characteristics come first. Basic transmission 
characteristics to consider include bandwidth, which is 
affected by dispersion and attenuation levels [16]. 
Dispersion refers to the spread of signals over time or 
distance, while attenuation refers to the loss of signal 
strength. These properties are affected by various factors, 
including radiation, absorption and scattering. Ensuring 
optimum levels of dispersion and attenuation is vital to 
maintaining reliable and efficient communications over 
fiber optic networks. [32].  

B. Dispersion 

In digital communications systems that use optical 
fibers, data is encoded in light pulses that are sent from 
the sender to the receiver. However, while traveling 
through the fiber, these pulses undergo scattering, leading 
to various types of signal degradation. [33]. Scattering 
causes the pulses to spread over time or distance, leading 
to phenomena such as cross-talk, where the overlapping 
pulses become blurred to the receiver. Dispersion in 
optical fibers can be classified into two main types: 

multiple dispersion, which occurs in multimode fibers 
due to differences in mode lengths and velocities, and 
internal dispersion, which prevails in single-mode fibers 
at high data rates, causing broadening of the pulses. 
Managing dispersion is important to maintain the 
integrity and performance of optical communications 
networks, and ensure reliable data transmission over long 
distances. [30]. 

C. Fiber cable cut 

The occurrence of a break in an active fiber optic 
cable due to work carried out at the cable site is called the 
“fiber break phenomenon”. The extent of the outage 
depends on the location and number of active fiber optic 
cables affected by the outage. This phenomenon poses 
significant risks to the telecommunications industry, 
affecting network availability, operation, maintenance, 
and revenue margins.[34]. Optical fiber, with its superior 
advantages over traditional transmission media, is 
increasingly replacing microwave transmission networks 
in telecommunication networks. However, ensuring the 
reliability and smooth operation of fiber optic networks, 
which typically transmit large amounts of data traffic, 
remains a major challenge.[30]. 

Persistent fiber cuts represent a major challenge 
for telecom operators, as evidenced by domestic fiber 
optic network statistics in 2018. Faults are classified 
based on their impact on system parts and services and 
root causes. In backbone networks, where fiber cable 
lengths are much longer than in metropolitan networks 
and the number of nodes is higher, protecting the cable 
length is vital due to the higher failure rate.[34]. 
 

5. FAULT DETECTION IN UNDERGROUND OPTICAL 

NETWORKS 

Failures in optical networks mainly appear in the 
form of losses, which significantly affect the quality of 
transmission (NoT) and overall quality of service. These 
faults are usually classified into two main categories: 
hard faults and soft faults. Hard faults are sudden events 
such as fiber cuts or outages, while soft faults involve 
gradual degradation, often due to equipment failure or 
channel misalignment [32]. Multiple sources contribute 
to failures in optical networks, including channel 
misalignment, booster failure, and fiber kinking. Soft 
faults, in particular, can lead to signal degradation and bit 
error rate (BER) variations at the receiver, which can lead 
to packet losses or service interruptions [32]. 

While soft malfunctions are usually treated using 
specialized detection techniques, difficult faults in the 
underground networks, such as cutting and sprains in 
fiber cables, are usually followed and usually determined 
by using OTDR. However, the use of OTDR is 
accompanied by a set of problems as we mentioned 

Figure 4: Polarization mode Dispersion in optical Fiber 
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earlier, causing difficulties for the cable repair teams to 
determine the exact location of the malfunctions in the 
optical fiber cable. This situation prolongs the period of 
disruption of the service, increases revenue losses and 
losing communication services for users [35]. 

A. OTDR 

An Optical Domain Time Reflector (OTDR) is a 
pivotal device for tracking faults in optical cables. Its 
working principle is based on the use of Rayleigh 
scattering and Fresnel reflection techniques to accurately 
measure fault distances. In addition, OTDR is used to 
check for loss of links, measure cable length, and identify 
faults in optical cables, especially during initial 
installation.[36]. 

When an OTDR sends a high-power optical pulse 
through a fiber, Rayleigh scattering occurs, producing a 
feedback signal that reflects faults in the cable and 
returns to the device. This returned light is detected by a 
sensitive photoreceptor, converted into digital form, and 
the signal is averaged to improve the signal-to-noise 
ratio. The resulting data is displayed as a graph, 
providing a visual representation of backscatter activity, 
including cuts, link losses, bends, attenuation, and fault 
distances in the optical network.[37]. 

Fresnel reflection, another technique used by 
OTDR, detects discrete reflections caused by changes in 
refractive index elements, such as air gaps or particles 
that obstruct the flow of light. These reflections show 
fault locations, and by analyzing Fresnel reflection data, 
OTDR can predict both soft and hard faults in grid 
infrastructure[38]. 

In addition to Rayleigh scattering and Fresnel 
reflection, OTDR can use other analytical principles such 
as Raman scattering, Mie scattering, and Brillouin 
scattering to trace faults in optical networks. These 
principles allow OTDR to accurately measure 
underground fiber cable distances, enhancing fault 
detection capabilities under various conditions.[30]. 

B. Tracing Optical Network Faults 

Fiber optic network troubleshooting is a critical 
activity as it helps identify flaws with the aim of 
enhancing the stability of these networks. It is often 
initiated by detected signs that include poor performance, 
signal attenuation, and so on. There are different methods 
of identifying faults, such as OTDR – which involves the 
transmission of light pulses along the fiber and whose 
reflections indicates the presence of faults; and VFL 
which uses visible lasers to indicate faults and breaks or 
bends in the fiber. Optical Power Meters and Optical 
Spectrum Analyzers (OSA) are instruments that 
respectively measure the signal power deviation and 
variations of the signal spectrum. Other fault isolation 
techniques such as the sectional and loopback testing aid 

in making a narrowing down of the fault. NMS 
continuously monitor alarms and performance to 
distinguish early signs of problems hence are important 
in the network. Once a fault is realized, then instruments 
such as the OTDR can be used to measure distance to the 
slash and mapping of the topology assists in figuring out 
the exact physical placement of the slash. Analyzing 
repair and maintenance, some of them consist of splicing 
of damaged or cut fibers, cleaning or replacement of 
connectors, and replacement of any bad networking part. 
The post-repair tests guarantee that faults found have 
been corrected while monitoring as continued helps in 
keeping a check on the efficient network [38]. 

C. 5.3 Shortcomings in the current Fault Tracing 
Techniques 

Despite the advancement of current technologies 
applied in fault tracing techniques for optical networks, 
one can identify certain weaknesses. OTDR and OSAs 
are expensive tools which are not easily affordable by 
many firms especially those that operate in narrow fields; 
they require keen training to be used on the field. Also, 
while OTDR is good at fault identification, it may not be 
as accurate when it comes to determining the exact 
location of the fault, particularly when the network is 
highly branch or geographically entangled; also may 
provide insufficient data resolution in case of short fiber 
segments. Another weakness of some fault tracing tools 
is that they are selective in the types of faults that they 
can detect; for example, while OTDR works best when 
the breakage or severe bending of the fiber is present, it 
may not be able to recognize minor signs such as the 
wear and tear of the connectors as well as alignment 
problems with the fibers. Some forms of tests like loop 
back test may be invasive and can cause interruption in 
the network services and this is un desirable in heavily 
reliant applications or systems that run 24/7 [39]. 

 There is also often manual intervention required 
in fault tracing processes, and this may take a long time 
in writing and can also involve human error. Due to the 
character of the sensor data, numerous external 
disturbances like temperature variations and mechanical 
vibrations may influence the precise detection of the 
fault. The major challenge with legacy fault tracing 
methods is that the existing techniques may become 
resource-intensive and time-consuming with increasing 
network size and complexity of optical networks, thus 
resulting in extended detection and repair times. 
Secondly, the integration of fault tracing tools with the 
existing network management platforms can be 
cumbersome and whose integration offers operational 
complications with the systems. Thus, the further 
development and improvement of fault tracing techniques 
pinpointed their current weaknesses and the need for their 
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elaboration to suit today’s characteristics of optical 
networks [40]. 

 

6. APPLICATION OF MACHINE LEARNING IN 

OPTICAL-NETWORK FAILURES 

Machine learning (ML) is progressively being 
applied to address difficulties connected with optical 
network disappointments. Here are a few key 
applications: 
1. Fault Location and Classification: ML calculations 

can investigate information gathered from optical 
networks, including OTDR follows, to recognize 
and arrange various sorts of deficiencies, for 
example, fiber cuts, twists, and sign corruption. Via 
preparing models on verifiable information, ML can 
distinguish designs demonstrative of explicit kinds 
of disappointments, empowering proactive support 
and quicker issue goal [41]. 

2. Predictive Maintenance: ML models can foresee 
expected disappointments in optical networks by 
breaking down different boundaries like sign 
strength, lessening, and natural circumstances. By 
checking these elements continuously and 
contrasting them and authentic information, ML 
calculations can gauge when and where 
disappointments are probably going to happen, 
permitting administrators to make preventive moves 
before issues heighten [42]. 

3. Anomaly Detection: ML procedures, for example, 
unaided learning can recognize oddities in optical 
network conduct that might demonstrate looming 
disappointments or strange circumstances. By 
ceaselessly checking network execution 
measurements, ML calculations can recognize 
deviations from typical activity and trigger cautions 
for additional examination [43]. 

4. Optical Signal Quality Optimization: ML 
calculations can upgrade optical sign quality by 
changing boundaries, for example, power levels, 
regulation arrangements, and scattering pay settings 
because of changing network conditions. By gaining 
from past execution information, ML models can 
powerfully adjust network setups to amplify signal 
quality and limit the gamble of disappointments 
[44]. 

5. Dynamic Steering and Asset Allocation: ML-based 
traffic designing calculations can upgrade directing 
choices and asset allotment in optical networks to 
moderate the effect of disappointments and 
guarantee productive utilization of network assets. 
By dissecting traffic examples and network 

geography, ML models can powerfully reroute 
traffic around bombed connections or hubs to keep 
up with administration progression and limit clog 
[45]. 

6. Performance Forecast and Limit Planning: ML 
models can anticipate future network execution and 
limit prerequisites in light of verifiable information 
and projected development patterns. By estimating 
traffic interest, transmission capacity usage, and 
asset accessibility, ML calculations can assist 
administrators with arranging network overhauls 
and extensions to forestall bottlenecks and oblige 
expanding request [46]. 

 
In general, the utilization of ML in optical-

network disappointments holds extraordinary potential to 
improve network dependability, effectiveness, and 
execution by empowering proactive shortcoming 
discovery, prescient upkeep, and canny asset the 
executives. 
7. ADVANTAGES OF ML TECHNIQUES IN FAULT 

DETECTION AND CLASSIFICATION ه   IN OPTICAL 

NETWORKS 
 Detecting and classifying errors in fiber optic 

networks using artificial intelligence techniques 
achieves many unique advantages, including: 

 High accuracy: AI algorithms have the ability to 
detect and classify errors with high accuracy, 
reducing false positives and negatives. 

 Real-time monitoring: AI-based systems can 
continuously monitor fiber optic networks in real-
time, allowing immediate detection and response to 
faults. 

 Scalability: AI algorithms can scale to analyze large 
amounts of data from complex fiber-optic networks, 
making them suitable for deployment in diverse 
environments. 

 Adaptive learning: AI systems can adapt and learn 
from new data and experiences, improving error 
detection and classification capabilities over time. 
As Bill Gates once observed, “The progress of 
technology depends on making it so convenient that 
you don't really notice it, so part of everyday life.” 
AI-based fault detection and classification is 
seamlessly integrated into existing network 
management workflows, enhancing overall 
operational efficiency [35][47] 

7. RELATED WORKS ANALYSIS 

Fault detection and order assume a critical part in 
guaranteeing the unwavering quality and proficiency of 
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different networks across various spaces. Table 1 gives a 
thorough outline of ongoing exploration endeavors 
pointed toward addressing different difficulties connected 
with issue identification and order. The examinations 
cover many applications, including optical networks, 
sensor networks, modern cycles, and Web of Things 
(IoT) conditions. 

The table sorts the exploration concentrates on in 
light of the analysts, issue tended to, techniques utilized, 
results acquired, qualities of the methodologies, and 
impediments recognized. Each review offers one of a 
kind bit of knowledge and commitments to the field of 
issue location and characterization, using different 
strategies, for example, AI calculations, model-based 

techniques, profound learning approaches, and time-
series examination. 

From issue identification in optical fiber networks 
to prescient support for machine disappointments and 
wellbeing status expectation of electronic sensors in 
independent vehicles, the table features the variety and 
meaning of examination endeavors pointed toward 
upgrading framework unwavering quality, execution, and 
security through successful shortcoming location and 
characterization procedures. 

Specialists and experts can involve this table as a 
significant asset to acquire bits of knowledge into the 
most recent headways, strategies, and difficulties in 
shortcoming discovery and grouping across various 
application spaces. 

TABLE 1. Summary of Fault Detection and Classification Research Studies 
 

Reference Problem Method Results Strength Points Limitations 

Ali  
[3] 

Fault detection in 
optical fibers 

Review of published 
papers, white papers, 

and articles 

Identification of 
common faults: fiber 
cut, high attenuation, 

dispersion 

Comprehensive 
overview of fault 

detection techniques 

Limited to existing 
literature; may not 
cover all emerging 

methods 

Khan et al. 
[7] 

Lack of 
understanding 
regarding the 

applicability of ML 
techniques in optical 
communications and 

networking 

Review of ML 
concepts from 

communication 
theory and signal 

processing 
perspectives 

Description of 
mathematical 

foundations of basic 
ML techniques 

Provides insights into 
potential ML 

applications in optical 
communications and 

networking 

Limited to theoretical 
understanding; may 
not cover practical 

implementation 
aspects 

Abdelli et al. 
[48] 

Distortion of OTDR 
traces due to noise 

Combination of 
denoising 

convolutional 
autoencoder (DCAE) 
and bidirectional long 

short-term memory 
(BiLSTM) 

- DCAE efficiently 
removes noise from 

OTDR traces, 
outperforming other 

deep learning 
techniques and 

conventional methods 
, BiLSTM achieves 
high detection and 

diagnostic accuracy 
of 96.7% , 

Improvement of 
13.74% compared to 
model trained with 

noisy OTDR signals 

Effective denoising 
and fault detection in 

OTDR signals 

Limited to 
experimental results, 
may not address all 

potential noise 
scenarios in real-

world applications 

Patri et al. 
[49] 

Detection and 
identification of 

failures in Optical 
Spectrum-as-a-

Service (OSaaS) 
networks 

Evaluation of 
Machine Learning 

(ML) based 
algorithms using 

telemetry data from 
Flex-BVTs 

- Utilization of 
Artificial Neural 
Network (ANN) 

model with dynamic 
threshold calculation 

and One-Class 
Support Vector 

Machine (OCSVM) 
model  

Efficient failure 
detection and 

identification using 
telemetry data from 

end Flex-BVTs 

Limited to evaluation 
of ML algorithms on 

a specific network 
configuration and 

duration 

Liu et al. 
[50] 

Efficient fault 
location mechanism 

for high-density 
interconnection 
scenarios in data 

centers 

Application of 
customized AI 

module to OTDR 
device combined with 

optical power 
monitoring module 

- AI-assisted optical 
network fault location 

mechanism 
implemented , 

Utilization of AI 
module for predicting 

potential failure in 
optical links , 

Significant 
improvement in fault 
detection efficiency 

Improved fault 
detection efficiency 

using AI module 

Limited to specific 
scenario of high-

density 
interconnection in 

data centers 
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by 98.41% 

Goni et al. 
[51] 

Detection and 
classification of faults 
in transmission lines 

(TLs) to ensure 
stability and 

continuous power 
supply 

Development of a 
spontaneous fault 

detection (FD) and 
fault classification 

(FC) system based on 
Machine Learning 

(ML) 

- Utilization of 
MATLAB Simulink 
for simulation and 
data generation , 

Extreme Learning 
Machine (ELM) 

algorithm used as 
classifier , Achieved 

high fault 
classification and 

detection accuracies 

Relatively shorter 
processing time and 

reduced 
computational 

complexity compared 
to traditional 

Artificial Neural 
Network (ANN) 

model 

Limited to 
simulation-based 

study; may require 
further validation on 

real-world TLs 

Villa et al. 
[52] 

Utilizing machine 
learning algorithms to 

enhance the 
functioning and 

operation of optical 
networks 

Systematic mapping 
analysis of 96 papers 

out of 841 
publications to 

identify the use of 
machine learning 

techniques in solving 
optical network 

problems 

- Supervised machine 
learning techniques 
predominantly used 

for resource 
management, network 

monitoring, fault 
management, and 

traffic classification 
and prediction , 

Identified 
opportunities and 
future research 

directions in the field 

Provides an overview 
of machine learning 

applications in optical 
networks 

Most research 
conducted in 

controlled 
experimental 
environments, 

highlighting the need 
for further validation 

in real-world 
communication 

systems 

Kruse et al. 
[53] 

Improving fault 
management in 

increasingly complex 
optical networks to 
enhance network 

assurance 

Experimental 
comparison of 

performance of soft-
failure management 

using different 
machine learning 

algorithms 

- Introduction of a 
machine-learning 
based soft-failure 

management 
framework utilizing a 

variation auto 
encoder based 

generative adversarial 
network (VAE-GAN) 
, Outperformance of 

VAE-GAN in 
identification tasks 

with limited training 
data 

Offers a novel 
approach to fault 
management in 

optical networks 
using machine 

learning 

Limited to 
experimental 

comparison and may 
require validation in 
real-world scenarios 

Lindström et al. 
[54] 

Improving pulp 
testing in the pulp and 

paper industry 
through automated 
image analysis and 
machine learning 

(ML) 

Application of four 
supervised ML 

techniques—Lasso 
regression, support 

vector machine 
(SVM), feed-forward 

neural networks 
(FFNN), and 

recurrent neural 
networks (RNN)—to 
fiber data obtained 

from fiber suspension 
micrographs 

- Maximum accuracy 
achieved with FFNN 
algorithm with Yeo–

Johnson 
preprocessing: 81% 
using commercial 

fiber analyzer 
software 

- Offers a consistent, 
fast, and cost-

efficient alternative to 
labor-intensive pulp 

testing 

- Limitation to 
specific techniques 
and software used 

may affect 
generalizability - 
Potential need for 

further validation and 
optimization in real-

world industrial 
settings 

Singh et al. 
[55] 

Predicting distributed 
denial-of-service 
(DDoS) attacks in 

fiber-optical networks 
using innovative SL-

FLSTM strategy 

Development of Sea 
Lion fine-tuned Long 
Short-Term Memory 
(SL-FLSTM) strategy 

to predict DDoS 
attacks 

- Recall: 98.1% , 
Precision: 98.2% , F1 

score: 98.3% , 
Accuracy: 98.4% , 

Outperformed other 
existing approaches 
in predicting DDoS 

attacks in fiber-
optical networks 

- Incorporates 
insights from Sea 

Lion (SL) behavior to 
improve sequential 
data processing , 
Integrates bio-

inspired 
modifications into the 
LSTM architecture, 
enhancing long-term 

dependency modeling 
, Achieves high 

performance metrics 
in recall, precision, 

F1 score, and 
accuracy 

- Limited to 
prediction of DDoS 

attacks in fiber-
optical networks; may 

not generalize to 
other types of cyber 

attacks 
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Manzoni et al. [56] 

Continuous Glucose 
Monitoring (CGM) 

sensor fault detection 
in an artificial 

pancreas 

Model-based fault 
detection using 

Kalman predictor 

Large inconsistencies 
between measured 

and predicted values 
suggest faults 

Model-based 
approach, accounts 

for system dynamics 

Requires a well-
defined model, relies 

on accurate 
predictions 

Jihani et al. [57] 

Fault detection and 
isolation in Wireless 

Sensor Networks 
(WSN) 

Parity space approach 
based on 

mathematical models 

Significant 
differences between 

measured and 
predicted values 
indicate faults 

Utilizes redundancy 
in sensor 

measurements 

Requires prior 
knowledge for model 

construction 

Hashimoto et al. [58] 

Fault detection and 
diagnosis of internal 

sensor in mobile 
robots 

Multimodal approach 
using Kalman filters 

Fault decision based 
on mode probabilities 
estimated from sensor 

gain 

Handles multiple 
failure modes 

Assumes accurate 
estimation from 
Kalman filters 

He et al. [59] 
Optical fiber sensor 

fault detection in 
aero-engine system 

Model-based method 
considering 

disturbances and 
uncertainties 

Demonstrated 
performance on a gas 

turbine model 

Accounts for system 
uncertainties 

Requires accurate 
modeling of system 

dynamics 

Yan et al. [60] 
Minor soft faults 
detection in air 

conditioning sensors 

Model using KPCA-
DL-BiLSTM 

Higher detection rate 
compared to 

individual methods 

Utilizes advanced 
machine learning 

techniques 

Performance may 
vary with different 

fault types 

Alwan et al. [61] 
Long-segmental 

faults detection in 
sensor nodes 

Time-series 
clustering technique 

Efficient detection of 
long-segmental 

outliers 

Provides alternative 
to predictive analysis 

Depends on the 
quality and 

representativeness of 
data 

Zhao et al. [62] 
Incipient faults 

detection in industrial 
processes 

Sliding window 
approach with control 

limits 

Detects constant bias 
and precision 
degradation 

Utilizes empirical 
control limits 

Limited to specific 
types of faults and 

processes 

Uppal et al. [63] 
Early fault prediction 
in IoT environment 

Machine learning 
algorithms including 

Random Forest 

High classification 
accuracy of 94.25% 

Demonstrates 
effectiveness of ML 
in fault prediction 

Performance may 
vary with different 

datasets and 
algorithms 

      

Wahid et al. [65] 
Predictive 

maintenance for 
machine failures 

CNN-LSTM model 
for time-series 

analysis 

Provides reliable and 
accurate prediction 

Utilizes advanced 
neural network 
architectures 

Performance may 
depend on the quality 
and quantity of data 

Uppal et al. [66] 
Fault classification in 

office appliances 
connected via IoT 

Machine learning 
algorithms 

Provides monitoring 
and classification of 

faults 

Utilizes IoT data for 
fault detection 

Performance may 
vary depending on 

appliance complexity 

Safavi et al. [67] 

Health status 
prediction of 

electronic sensors in 
autonomous vehicles 

Feature extraction 
and multi-class DNN 

Identifies faulty 
sensors and types of 

faults 

Utilizes advanced 
machine learning for 

fault recognition 

Requires accurate 
feature extraction and 

labeling of faults 

 
 

8. CONCLUSIONS 

To sum up, the incorporation of machine learning 
methods presents encouraging ways to tackle the 
difficulties related to defect detection in optical fiber 
networks. Operators may anticipate possible failures, 
proactively detect and categories errors, and improve 
network performance by utilizing ML algorithms. To 
evaluate the efficacy of ML models in practical settings 
and to solve particular issues like network complexity 
and noise in OTDR traces, more research is necessary. 
All things considered, ML-based fault detection 
techniques have the power to completely transform 
optical network fault management, resulting in improved 
performance, efficiency, and dependability. 
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